TY - JOUR A1 - Chapartegui-Arias, Ander A1 - Raysyan, A. A1 - Belenguer, A. M. A1 - Jaeger, Carsten A1 - Tchipilov, Teodor A1 - Prinz, Carsten A1 - Abad Andrade, Carlos Enrique A1 - Beyer, S. A1 - Schneider, Rudolf A1 - Emmerling, Franziska T1 - Tailored mobility in a zeolite imidazolate framework (ZIF) antibody conjugate N2 - Zeolitic imidazolate framework (ZIF) hybrid fluorescent nanoparticles and ZIF antibody conjugates have been synthesized, characterized, and employed in lateral-flow immunoassay (LFIA). The bright fluorescence of the conjugates and the possibility to tailor their mobility gives a huge potential for diagnostic assays. An enzyme-linked immunosorbent assay (ELISA) with horseradish peroxidase (HRP) as label, proved the integrity, stability, and dispersibility of the antibody conjugates, LC-MS/MS provided evidence that a covalent link was established between these metal-organic frameworks and lysine residues in IgG antibodies. KW - ZIF KW - ELISA PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-532096 DO - https://doi.org/10.1002/chem.202100803 SN - 0947-6539 SN - 1521-3765 VL - 27 IS - 36 SP - 9414 EP - 9421 PB - Wiley-VCH CY - Weinheim AN - OPUS4-53209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abbas, Ioana M. A1 - Vranic, M. A1 - Hoffmann, Holger A1 - El-Khatib, Ahmed H. A1 - Montes-Bayón, M. A1 - Möller, H. M. A1 - Weller, Michael G. T1 - Investigations of the copper peptide hepcidin-25 by LC-MS/MS and NMR (+) N2 - Hepcidin-25 was identified as the main iron regulator in the human body, and it by binds to the sole iron-exporter ferroportin. Studies showed that the N-terminus of hepcidin is responsible for this interaction, the same N-terminus that encompasses a small copper(II)-binding site known as the ATCUN (amino-terminal Cu(II)- and Ni(II)-binding) motif. Interestingly, this copper-binding property is largely ignored in most papers dealing with hepcidin-25. In this context, detailed investigations of the complex formed between hepcidin-25 and copper could reveal insight into its biological role. The present work focuses on metal-bound hepcidin-25 that can be considered the biologically active form. The first part is devoted to the reversed-phase chromatographic separation of copper-bound and copper-free hepcidin-25 achieved by applying basic mobile phases containing 0.1% ammonia. Further, mass spectrometry (tandem mass spectrometry (MS/MS), high-resolution mass spectrometry HRMS)) and nuclear magnetic resonance (NMR) spectroscopy were employed to characterize the copper-peptide. Lastly, a three-dimensional (3D)model of hepcidin-25with bound copper(II) is presented. The identification of metal complexes and potential isoforms and isomers, from which the latter usually are left undetected by mass spectrometry, led to the conclusion that complementary analytical methods are needed to characterize a peptide calibrant or reference material comprehensively. Quantitative nuclear magnetic resonance (qNMR), inductively-coupled plasma mass spectrometry (ICP-MS), ion-mobility spectrometry (IMS) and chiral amino acid analysis (AAA) should be considered among others. KW - Metalloprotein KW - Peptide KW - Chromatography KW - High pH KW - Mobile phase KW - Metrology KW - Purity KW - Reference material KW - ATCUN KW - Copper KW - Nickel PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-457796 UR - http://www.mdpi.com/1422-0067/19/8/2271 DO - https://doi.org/10.3390/ijms19082271 SN - 1422-0067 VL - 19 IS - 8 SP - 2271, 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-45779 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Martin A1 - Weller, Michael G. T1 - Antibody Screening by Microarray Technology - Direct Identification of Selective High-Affinity Clones N2 - The primary screening of hybridoma cells is a time-critical and laborious step during the development of monoclonal antibodies. Often, critical errors occur in this phase, which supports the notion that the generation of monoclonal antibodies with hybridoma technology is difficult to control and hence, a risky venture. We think that it is crucial to improve the screening process to eliminate most of the critical deficits of the conventional approach. With this new microarray-based procedure, several advances could be achieved: Selectivity for excellent binders, high-throughput, reproducible signals, avoidance of misleading avidity (multivalency) effects, and performance of simultaneous competition experiments. The latter can also be used to select clones of desired cross-reactivity properties. In this paper, a model system with two excellent clones against carbamazepine, two weak clones, and blank supernatant containing fetal bovine serum was designed to examine the effectiveness of the new system. The excellent clones could be detected largely independent of the immunoglobulin G (IgG) concentration, which is usually unknown during the clone screening since the determination and subsequent adjustment of the antibody concentration are not feasible in most cases. Furthermore, in this approach, the enrichment, isolation, and purification of IgG for characterization is not necessary. Raw cell culture supernatant can be used directly, even when fetal calf serum (FCS) or other complex media is used. In addition, an improved method for the oriented antibody-immobilization on epoxy-silanized slides is presented. Based on the results of this model system with simulated hybridoma supernatants, we conclude that this approach should be preferable to most other protocols leading to many false positives, causing expensive and lengthy elimination steps to weed out the poor clones. KW - ELISA KW - Immunoassay KW - Microarray KW - Lab-on-a-chip KW - Miniaturization KW - Aautomatisation KW - HTS KW - High-throughput KW - Screening KW - Fluorescence KW - Label KW - Hybridoma KW - Inhibition PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503361 DO - https://doi.org/10.3390/antib9010001 SN - 2073-4468 VL - 9 IS - 1 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-50336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weller, Michael G. T1 - The mystery of homochirality on earth N2 - Homochirality is an obvious feature of life on Earth. On the other hand, extraterrestrial samples contain largely racemic compounds. The same is true for any common organic synthesis. Therefore, it has been a perplexing puzzle for decades how these racemates could have formed enantiomerically enriched fractions as a basis for the origin of homochiral life forms. Numerous hypotheses have been put forward as to how preferentially homochiral molecules could have formed and accumulated on Earth. In this article, it is shown that homochirality of the abiotic organic pool at the time of formation of the first self-replicating molecules is not necessary and not even probable. It is proposed to abandon the notion of a molecular ensemble and to focus on the level of individual molecules. Although the formation of the first self-replicating, most likely homochiral molecule, is a seemingly improbable event, on a closer look, it is almost inevitable that some homochiral molecules have formed simply on a statistical basis. In this case, the non-selective leap to homochirality would be one of the first steps in chemical evolution directly out of a racemic “ocean”. Moreover, most studies focus on the chirality of the primordial monomers with respect to an asymmetric carbon atom. However, any polymer with a minimal size that allows folding to a secondary structure would spontaneously lead to asymmetric higher structures (conformations). Most of the functions of these polymers would be influenced by this inherently asymmetric folding. Furthermore, a concept of physical compartmentalization based on rock nanopores in analogy to nanocavities of digital immunoassays is introduced to suggest that complex cell walls or membranes were also not required for the first steps of chemical evolution. To summarize, simple and universal mechanisms may have led to homochiral self-replicating systems in the context of chemical evolution. A homochiral monomer pool is deemed unnecessary and probably never existed on primordial Earth. N2 - Homochiralität ist ein offensichtliches Merkmal des Lebens auf der Erde. Andererseits enthalten extraterrestrische Proben überwiegend racemische Verbindungen. Dasselbe gilt für jede gängige organische Synthese. Daher war es jahrzehntelang ein Rätsel, wie diese Racemate enantiomeren-angereicherte Fraktionen als Grundlage für den Ursprung homochiraler Lebensformen bilden konnten. Zahlreiche Hypothesen wurden aufgestellt, wie sich bevorzugt homochirale Moleküle auf der Erde gebildet und angereichert haben könnten. In diesem Artikel wird gezeigt, dass Homochiralität des abiotischen organischen Pools zum Zeitpunkt der Bildung der ersten selbstreplizierenden Moleküle nicht notwendig und nicht einmal wahrscheinlich ist. Es wird vorgeschlagen, die Vorstellung eines molekularen Ensembles aufzugeben und sich auf die Ebene der einzelnen Moleküle zu konzentrieren. Obwohl die Bildung des ersten selbstreplizierenden, höchstwahrscheinlich homochiralen Moleküls ein scheinbar unwahrscheinliches Ereignis ist, ist es bei näherer Betrachtung fast unvermeidlich, dass sich einige homochirale Moleküle einfach auf statistischer Basis gebildet haben. In diesem Fall wäre der nichtselektive Sprung zur Homochiralität einer der ersten Schritte der chemischen Evolution direkt aus einem racemischen "Ozean". Darüber hinaus konzentrieren sich die meisten Studien auf die Chiralität der ursprünglichen Monomere in Bezug auf ein asymmetrisches Kohlenstoffatom. Jedes Polymer mit einer Mindestgröße, die eine Faltung zu einer Sekundärstruktur erlaubt, würde jedoch spontan zu asymmetrischen höheren Strukturen (Konformationen) führen. Die meisten Funktionen dieser Polymere würden durch diese inhärent asymmetrische Faltung beeinflusst. Darüber hinaus wird ein Konzept der physikalischen Kompartimentierung auf der Basis von Gesteinsnanoporen in Analogie zu den Nanokavitäten digitaler Immunoassays vorgestellt, das darauf hindeutet, dass auch für die ersten Schritte der chemischen Evolution keine komplexen Zellwände oder Membranen notwendig waren. Zusammenfassend lässt sich sagen, dass einfache und universelle Mechanismen zu homochiralen selbstreplizierenden Systemen im Rahmen der chemischen Evolution geführt haben könnten. Ein homochiraler Monomerpool wird als unnötig angesehen, welcher auf der Urerde wahrscheinlich nie existiert hat. KW - Chemical evolution KW - Enantiomeric excess ee KW - Chirality KW - Racemate KW - Folding chirality KW - Self-assembly KW - self-replication KW - Single molecule KW - Prebiotic chemistry KW - Protein folding KW - Peptide folding KW - Proteinoid KW - Conformation KW - Segregation KW - Compartmentalization KW - Digital immunoassay KW - Porous rock KW - Miller and Urey KW - Primordial soup KW - Murchison meteorite KW - Micrometeorites KW - Tholins PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598349 DO - https://doi.org/10.3390/life14030341 SN - 2075-1729 VL - 14 IS - 3 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-59834 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schroeder, Barbara A1 - Le Xuan, Hoa A1 - Völzke, Jule L. A1 - Weller, Michael G. T1 - Preactivation Crosslinking - An Efficient Method for the Oriented Immobilization of Antibodies N2 - Crosslinking of proteins for their irreversible immobilization on surfaces is a proven and popular method. However, many protocols lead to random orientation and the formation of undefined or even inactive by-products. Most concepts to obtain a more targeted conjugation or immobilization requires the recombinant modification of at least one binding partner, which is often impractical or prohibitively expensive. Here a novel method is presented, which is based on the chemical preactivation of Protein A or G with selected conventional crosslinkers. In a second step, the antibody is added, which is subsequently crosslinked in the Fc part. This leads to an oriented and covalent immobilization of the immunoglobulin with a very high yield. Protocols for Protein A and Protein G with murine and human IgG are presented. This method may be useful for the preparation of columns for affinity chromatography, immunoprecipitation, antibodies conjugated to magnetic particles, permanent and oriented immobilization of antibodies in biosensor systems, microarrays, microtitration plates or any other system, where the loss of antibodies needs to be avoided, and maximum binding capacity is desired. This method is directly applicable even to antibodies in crude cell culture supernatants, raw sera or protein-stabilized antibody preparations without any purification nor enrichment of the IgG. This new method delivered much higher signals as a traditional method and, hence, seems to be preferable in many applications. KW - Antibody coating KW - Proximity-enhanced reaction KW - Immunoglobulins KW - IgG KW - Protein A KW - Protein G KW - Immunoprecipitation KW - Immunocapture KW - Regeneration KW - Biosensor KW - Immunosensor KW - Affinity chromatography KW - Immunoaffinity extraction KW - Oriented immobilization KW - Immunoassay KW - Bioconjugation PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479786 UR - https://www.mdpi.com/2409-9279/2/2/35 DO - https://doi.org/10.3390/mps2020035 SN - 2409-9279 VL - 2 IS - 2 SP - 1 EP - 14 PB - MDPI CY - Basel, Switzerland AN - OPUS4-47978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schroeder, Barbara A1 - Le Xuan, Hoa A1 - Völzke, Jule L. A1 - Weller, Michael G. T1 - Preactivation crosslinking – An efficient method for the oriented immobilization of antibodies N2 - Crosslinking of proteins for their irreversible immobilization on surfaces is a proven and popular method. However, many protocols lead to random orientation and the formation of undefined or even inactive by-products. Most concepts to obtain a more targeted conjugation or immobilization requires the recombinant modification of at least one binding partner, which is often impractical or prohibitively expensive. Here a novel method is presented, which is based on the chemical preactivation of Protein A or G with selected conventional crosslinkers. In a second step, the antibody is added, which is subsequently crosslinked in the Fc part. This leads to an oriented and covalent immobilization of the immunoglobulin with a very high yield. Protocols for Protein A and Protein G with murine and human IgG are presented. This method may be useful for the preparation of columns for affinity chromatography, immunoprecipitation, antibodies conjugated to magnetic particles, permanent and oriented immobilization of antibodies in biosensor systems, microarrays, microtitration plates or any other system, where the loss of antibodies needs to be avoided, and maximum binding capacity is desired. This method is directly applicable even to antibodies in crude cell culture supernatants, raw sera or protein-stabilized antibody preparations without any purification nor enrichment of the IgG. This new method delivered much higher signals as a traditional method and, hence, seems to be preferable in many applications. KW - Antibody coating KW - Proximity-enhanced reaction KW - Immunoglobulins KW - IgG KW - Protein G KW - Protein A KW - Immunoprecipitation KW - Immunocapture KW - Stabilization KW - Biosensor KW - Biochip KW - Microarray KW - ELISA KW - Immunoassay KW - Immunosensor KW - Crosslinker KW - Nanoparticles KW - Click chemistry KW - Herceptin KW - Trastuzumab PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-478797 DO - https://doi.org/10.20944/preprints201904.0205.v1 SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-47879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reimann, C. A1 - Brangsch, J. A1 - Kaufmann, Jan Ole A1 - Adams, L. C. A1 - Onthank, D. C. A1 - Thöne-Reineke, C. A1 - Robinson, S. P. A1 - Hamm, B. A1 - Botnar, R. M. A1 - Makowski, M. R. T1 - Dual-probe molecular MRI for the in vivo characterization of atherosclerosis in a mouse model: Simultaneous assessment of plaque inflammation and extracellular matrix remodeling N2 - Molecular MRI is a promising in-vivo modality to detect and quantify morphological and molecular vessel-wall changes in atherosclerosis. The combination of different molecular biomarkers may improve the risk stratification of patients. This study aimed to investigate the feasibility of simultaneous visualization and quantification of plaque-burden and inflammatory activity by dual-probe molecular MRI in a mouse-model of progressive atherosclerosis and in response-to-therapy. Homozygous apolipoprotein E knockout mice (ApoE−/−) were fed a high-fat-diet (HFD) for up to four-months prior to MRI of the brachiocephalic-artery. To assess response-to-therapy, a statin was administered for the same duration. MR imaging was performed before and after administration of an elastin-specific gadolinium-based and a macrophage-specific iron-oxide-based probe. Following in-vivo MRI, samples were analyzed using histology, immunohistochemistry, inductively-coupled-mass-spectrometry and laser-inductively-coupled-mass-spectrometry. In atherosclerotic-plaques, intraplaque expression of elastic-fibers and inflammatory activity were not directly linked. While the elastin-specific probe demonstrated the highest accumulation in advanced atherosclerotic-plaques after four-months of HFD, the iron-oxide-based probe showed highest accumulation in early atherosclerotic-plaques after two months of HFD. In-vivo measurements for the elastin and iron-oxide-probe were in good agreement with ex-vivo histopathology (Elastica-van-Giesson stain: y = 298.2 + 5.8, R2 = 0.83, p < 0.05; Perls‘ Prussian-blue-stain: y = 834.1 + 0.67, R2 = 0.88, p < 0.05). Contrast-to-noise-ratio (CNR) measurements of the elastin probe were in good agreement with ICP-MS (y = 0.11x-11.3, R² = 0.73, p < 0.05). Late stage atherosclerotic-plaques displayed the strongest increase in both CNR and gadolinium concentration (p < 0.05). The gadolinium probe did not affect the visualization of the iron-oxide-probe and vice versa. This study demonstrates the feasibility of simultaneous assessment of plaque-burden. KW - Gadolinium KW - Elastin KW - Probe KW - Iron oxide KW - Ferumoxytol PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-497066 DO - https://doi.org/10.1038/s41598-019-50100-8 VL - 9 SP - 13827 PB - Springer Nature AN - OPUS4-49706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernevic, Bogdan A1 - El-Khatib, Ahmed H. A1 - Jakubowski, Norbert A1 - Weller, Michael G. T1 - Online immunocapture ICP‑MS for the determination of the metalloprotein ceruloplasmin in human serum N2 - The human copper-protein ceruloplasmin (Cp) is the major copper-containing protein in the human body. The accurate determination of Cp is mandatory for the reliable diagnosis of several diseases. However, the analysis of Cp has proven to be difficult. The aim of our work was a proof of concept for the determination of a metalloprotein-based on online immunocapture ICP-MS. The immuno-affinity step is responsible for the enrichment and isolation of the analyte from serum, whereas the compound-independent quantitation with ICP-MS delivers the sensitivity, precision, and large dynamic range. Off-line ELISA (enzyme-linked immunosorbent assay) was used in parallel to confirm the elution profile of the analyte with a structure-selective method. The total protein elution was observed with the 32S mass trace. The ICP-MS signals were normalized on a 59Co signal. The human copper-protein Cp could be selectively determined. This was shown with pure Cp and with a sample of human serum. The good correlation with off-line ELISA shows that Cp could be captured and eluted selectively from the anti-Cp affinity column and subsequently determined by the copper signal of ICP-MS. KW - ELISA KW - Affinity chromatography KW - Affinity extraction KW - IgY KW - Chicken antibodies KW - Immunoaffinity extraction KW - Copper KW - Diagnostics PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-446157 UR - https://bmcresnotes.biomedcentral.com/articles/10.1186/s13104-018-3324-7 UR - https://static-content.springer.com/esm/art%3A10.1186%2Fs13104-018-3324-7/MediaObjects/13104_2018_3324_MOESM1_ESM.pdf UR - https://static-content.springer.com/esm/art%3A10.1186%2Fs13104-018-3324-7/MediaObjects/13104_2018_3324_MOESM2_ESM.pdf DO - https://doi.org/10.1186/s13104-018-3324-7 SN - 1756-0500 VL - 11 IS - 1 SP - Article 213, 1 EP - 5 PB - Springer Nature CY - Heidelberg AN - OPUS4-44615 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Martin A1 - Tscheuschner, Georg A1 - Herrmann, Stefan A1 - Weller, Michael G. T1 - Fast Detection of 2,4,6-Trinitrotoluene (TNT) at ppt Level by a Laser-Induced Immunofluorometric Biosensor N2 - The illegal use of explosives by terrorists and other criminals is an increasing issue in public spaces, such as airports, railway stations, highways, sports venues, theaters, and other large buildings. Security in these environments can be achieved by different means, including the installation of scanners and other analytical devices to detect ultra-small traces of explosives in a very short time-frame to be able to take action as early as possible to prevent the detonation of such devices. Unfortunately, an ideal explosive detection system still does not exist, which means that a compromise is needed in practice. Most detection devices lack the extreme analytical sensitivity, which is nevertheless necessary due to the low vapor pressure of nearly all explosives. In addition, the rate of false positives needs to be virtually zero, which is also very difficult to achieve. Here we present an immunosensor system based on kinetic competition, which is known to be very fast and may even overcome affinity limitation, which impairs the performance of many traditional competitive assays. This immunosensor consists of a monolithic glass column with a vast excess of immobilized hapten, which traps the fluorescently labeled antibody as long as no explosive is present. In the case of the explosive 2,4,6-trinitrotoluene (TNT), some binding sites of the antibody will be blocked, which leads to an immediate breakthrough of the labeled protein, detectable by highly sensitive laser-induced fluorescence with the help of a Peltier-cooled complementary metal-oxide-semiconductor (CMOS) camera. Liquid handling is performed with high-precision syringe pumps and chip-based mixing-devices and flow-cells. The system achieved limits of detection of 1 pM (1 ppt) of the fluorescent label and around 100 pM (20 ppt) of TNT. The total assay time is less than 8 min. A cross-reactivity test with 5000 pM solutions showed no signal by pentaerythritol tetranitrate (PETN), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). This immunosensor belongs to the most sensitive and fastest detectors for TNT with no significant cross-reactivity by non-related compounds. The consumption of the labeled antibody is surprisingly low: 1 mg of the reagent would be sufficient for more than one year of continuous biosensor operation. KW - Airport KW - Aviation KW - Bombs KW - Terrorism KW - Biosensing KW - Continuous Sensor KW - High-Speed KW - Ultrasensitive PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511245 DO - https://doi.org/10.3390/bios10080089 VL - 10 IS - 8 SP - 89 PB - MDPI CY - Basel AN - OPUS4-51124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tscheuschner, Georg A1 - Schwaar, Timm A1 - Weller, Michael G. T1 - Fast Confirmation of Antibody Identity by MALDI-TOF MS Fingerprints N2 - Thousands of antibodies for diagnostic and other analytical purposes are on the market. However, it is often difficult to identify duplicates, reagent changes, and to assign the correct original publications to an antibody. This slows down scientific progress and might even be a cause of irreproducible research and a waste of resources. Recently, activities were started to suggest the sole use of recombinant antibodies in combination with the open communication of their sequence. In this case, such uncertainties should be eliminated. Unfortunately, this approach seems to be rather a long-term vision since the development and manufacturing of recombinant antibodies remain quite expensive in the foreseeable future. Nearly all commercial antibody suppliers also may be reluctant to publish the sequence of their antibodies, since they fear counterfeiting. De novo sequencing of antibodies is also not feasible today for a reagent user without access to the hybridoma clone. Nevertheless, it seems to be crucial for any scientist to have the opportunity to identify an antibody undoubtedly to guarantee the traceability of any research activity using antibodies from a third party as a tool. For this purpose, we developed a method for the identification of antibodies based on a MALDI-TOF MS fingerprint. To circumvent lengthy denaturation, reduction, alkylation, and enzymatic digestion steps, the fragmentation was performed with a simple formic acid hydrolysis step. Eighty-nine unknown monoclonal antibodies were used for this study to examine the feasibility of this approach. Although the molecular assignment of peaks was rarely possible, antibodies could be easily recognized in a blinded test, simply from their mass-spectral fingerprint. A general protocol is given, which could be used without any optimization to generate fingerprints for a database. We want to propose that, in most scientific projects relying critically on antibody reagents, such a fingerprint should be established to prove and document the identity of the used antibodies, as well as to assign a specific reagent to a datasheet of a commercial supplier, public database record, or antibody ID. KW - Reproducibility KW - Quality Control KW - Traceability KW - Diagnostics KW - Hybridoma KW - Monoclonal Antibody KW - Recombinant Antibody PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506611 DO - https://doi.org/10.3390/antib9020008 SN - 2310-287X VL - 9 IS - 2 SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-50661 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brangsch, J. A1 - Reimann, C. A1 - Kaufmann, Jan Ole A1 - Adams, L. C. A1 - Onthank, D. A1 - Thöne-Reineke, C. A1 - Robinson, S. A1 - Wilke, Marco A1 - Weller, Michael G. A1 - Buchholz, R. A1 - Karst, U. A1 - Botnar, R. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Molecular MR-Imaging for Noninvasive Quantification of the Anti-Inflammatory Effect of Targeting Interleukin-1β in a Mouse Model of Aortic Aneurysm N2 - Background: Molecular-MRI is a promising imaging modality for the assessment of abdominal aortic aneurysms (AAAs). Interleukin-1β (IL-1β) represents a new therapeutic tool for AAA-treatment, since pro-inflammatory cytokines are key-mediators of inflammation. This study investigates the potential of molecular-MRI to evaluate therapeutic effects of an anti-IL-1β-therapy on AAA-formation in a mouse-model. Methods: Osmotic-minipumps were implanted in apolipoprotein-deficient-mice (N = 27). One group (Ang-II+01BSUR group, n = 9) was infused with angiotensin-II (Ang-II) for 4 weeks and received an anti-murine IL-1β-antibody (01BSUR) 3 times. One group (Ang-II-group, n = 9) was infused with Ang-II for 4 weeks but received no treatment. Control-group (n = 9) was infused with saline and received no treatment. MR-imaging was performed using an elastin-specific gadolinium-based-probe (0.2 mmol/kg). Results: Mice of the Ang-II+01BSUR-group showed a lower aortic-diameter compared to mice of the Ang-II-group and control mice (p < 0.05). Using the elastin-specific-probe, a significant decrease in elastin-destruction was observed in mice of the Ang-II+01BSUR-group. In vivo MR-measurements correlated well with histopathology (y = 0.34x-13.81, R2 = 0.84, p < 0.05), ICP-MS (y = 0.02x+2.39; R2 = 0.81, p < 0.05) and LA-ICP-MS. Immunofluorescence and western-blotting confirmed a reduced IL-1β-expression. Conclusions: Molecular-MRI enables the early visualization and quantification of the anti-inflammatory-effects of an IL-1β-inhibitor in a mouse-model of AAAs. Responders and non-responders could be identified early after the initiation of the therapy using molecular-MRI. KW - Cardiovascular KW - Molecular-MRI KW - Magnetic resonance imaging KW - Gadolinium-based contrast agent KW - Elastin-specific contrast agent ESMA KW - Gadovist KW - Gadofosveset KW - MR Angiography KW - Inductively Coupled Mass Spectroscopy KW - Element Specific Bioimaging Using Laser Ablation KW - Visualization PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517150 DO - https://doi.org/10.1177/1536012120961875 VL - 19 SP - 61875 PB - SAGE AN - OPUS4-51715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Paul, Martin A1 - Weller, Michael G. T1 - Antibody Screening by Microarray Technology – Direct Identification of Selective High-Affinity Clones N2 - The primary screening of hybridoma cells is a time-critical and laborious step during the development of monoclonal antibodies. Often critical errors occur in this phase, which supports the notion that the generation of monoclonal antibodies with hybridoma technology is difficult to control and hence a risky venture. We think that it is crucial to improve the screening process to eliminate most of the immanent deficits of the conventional approach. With this new microarray-based procedure, several advances could be achieved: Selectivity for excellent binders, high throughput, reproducible signals, avoidance of misleading avidity (multivalency) effects, and simultaneous performance of competition experiments. The latter can directly be used to select clones of desired cross-reactivity properties. In this paper, a model system with two excellent clones against carbamazepine, two weak clones and blank supernatant has been designed to examine the effectiveness of the new system. The excellent clones could be detected largely independent of the IgG concentration, which is unknown during the clone screening since the determination and subsequent adjustment of the antibody concentration is not possible in most cases. Furthermore, in this approach, the enrichment, isolation, and purification of IgG for characterization is not necessary. Raw cell culture supernatant can be used directly, even when fetal calf serum (FCS) or other complex media had been used. In addition, an improved method for the oriented antibody-immobilization on epoxy-silanized slides is presented. Based on the results of this model system, we conclude that this approach should be preferable to most other protocols leading to many of false positives, causing expensive and lengthy confirmation steps to weed out the poor clones. KW - Hybridoma KW - Monoclonal Antibodies KW - Clones KW - Competitive Immunoassay KW - Hapten Immunoassay KW - False Positives PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506621 DO - https://doi.org/10.20944/preprints201911.0023.v1 SN - 2310-287X SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-50662 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Tscheuschner, Georg A1 - Schwaar, Timm A1 - Weller, Michael G. T1 - Fast Confirmation of Antibody Identity by MALDI-TOF-MS Fingerprints N2 - Thousands of antibodies for diagnostic and other analytical purposes are on the market. However, it is often difficult to identify duplicates, reagent changes, and to assign the correct original publications to an antibody. This slows down scientific progress and might even be a cause of irreproducible research and a waste of resources. Recently, activities were started to suggest the sole use of recombinant antibodies in combination with the open communication of their sequence. In this case, such uncertainties should be eliminated. Unfortunately, this approach seems to be rather a long-term vision since the development and manufacturing of recombinant antibodies remain quite expensive in the foreseeable future. Also, nearly all commercial antibody suppliers may be reluctant to publish the sequence of their antibodies, since they fear counterfeiting. De-novo sequencing of antibodies is also not feasible today for a reagent user without access to the hybridoma clone. Nevertheless, it seems to be crucial for any scientist to have the opportunity to identify an antibody undoubtedly to guarantee the traceability of any research activity using antibodies from a third party as a tool. For this purpose, we developed a method for the identification of antibodies based on a MALDI-TOF-MS fingerprint. To circumvent lengthy denaturation, reduction, alkylation, and enzymatic digestion steps, the fragmentation was performed with a simple formic acid hydrolysis step. Eighty-nine unknown monoclonal antibodies were used for this study to examine the feasibility of this approach. Although the molecular assignment of peaks was rarely possible, antibodies could be easily recognized in a blinded test, simply from their mass-spectral fingerprint. A general protocol is given, which could be used without any optimization to generate fingerprints for a database. We want to propose that in most scientific projects relying critically on antibody reagents, such a fingerprint should be established to prove and document the identity of the used antibodies and to assign a specific reagent to a datasheet of a commercial supplier, a public database record or an antibody ID. KW - Reproducibility KW - Quality Control KW - Traceability KW - Diagnostics KW - ELISA KW - Immunoassay PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506590 DO - https://doi.org/10.20944/preprints202002.0207.v1 SN - 2310-287X SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-50659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steglich, P. A1 - Bondarenko, S. A1 - Mai, C. A1 - Paul, Martin A1 - Weller, Michael G. A1 - Mai, A. T1 - CMOS-Compatible Silicon Photonic Sensor for Refractive Index Sensing Using Local Back-Side Release N2 - Silicon photonic sensors are promising candidates for lab-on-a-chip solutions with versatile applications and scalable production prospects using complementary metal-oxide semiconductor (CMOS) fabrication methods. However, the widespread use has been hindered because the sensing area adjoins optical and electrical components making packaging and sensor handling challenging. In this work, a local back-side release of the photonic sensor is employed, enabling a separation of the sensing area from the rest of the chip. This approach allows preserving the compatibility of photonic integrated circuits in the front-end of line and metal interconnects in the back-end of line. The sensor is based on a micro-ring resonator and is fabricated on wafer-level using a CMOS technology. We revealed a ring resonator sensitivity for homogeneous sensing of 106 nm/RIU. KW - Photonic biosensor KW - Lab-on-a-chip KW - Ring resonator KW - Resonance wavelength shift KW - PIC technology KW - Back-side integration PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517139 DO - https://doi.org/10.1109/LPT.2020.3019114 VL - 32 IS - 19 SP - 1241 EP - 1244 PB - IEEE AN - OPUS4-51713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Meermann, Björn A1 - Koch, Matthias A1 - Weller, Michael G. T1 - Editorial: Analytical methods and applications in materials and life sciences N2 - Current trends in materials and life sciences are flanked by the need to push detection limits to single molecules or single cells, enable the characterization of increasingly complex matrices or sophisticated nanostructures, speed up the time of analysis, reduce instrument complexity and costs, and improve the reliability of data. This requires suitable analytical tools such as spectroscopic, separation and imaging techniques, mass spectrometry, and hyphenated techniques as well as sensors and their adaptation to application-specific challenges in the environmental, food, consumer product, health sector, nanotechnology, and bioanalysis. Increasing concerns about health threatening known or emerging pollutants in drinking water, consumer products, and food and about the safety of nanomaterials led to a new awareness of the importance of analytical sciences. Another important driver in this direction is the increasing demand by legislation, particularly in view of the 17 sustainable development goals by the United Nations addressing clean energy, industry, and innovation, sustainable cities, clean water, and responsible consumption and production. In this respect, also the development of analytical methods that enable the characterization of material flows in production processes and support recycling concepts of precious raw materials becomes more and more relevant. In the future, this will provide the basis for greener production in the chemical industry utilizing recycled or sustainable starting materials. This makes analytical chemistry an essential player in terms of the circular economy helping to increase the sustainability of production processes. In the life sciences sector, products based on proteins, such as therapeutic and diagnostic antibodies, increase in importance. These increasingly biotechnologically produced functional biomolecules pose a high level of complexity of matrix and structural features that can be met only by highly advanced methods for separation, characterization, and detection. In addition, metrological traceability and target definition are still significant challenges for the future, particularly in the life sciences. However, innovative reference materials as required for the health and food sector and the characterization of advanced materials can only be developed when suitable analytical protocols are available. The so-called reproducibility crisis in sciences underlines the importance of improved measures of quality control for all kinds of measurements and material characterization. This calls for thorough method validation concepts, suitable reference materials, and regular interlaboratory comparisons of measurements as well as better training of scientists in analytical sciences. The important contribution of analytical sciences to these developments is highlighted by a broad collection of research papers, trend articles, and critical reviews from these different application fields. Special emphasis is dedicated to often-overlooked quality assurance and reference materials. T2 - 150 years BAM: Science with impact CY - Berlin, Germany DA - 01.01.2021 KW - Analysis KW - Life sciences KW - Analytical sciences KW - Quality assurance KW - Reference material KW - Fluorescence KW - Nanoparticle KW - Sensor KW - Material sciences KW - Pollutant KW - Environment KW - Method KW - Limit of detection KW - 150th anniversary KW - ABC KW - BAM KW - Collection KW - Editorial KW - Special issue KW - Bundesanstalt für Materialforschung und -prüfung KW - Jahrestag PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550720 DO - https://doi.org/10.1007/s00216-022-04082-8 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - Topical collection: Analytical methods and applications in the materials and life sciences SP - 4267 EP - 4268 PB - Springer CY - Berlin AN - OPUS4-55072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Adams, L. C. A1 - Brangsch, J. A1 - Reimann, C. A1 - Kaufmann, Jan Ole A1 - Buchholz, R. A1 - Karst, U. A1 - Botnar, R. M. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Simultaneous molecular MRI of extracellular matrix collagen and inflammatory activity to predict abdominal aortic aneurysm rupture N2 - Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease with an up to 80% mortality in case of rupture. Current biomarkers fail to account for size-independent risk of rupture. By combining the information of different molecular probes, multi-target molecular MRI holds the potential to enable individual characterization of AAA. In this experimental study, we aimed to examine the feasibility of simultaneous imaging of extracellular collagen and inflammation for size-independent prediction of risk of rupture in murine AAA. The study design consisted of: (1) A outcome-based longitudinal study with imaging performed once after one week with follow-up and death as the end-point for assessment of rupture risk. (2) A week-by-week study for the characterization of AAA development with imaging after 1, 2, 3 and 4 weeks. For both studies, the animals were administered a type 1 collagen-targeted gadolinium-based probe (surrogate marker for extracellular matrix (ECM) remodeling) and an iron oxide-based probe (surrogate marker for inflammatory activity), in one imaging session. In vivo measurements of collagen and iron oxide probes showed a significant correlation with ex vivo histology (p < 0.001) and also corresponded well to inductively-coupled plasma-mass spectrometry and laser-ablation inductively-coupled plasma mass spectrometry. Combined evaluation of collagen-related ECM remodeling and inflammatory activity was the most accurate predictor for AAA rupture (sensitivity 80%, specificity 100%, area under the curve 0.85), being superior to information from the individual probes alone. Our study supports the feasibility of a simultaneous assessment of collagen-related extracellular matrix remodeling and inflammatory activity in a murine model of AAA. KW - Atherosclerosis KW - Specific probe KW - Magnetic resonance imaging KW - Gadolinium KW - Iron oxide KW - Ferumoxytol KW - Inductively‑coupled mass spectrometry KW - ICP-MS KW - LA-ICP-MS KW - Laser ablation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525864 UR - https://www.nature.com/articles/s41598-020-71817-x DO - https://doi.org/10.1038/s41598-020-71817-x VL - 10 IS - 1 SP - 15206 PB - Springer Nature Limited CY - London, New York, Berlin, Shanghai and Tokyo AN - OPUS4-52586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Adams, L. C. A1 - Brangsch, J. A1 - Reimann, C. A1 - Kaufmann, Jan Ole A1 - Nowak, K. A1 - Buchholz, R. A1 - Karst, U. A1 - Botnar, R. M. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Noninvasive imaging of vascular permeability to predict the risk of rupture in abdominal aortic aneurysms using an albumin binding probe N2 - Abdominal aortic aneurysm (AAA) remains a fatal disease. Its development encompasses a complex interplay between hemodynamic stimuli on and changes in the arterial wall. Currently available biomarkers fail to predict the risk of AAA rupture independent of aneurysm size. Therefore, novel biomarkers for AAA characterization are needed. In this study, we used a mouse model of AAA to investigate the potential of magnetic resonance imaging (MRI) with an albumin-binding probe to assess changes in vascular permeability at different stages of aneurysm growth. Two imaging studies were performed: a longitudinal study with follow-up and death as endpoint to predict rupture risk and a week-by-week study to characterize AAA development. AAAs, which eventually ruptured, demonstrated a significantly higher in vivo MR signal enhancement from the albumin-binding probe (p = 0.047) and a smaller non-enhancing thrombus area compared to intact AAAs (p = 0.001). The ratio of albumin-binding-probe enhancement of the aneurysm wall to size of non-enhancing-thrombus-area predicted AAA rupture with high sensitivity/specificity (100%/86%). More advanced aneurysms with higher vascular permeability demonstrated an increased uptake of the albumin-binding-probe. These results indicate that MRI with an albumin-binding probe may enable noninvasive assessment of vascular permeability in murine AAAs and prediction of rupture risk. KW - Magnetic resonance imaging KW - Imaging KW - Tomography KW - Gadolinium KW - Contrast agent KW - Atherosclerosis KW - ICP-MS KW - Gadofosveset KW - Angiography KW - LA-ICP-MS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525541 DO - https://doi.org/10.1038/s41598-020-59842-2 VL - 10 SP - Article number: 3231 PB - Springer Nature Limited CY - London, New York, Berlin, Shanghai and Tokyo AN - OPUS4-52554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tscheuschner, Georg A1 - Kaiser, Melanie N. A1 - Lisec, Jan A1 - Beslic, D. A1 - Muth, Thilo A1 - Krüger, M. A1 - Mages, H. W. A1 - Dorner, B. G. A1 - Knospe, J. A1 - Schenk, J. A. A1 - Sellrie, F. A1 - Weller, Michael G. T1 - MALDI-TOF-MS-Based Identification of Monoclonal Murine Anti-SARS-CoV-2 Antibodies within One Hour N2 - During the SARS-CoV-2 pandemic, many virus-binding monoclonal antibodies have been developed for clinical and diagnostic purposes. This underlines the importance of antibodies as universal bioanalytical reagents. However, little attention is given to the reproducibility crisis that scientific studies are still facing to date. In a recent study, not even half of all research antibodies mentioned in publications could be identified at all. This should spark more efforts in the search for practical solutions for the traceability of antibodies. For this purpose, we used 35 monoclonal antibodies against SARS-CoV-2 to demonstrate how sequence-independent antibody identification can be achieved by simple means applied to the protein. First, we examined the intact and light chain masses of the antibodies relative to the reference material NIST-mAb 8671. Already half of the antibodies could be identified based solely on these two parameters. In addition, we developed two complementary peptide mass fingerprinting methods with MALDI-TOF-MS that can be performed in 60 min and had a combined sequence coverage of over 80%. One method is based on the partial acidic hydrolysis of the protein by 5 mM of sulfuric acid at 99 degrees C. Furthermore, we established a fast way for a tryptic digest without an alkylation step. We were able to show that the distinction of clones is possible simply by a brief visual comparison of the mass spectra. In this work, two clones originating from the same immunization gave the same fingerprints. Later, a hybridoma sequencing confirmed the sequence identity of these sister clones. In order to automate the spectral comparison for larger libraries of antibodies, we developed the online software ABID 2.0. This open-source software determines the number of matching peptides in the fingerprint spectra. We propose that publications and other documents critically relying on monoclonal antibodies with unknown amino acid sequences should include at least one antibody fingerprint. By fingerprinting an antibody in question, its identity can be confirmed by comparison with a library spectrum at any time and context. KW - Reproducibility KW - Quality control KW - Traceability KW - Peptides KW - Peptide mass fingerprinting KW - Monoclonal antibody KW - Recombinant antibody KW - Identity KW - Antibody identification KW - Sequencing KW - Light chain KW - Mass spectrometry KW - Software KW - Open science KW - Library KW - COVID-19 KW - Corona virus KW - Sequence coverage KW - NIST-mAb 8671 KW - Reference material KW - RBD KW - Spike protein KW - Nucleocapsid KW - Cleavage KW - Tryptic digest KW - MALDI KW - DHAP KW - 2,5-dihydroxyacetophenone KW - Github KW - Zenodo KW - ABID PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547347 DO - https://doi.org/10.3390/antib11020027 VL - 11 IS - 2 SP - 1 EP - 22 PB - MDPI CY - Basel AN - OPUS4-54734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Martin A1 - Tannenberg, Robert A1 - Tscheuschner, Georg A1 - Ponader, Marco A1 - Weller, Michael G. T1 - Cocaine Detection by a Laser-Induced Immunofluorometric Biosensor N2 - The trafficking of illegal drugs by criminal networks at borders, harbors, or airports is an increasing issue for public health as these routes ensure the main supply of illegal drugs. The prevention of drug smuggling, including the installation of scanners and other analytical devices to detect small traces of drugs within a reasonable time frame, remains a challenge. The presented immunosensor is based on a monolithic affinity column with a large excess of immobilized hapten, which traps fluorescently labeled antibodies as long as the analyte cocaine is absent. In the presence of the drug, some binding sites of the antibody will be blocked, which leads to an immediate breakthrough of the labeled protein, detectable by highly sensitive laser-induced fluorescence with the help of a Peltier-cooled complementary metal-oxide-semiconductor (CMOS) camera. Liquid handling is performed with high-precision syringe pumps and microfluidic chip-based mixing devices and flow cells. The biosensor achieved limits of detection of 7 ppt (23 pM) of cocaine with a response time of 90 s and a total assay time below 3 min. With surface wipe sampling, the biosensor was able to detect 300 pg of cocaine. This immunosensor belongs to the most sensitive and fastest detectors for cocaine and offers near-continuous analyte measurement. KW - Online detection KW - Security KW - Monoclonal antibody KW - Microfluidic mixing KW - Microfluidics KW - Lab-on-a-chip KW - Monolithic column KW - Affinity chromatography KW - Laser-induced fluorescence KW - LIF KW - ELISA KW - Wipe test KW - Low-cost PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-534487 DO - https://doi.org/10.3390/bios11090313 VL - 11 IS - 9 SP - 1 EP - 15 PB - MDPI CY - Basel AN - OPUS4-53448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Backes, A. T. A1 - Reinmuth-Selzle, K. A1 - Leifke, A. L. A1 - Ziegler, K. A1 - Krevert, C. S. A1 - Tscheuschner, Georg A1 - Lucas, K. A1 - Weller, Michael G. A1 - Berkemeier, T. A1 - Pöschl, U. A1 - Fröhlich-Nowoisky, J. T1 - Oligomerization and Nitration of the Grass Pollen Allergen Phl p 5 by Ozone, Nitrogen Dioxide, and Peroxynitrite: Reaction Products, Kinetics, and Health Effects N2 - The allergenic and inflammatory potential of proteins can be enhanced by chemical modification upon exposure to atmospheric or physiological oxidants. The molecular mechanisms and kinetics of such modifications, however, have not yet been fully resolved. We investigated the oligomerization and nitration of the grass pollen allergen Phl p 5 by ozone (O3), nitrogen dioxide (NO2), and peroxynitrite (ONOO–). Within several hours of exposure to atmospherically relevant concentration levels of O3 and NO2, up to 50% of Phl p 5 were converted into protein oligomers, likely by formation of dityrosine cross-links. Assuming that tyrosine residues are the preferential site of nitration, up to 10% of the 12 tyrosine residues per protein monomer were nitrated. For the reaction with peroxynitrite, the largest oligomer mass fractions (up to 50%) were found for equimolar concentrations of peroxynitrite over tyrosine residues. With excess peroxynitrite, the nitration degrees increased up to 40% whereas the oligomer mass fractions decreased to 20%. Our results suggest that protein oligomerization and nitration are competing processes, which is consistent with a two-step mechanism involving a reactive oxygen intermediate (ROI), as observed for other proteins. The modified proteins can promote pro-inflammatory cellular signaling that may contribute to chronic inflammation and allergies in response to air pollution. KW - Protein KW - Nitrotyrosine KW - Dityrosine KW - Allergy KW - Hay fever KW - Diesel exhaust KW - Combustion KW - Exhaust PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529729 DO - https://doi.org/10.3390/ijms22147616 VL - 22 IS - 14 PB - MDPI CY - Basel AN - OPUS4-52972 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -