TY - JOUR A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Schriever, Sina A1 - Ulbricht, Alexander A1 - Agudo Jácome, Leonardo A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Skrotzki, Birgit A1 - Evans, Alexander T1 - Creep and creep damage behavior of stainless steel 316L manufactured by laser powder bed fusion N2 - This study presents a thorough characterization of the creep properties of austenitic stainless steel 316L produced by laser powder bed fusion (LPBF 316L) contributing to the sparse available data to date. Experimental results (mechanical tests, microscopy, X-ray computed tomography) concerning the creep deformation and damage mechanisms are presented and discussed. The tested LPBF material exhibits a low defect population, which allows for the isolation and improved understanding of the effect of other typical aspects of an LPBF microstructure on the creep behavior. As a benchmark to assess the material properties of the LPBF 316L, a conventionally manufactured variant of 316L was also tested. To characterize the creep properties, hot tensile tests and constant force creep tests at 600 °C and 650 °C are performed. The creep stress exponents of the LPBF material are smaller than that of the conventional variant. The primary and secondary creep stages and the times to rupture of the LPBF material are shorter than the hot rolled 316L. Overall the creep damage is more extensive in the LPBF material. The creep damage of the LPBF material is overall mainly intergranular. It is presumably caused and accelerated by both the appearance of precipitates at the grain boundaries and the unfavorable orientation of the grain boundaries. Neither the melt pool boundaries nor entrapped gas pores show a significant influence on the creep damage mechanism. KW - 316L KW - Laser Powder Bed Fusion (LPBF) KW - Creep behavior KW - Additive Manufacturing KW - AGIL PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539373 DO - https://doi.org/10.1016/j.msea.2021.142223 SN - 0921-5093 VL - 830 SP - 142223 PB - Elsevier B.V. AN - OPUS4-53937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Örnek, C. A1 - Léonard, Fabien A1 - McDonald, S. A1 - Prajapati, A A1 - Withers, P. J. A1 - Engelberg, D. T1 - Time-dependent in situ measurement of atmospheric corrosion rates of duplex stainless steel wires N2 - Corrosion rates of strained grade UNS S32202 (2202) and UNS S32205 (2205) duplex stainless steel wires have been measured, in situ, using time-lapse X-ray computed tomography. Exposures to chloride-containing (MgCl2) atmospheric environments at 50 °C (12–15 M Cl− and pH ~5) with different mechanical elastic and elastic/plastic loads were carried out over a period of 21 months. The corrosion rates for grade 2202 increased over time, showing selective dissolution with shallow corrosion sites, coalescing along the surface of the wire. Corrosion rates of grade 2205 decreased over time, showing both selective and pitting corrosion with more localised attack, growing preferentially in depth. The nucleation of stress corrosion cracking was observed in both wires. KW - X-ray computed tomography KW - Time-lapse X-ray computed tomography PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444153 UR - https://www.nature.com/articles/s41529-018-0030-9 DO - https://doi.org/10.1038/s41529-018-0030-9 SN - 2397-2106 VL - 2 SP - Article 10, 1 EP - 15 PB - Nature CY - London AN - OPUS4-44415 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Nikonov, A. Y. A1 - Dmitriev, A. I. ED - Krzanowski, J. T1 - MD sliding simulations of amorphous tribofilms consisting of either SiO2 or carbon N2 - The sliding behaviors of two simplified tribofilms with amorphous structure consisting either of SiO₂ molecules or C atoms were simulated by molecular dynamics modeling. The objective was to identify mechanisms explaining the experimentally observed lubricating properties of the two amorphous films. The impacts of layer thickness, normal pressure, temperature and different substrate materials were studied systematically, while the sliding velocity was kept constant at 30 m/s. While the layer thickness was not critical, all the other parameters showed special effects under certain conditions. Normal pressure impeded void formation and could even eliminate voids if applied at high temperature. Stick-slip sliding was changed to smooth sliding at high temperature due to void healing. Considering the carbon film, high friction forces and shearing of the entire film was observed with diamond substrates, whereas interface sliding at low friction forces and an amorphous layer of iron mixed with carbon was observed if the supporting substrates consisted of α-Fe. Both films show a decrease of friction forces and smooth sliding behavior at elevated temperature, corresponding well to the tribological behavior of and advanced nanocomposite sliding against a steel disc under severe stressing conditions when high flash temperatures can be expected. KW - dry friction KW - amorphous silica film KW - amorphous carbon film KW - sliding simulation KW - molecular dynamics PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-379367 DO - https://doi.org/10.3390/lubricants4030024 VL - 4 IS - 24 PB - MDPI CY - Basel, Switzerland AN - OPUS4-37936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Üstündag, Ö. A1 - Avilov, V. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Improvement of Filler Wire Dilution Using External Oscillating Magnetic Field at Full Penetration Hybrid Laser-Arc Welding of Thick Materials N2 - Hybrid laser-arc welding offers many advantages, such as deep penetration, good gap bridge-ability, and low distortion due to reduced heat input. The filler wire which is supplied to the process is used to influence the microstructure and mechanical properties of the weld seam. A typical problem in deep penetration high-power laser beam welding with filler wire and hybrid laser-arc welding is an insufficient mixing of filler material in the weld pool, leading to a non-uniform element distribution in the seam. In this study, oscillating magnetic fields were used to form a non-conservative component of the Lorentz force in the weld pool to improve the element Distribution over the entire thickness of the material. Full penetration hybrid laser-arc welds were performed on 20-mm-thick S355J2 steel plates with a nickel-based wire for different arrangements of the oscillating magnetic field. The Energy-dispersive X-ray spectroscopy (EDS) data for the distribution of two tracing elements (Ni and Cr) were used to analyze the homogeneity of dilution of the filler wire. With a 30° turn of the magnetic field to the welding direction, a radical improvement in the filler material distribution was demonstrated. This would lead to an improvement of the mechanical properties with the use of a suitable filler wire. KW - Thick materials KW - Hybrid laser-arc welding KW - Oscillating magnetic field KW - Electromagnetic stirring KW - Full penetration PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-489644 DO - https://doi.org/10.3390/met9050594 SN - 2075-4701 VL - 9 IS - 5 SP - 594 PB - Multidisciplinary Digital Publishing Institute CY - Basel AN - OPUS4-48964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Üstündag, Ö. A1 - Avilov, V. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Full penetration hybrid laser arc welding of up to 28 mm thick S355 plates using electromagnetic weld pool support N2 - The laser hybrid welding process offers many advantages regarding deep penetration, increased welding velocity and with the help of the supplied filler wire an improved bridgeability to gap and misalignment tolerances. High power laser systems with a power of approx. 30 kW are already available on the market. Nevertheless, multi-layer technology with an arc process is still used for welding of plates from a thickness from 20 mm. A potential cause is the process instability with increasing laser power. It is inevitable that gravity drop-out due to the high hydrostatic pressure at increasing wall thickness especially at welding in flat position and with a low welding speed. The surface tension decreases with increasing root width resulting from low welding velocities. To prevent such inadmissible defects of the seam a use of weld pool support is required. Usual weld pool support systems such as ceramic or powder supports require a mechanical detachment which is time-consuming. The electromagnetic weld pool support system described in this work shows an alternative weld pool support which works contactless. It is based on generating Lorentz forces in the weld pool due to oscillating magnetic field and induced eddy currents. This innovative technology offers single pass welds up to 28 mm in flat position and reduced welding velocity with a laser power of just 19 kW. It also leads to improved mechanical-technological properties of the seams because of the slow cooling rate. With usage of an electromagnetic weld pool support the limitation of the hybrid laser arc welding process in the thick sheet metal will be extend. KW - Electromagnetic weld pool support KW - Hybrid laser arc welding KW - Thick-walled steel KW - Single pass welding PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-468276 DO - https://doi.org/10.1088/1742-6596/1109/1/012015 SN - 1742-6596 VL - 1109 SP - 1 EP - 7 PB - IOP Publ. AN - OPUS4-46827 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Üstündag, Ö. A1 - Fritzsche, André A1 - Avilov, V. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Study of gap and misalignment tolerances at hybrid laser arc welding of thick-walled steel with electromagnetic weld pool support system N2 - The hybrid laser arc welding (HLAW) process provides many advantages such as improved gap bridgeability, deep penetration and misalignment of edges, that is why the process is used increasingly in industrial applications e.g. shipbuilding, power plant industry and line-pipe manufacturing. The obvious encountered problem for single pass welding in flat position is the gravity drop-out at low welding velocities. With the usage of an electromagnetic weld pool support system, which is based on generating Lorentz forces within the weld pool, wide seams followed by reduced welding velocities could be achieved in this study leading to the realization of a gap bridgeability up to 1 mm, misalignment of edges up to 2 mm and a single pass weld up to 28 mm thickness with a 20-kW fibre laser. These developments expand the boundaries of the HLAW process for different industrial applications. As a result, less accurate preparation of the edges would be sufficient, which saves time for manufacturing. KW - Hybrid laser-arc welding KW - Electromagnetic weld pool support system KW - Thick-walled steel KW - Gap bridgeability KW - Single pass welding KW - Misalignment of edges PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-468263 DO - https://doi.org/10.1016/j.procir.2018.08.016 SN - 2212-8271 VL - 74 SP - 757 EP - 760 PB - Elsevier AN - OPUS4-46826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Üstündag, Ömer A1 - Bakir, Nasim A1 - Gook, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Hybrid laser‑arc welding of laser‑ and plasma‑cut 20‑mm‑thick structural steels N2 - It is already known that the laser beam welding (LBW) or hybrid laser-arc welding (HLAW) processes are sensitive to manufacturing tolerances such as gaps and misalignment of the edges, especially at welding of thick-walled steels due to its narrow beam diameter. Therefore, the joining parts preferably have to be milled. The study deals with the influence of the edge quality, the gap and the misalignment of edges on the weld seam quality of hybrid laser-arc welded 20-mm-thick structural steel plates which were prepared by laser and plasma cutting. Single-pass welds were conducted in butt joint configuration. An AC magnet was used as a contactless backing. It was positioned under the workpiece during the welding process to prevent sagging. The profile of the edges and the gap between the workpieces were measured before welding by a profile scanner or a digital camera, respectively. With a laser beam power of just 13.7 kW, the single-pass welds could be performed. A gap bridgeability up to 1 mm at laser-cut and 2 mm at plasma-cut samples could be reached respectively. Furthermore, a misalignment of the edges up to 2 mm could be welded in a single pass. The new findings may eliminate the need for cost and time-consuming preparation of the edges. KW - Hybrid laser-arc welding KW - Thick-walled steel KW - Edge quality KW - Gap bridgeability KW - Laser cutting KW - Plasma cutting PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552013 DO - https://doi.org/10.1007/s40194-022-01255-y SN - 0043-2288 VL - 66 SP - 507 EP - 514 PB - Springer AN - OPUS4-55201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Üstündag, Ömer A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Improvement of Charpy impact toughness by using an AC magnet backing system for laser hybrid welding of thick S690QL steels N2 - The study deals with the influence of the heat input and the resulting cooling times on the microstructure and Charpy impact toughness of single-pass laser hybrid welded 20-mm thick high-strength steel S690QL. The main focus is on the change of the mechanical properties over the entire seam thickness. The cooling times were measured in-situ using a pyrometer and an optical fibre in three different depths of the seam where Charpy impact test specimens were also later taken. Thereby, three different heat inputs from 1.3 kJ/mm to 2 kJ/mm were investigated. Despite the observed decreased values of both t8/5-cooling time and the Charpy impact toughness in the root part of the seam, the required impact toughness of 38 J/cm2 could be reached in dependance on applied heat input, especially at the heat input of 1.6 kJ/mm. T2 - 12th CIRP conference on photonic technologies [lane 2022] CY - Fürth, Germany DA - 04.09.2022 KW - Thick-plate welding KW - Laser hybrid welding KW - Electromagnetic backing KW - Charpy impact toughness KW - Thermal cycles PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563731 DO - https://doi.org/10.1016/j.procir.2022.08.067 VL - 111 SP - 462 EP - 465 PB - Elsevier B.V. AN - OPUS4-56373 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Üstündag, Ömer A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Influence of an external applied AC magnetic field on the melt pool dynamics at high-power laser beam welding N2 - The study deals with the determination of the influence of an externally applied oscillating magnetic field on the melt pool dynamics in high power laser beam and hybrid laser arc welding processes. An AC magnet was positioned under the workpiece which is generating an upward directed electromagnetic force to counteract the formation of the droplets. To visualise the melt flow characteristics, several experiments were carried out using a special technique with mild steel from S355J2 with a plate thickness of up to 20 mm and a quartz glass in butt configuration. The profile of the keyhole and the melt flow were recorded with a highspeed camera from the glass side. Additionally, the influence of the magnetic field orientation to the welding direction on the filler material dilution on laser hybrid welding was studied with variating oscillation frequency. The element distribution over the whole seam thickness was measured with X-ray fluorescence (XRF). The oscillation frequency demonstrated a great influence on the melt pool dynamics and the mixing of the elements of the filler wire. The highspeed recordings showed, under the influence of the magnetic field, that the melt is affected under strong vortex at the weld root, which also avoids the formation of droplets. T2 - 18th Nordic Laser Materials Processing Conference (18th NOLAMP) KW - Laser beam welding KW - AC magnetic field KW - Melt pool dynamics KW - Filler wire mixing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539231 DO - https://doi.org/10.1088/1757-899X/1135/1/012017 VL - 1135 IS - 012017 SP - 1 EP - 10 PB - IOP Publishing AN - OPUS4-53923 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Üstündag, Ömer A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Investigation of the gap bridgeability at high-power laser hybrid welding of plasma-cut thick mild steels with AC magnetic support N2 - One of the challenges of the high-power hybrid laser welding of thick steels is the sensitivity of the process of the process to manufacturing tolerances. This usually leads to a time-consuming preparation of the welding edges, such as milling. The study deals with the influence of the edge quality of milled and plasma-cut steel made of S355J2 with a wall thickness of 20 mm on the laser hybrid welded seam quality. Furthermore, the gap bridgeability and the tolerances towards edge misalignment was investigated. An AC magnet was used as backing support to prevent sagging and positioned under the workpiece, to generate an upwards directed electromagnetic pressure. The profiles of the edges and the gap on the top and root side were measured using a digital camera. Single-pass laser hybrid welds of plasma-cut edges could be welded using a laser beam power of just 13.7 kW. A gap bridgeability up to 2 mm and misalignment of edges up to 2 mm could be achieved successful. Additionally, the independence of the cutting side and the welding side was shown, so that samples were welded to the opposite side to their cutting. For evaluation of internal defects or irregularities, X-ray images were carried out. Charpy impact strength tests were performed to determine the toughness of the welds. T2 - X International Conference «Beam Technologies & Laser Application» KW - Laser hybrid welding KW - Magnetic bath support KW - Plasma-cut samples KW - Thick plate welding PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539248 DO - https://doi.org/10.1088/1742-6596/2077/1/012007 VL - 2077 IS - 012007 SP - 1 EP - 8 PB - IOP Publishing AN - OPUS4-53924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -