TY - JOUR A1 - Becker, Tina A1 - Breese, Philipp Peter A1 - Metz, Christian A1 - Altenburg, Simon T1 - In-situ monitoring for PBF-LB/M processes: Does multispectral optical tomography add value in recognizing process deviations? N2 - Laser powder bed fusion of metallic components (PBF-LB/M) is gaining acceptance in industry. However, the high costs and lengthy qualification processes required for printed components create the need for more effective in-situ monitoring and testing methods. This article proposes multispectral Optical Tomography (OT) as a new approach for monitoring the PBF-LB/M process. Compared to other methods, OT is a low-cost process monitoring method that uses long-time exposure imaging to observe the build process. However, it lacks time resolution compared to expensive thermographic sensor systems. Monochromatic OT (1C-OT) is already commercially available and observes the building process layer-wise using a single wavelength window in the NIR range. Multispectral OT (nC-OT) utilizes a similar setup but can measure multiple wavelength ranges per location simultaneously. By comparing the classical 1C-OT and nC-OT approaches, this article examines the advantages of nC-OT (two channel OT and RGB-OT) in reducing the false positive rate for process deviations and approximating maximum temperatures for a better comparison between different build processes and materials. This could ultimately reduce costs and time for part qualification. The main goal of this contribution is to assess the advantages of nC-OT compared to 1C-OT for in-situ process monitoring of PBF-LB/M. T2 - Nolamp 2023 CY - Turku, Finland DA - 22.08.2023 KW - Thermography KW - Process Monitoring KW - Additive manufacturing KW - BPF-LB/M KW - In-situ PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-592498 DO - https://doi.org/10.1088/1757-899X/1296/1/012008 VL - 1296 SP - 1 EP - 11 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-59249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dopffel, N. A1 - An Stepec, Biwen Annie A1 - de Rezende, J. A1 - Machado de Sousa, D. A1 - Koerdt, Andrea T1 - Microbiology of Underground Hydrogen Storage N2 - Climate change is becoming one of the greatest challenges facing our society, particularly due to the continued use of fossil fuels. The steadily increasing demand for energy and the continuously growing world population will further intensify these challenges. The development of renewable energies is therefore of central importance. The 2020 EU Energy Roadmap aims to increase the share of renewable energies (gross energy consumption) to 55% by 2050. Hydrogen (H2) has the highest potential to become the primary renewable energy source. It is envisioned that by 2050 up to 24% of the total energy demand of Europe is to be ensured by H2. However, a decisive disadvantage of the climate friendly alternatives is the massive containment demand, which needs to be highly secure, cost efficient and easily extractable. Underground geological formations (UGF) represent a seemingly optimal alternative to meet the rapidly increasing storage demand. In this context, many studies are currently underway to determine the feasibility and risks of UGF. However, little or no consideration is being given to microbiology. Therefore, in this Research Topic we will focus on achieving a greater understanding of the impact microorganisms exert on UGF, with a particular emphasis on interdisciplinary studies. As many subsurface microbial communities can use H2 as an electron donor, production of seemingly undesirable metabolic byproducts, such as hydrogen sulfide, methane, and acids, are also to be expected. However, the rate of the H2 conversion by the microorganisms, how their metabolic activities impact the UGF on a short-term and long-term scale, the extent of damages microorganisms exert on the infrastructure, or potential use of microorganisms to enhance UGF are just a few questions that require urgent research to assess the role of microorganisms in this new anthropogenic use of the subsurface environment. These and many questions can be addressed in this article collection. In particular, understanding microbial community changes and activity rates will help assess operational and environmental risks, develop mitigation strategies and provide new insights on life under extreme conditions (i.e., pressure, salinity). In this Research Topic, the editorial team particularly welcomes Original Research, Hypothesis and Theory, Method, and Review manuscripts that deal with the latest advances in microbiology in formations that are planned or currently prepared for hydrogen storage, from both fundamental and practical points of view. The ultimate objective is to promote a deeper understanding into the sustainability of UGF and generate interdisciplinary research involving microbiologists, reservoir engineers, geologists, chemists, physicists. The topics of interest include, but are not limited to: • Microbial diversity in different underground hydrogen storage sites or formations currently being considered for hydrogen storage • Mechanism and impact of microbial growth under high H2 pressure • Potential role of microorganisms in the short-term and long-term storage of hydrogen • Potential influences of microorganisms on the hydrogen storage infrastructure systems, e.g., microbiologically influenced corrosion, biofilm growth • Hydrogen-solid-microorganism interactions, including the influence of microbial growth on UGF geological parameters • Mechanism and modelling of microbial impact on hydrogen storage UGF relevant for this Research Topic include porous media, salt caverns, deep aquifers, hard rock caverns and depleted oil/gas reservoirs. KW - Biodeterioration and biodegradation KW - Geology KW - Anaerobic pathways KW - Microbial simulation, KW - Hydrogen storage PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579042 DO - https://doi.org/10.3389/fenrg.2023.1242619 SN - 2296-598X VL - 11 SP - 1 EP - 3 PB - Frontiers CY - Frontiers in Energy Research AN - OPUS4-57904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abel, Andreas A1 - Rosalie, Julian M. A1 - Reinsch, Stefan A1 - Zapala, Pawel A1 - Michels, Heiner A1 - Skrotzki, Birgit T1 - Influence of Mo and B additions in intermetallic near-Fe3Al alloys on microstructure and mechanical properties N2 - Iron aluminides, already reported in the late 19th century, did not cease to attract the interest of scientists and engineers ever since. Besides good oxidation resistance, low density and resource availability, potentials for hightemperature strengths that compete with high-alloy steels were unlocked by low alloy contents. Still, research on alloy design continues, as alloying usually comes at the price of brittleness in low-temperature regimes. A potential candidate is the quinary Fe–Al–Mo–Ti–B system which is strengthened by solid solution and eutectic borides. It was shown to have good strength and outstanding creep resistance under compressive loading up to elevated temperatures. Although the individual effect of alloy additions is well understood in iron aluminides, little is known about the combined effects of alloying concentrations on microstructure, phase stability and mechanical properties. Therefore a systematic study of two Ti-doped near-Fe3Al alloys with varying contents of Mo (2–4 at.%) and B (0.5–1 at.%) was conducted. In total eight different alloys were fabricated by investment casting into ceramic shell molds. Alloys were characterized and compared by grain size, phase transitions, microstructure evolution as well as elemental compositions and volume fractions of phases. For mechanical characterization, macrohardness and microhardness tests as well as tensile tests at ambient and high tempera tures were conducted. Independent of alloy additions, alloys with 24–25 at.% Al exhibit superior proof strength due to a higher matrix hardness. Decreasing B content generally decreases strength by lower secondary phase fractions which contribute via particle hardening. Reducing Mo content decreases both the solute concentration in the matrix and secondary phase fractions. Surprisingly, strength is similar or even superior to alloys with higher Mo content. Strength relations are discussed with a focus on solid-solution hardening theory and other competing strengthening mechanisms. KW - Materials Chemistry KW - Metals and Alloys KW - Mechanical Engineering KW - Mechanics of Materials KW - General Chemistry PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-585284 DO - https://doi.org/10.1016/j.intermet.2023.108074 VL - 163 SP - 1 EP - 11 PB - Elsevier Ltd. AN - OPUS4-58528 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jovičević-Klug, Matic A1 - Souza Filho, Isnaldi R. A1 - Springer, Hauke A1 - Adam, Christian A1 - Raabe, Dierk T1 - Green steel from red mud through climate-neutral hydrogen plasma reduction N2 - AbstractRed mud is the waste of bauxite refinement into alumina, the feedstock for aluminium production1. With about 180 million tonnes produced per year1, red mud has amassed to one of the largest environmentally hazardous waste products, with the staggering amount of 4 billion tonnes accumulated on a global scale1. Here we present how this red mud can be turned into valuable and sustainable feedstock for ironmaking using fossil-free hydrogen-plasma-based reduction, thus mitigating a part of the steel-related carbon dioxide emissions by making it available for the production of several hundred million tonnes of green steel. The process proceeds through rapid liquid-state reduction, chemical partitioning, as well as density-driven and viscosity-driven separation between metal and oxides. We show the underlying chemical reactions, pH-neutralization processes and phase transformations during this surprisingly simple and fast reduction method. The approach establishes a sustainable toxic-waste treatment from aluminium production through using red mud as feedstock to mitigate greenhouse gas emissions from steelmaking. KW - Multidisciplinary PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594424 DO - https://doi.org/10.1038/s41586-023-06901-z SN - 0028-0836 VL - 625 IS - 7996 SP - 703 EP - 709 PB - Springer Science and Business Media LLC AN - OPUS4-59442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Machado Ferreira de Araujo, F. A1 - Duarte-Ruiz, D. A1 - Saßnick, H.-D. A1 - Gentzmann, Marie C. A1 - Huthwelker, T. A1 - Cocchi, C. T1 - Electronic Structure and Core Spectroscopy of Scandium Fluoride Polymorphs N2 - Microscopic knowledge of the structural, energetic, and electronic properties of scandium fluoride is still incomplete despite the relevance of this material as an intermediate for the manufacturing of Al−Sc alloys. In a work based on first-principles calculations and X-ray spectroscopy, we assess the stability and electronic structure of six computationally predicted ScF3 polymorphs, two of which correspond to experimentally resolved single-crystal phases. In the theoretical analysis based on density functional theory (DFT), we identify similarities among the polymorphs based on their formation energies, chargedensity distribution, and electronic properties (band gaps and density of states). We find striking analogies between the results obtained for the ow- and high-temperature phases of the material, indirectly confirming that the transition occurring between them mainly consists of a rigid rotation of the lattice. With this knowledge, we examine the X-ray absorption spectra from the Sc and F K-edge contrasting firstprinciples results obtained from the solution of the Bethe−Salpeter equation on top of all-electron DFT with high-energy-resolution fluorescence detection measurements. Analysis of the computational results sheds light on the electronic origin of the absorption maxima and provides information on the prominent excitonic effects that characterize all spectra. A comparison with measurements confirms that the sample is mainly composed of the high- and low-temperature polymorphs of ScF3. However, some fine details in the experimental results suggest that the probed powder sample may contain defects and/or residual traces of metastable polymorphs. KW - Scandium KW - X-ray spectroscopy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570727 DO - https://doi.org/10.1021/acs.inorgchem.2c04357 SN - 0020-1669 VL - 62 IS - 10 SP - 4238 EP - 4247 PB - ACS Publications CY - Washington DC AN - OPUS4-57072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dombinov, V. A1 - Herzel, Hannes A1 - Meiller, M. A1 - Müller, F. A1 - Willbold, S. A1 - Zang, J. W. A1 - da Fonseca-Zang, W. A. A1 - Adam, Christian A1 - Klose, H. A1 - Poorter, H. A1 - Jablonowski, N. D. A1 - Schrey, S. D. T1 - Sugarcane bagasse ash as fertilizer for soybeans: Effects of added residues on ash composition, mineralogy, phosphorus extractability and plant availability N2 - Sugarcane bagasse is commonly combusted to generate energy. Unfortunately, recycling strategies rarely consider the resulting ash as a potential fertilizer. To evaluate this recycling strategy for a sustainable circular economy, we characterized bagasse ash as a fertilizer and measured the effects of co-gasification and co-combustion of bagasse with either chicken manure or sewage sludge: on the phosphorus (P) mass fraction, P-extractability, and mineral P phases. Furthermore, we investigated the ashes as fertilizer for soybeans under greenhouse conditions. All methods in combination are reliable indicators helping to assess and predict P availability from ashes to soybeans. The fertilizer efficiency of pure bagasse ash increased with the ash amount supplied to the substrate. Nevertheless, it was not as effective as fertilization with triple-superphosphate and K2SO4, which we attributed to lower P availability. Co-gasification and co-combustion increased the P mass fraction in all bagasse-based ashes, but its extractability and availability to soybeans increased only when co-processed with chicken manure, because it enabled the formation of readily available Ca-alkali phosphates. Therefore, we recommend co-combusting biomass with alkali-rich residues to increase the availability of P from the ash to plants. KW - Combustion and gasification KW - Phosphate extractability and availability KW - X-ray diffraction (XRD) PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567632 DO - https://doi.org/10.3389/fpls.2022.1041924 SN - 1664-462X VL - 13 SP - 1 EP - 13 PB - Frontiers Media CY - Lausanne AN - OPUS4-56763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkler, Nicolas P. A1 - Kotlyar, O. A1 - Schaffernicht, E. A1 - Matsukura, H. A1 - Ishida, H. A1 - Neumann, Patrick P. A1 - Lilienthal, A. J. T1 - Super-resolution for Gas Distribution Mapping N2 - Gas Distribution Mapping (GDM) is a valuable tool for monitoring the distribution of gases in a wide range of applications, including environmental monitoring, emergency response, and industrial safety. While GDM is actively researched in the scope of gas-sensitive mobile robots (Mobile Robot Olfaction), there is a potential for broader applications utilizing sensor networks. This study aims to address the lack of deep learning approaches in GDM and explore their potential for improved mapping of gas distributions. In this paper, we introduce Gas Distribution Decoder (GDD), a learning-based GDM method. GDD is a deep neural network for spatial interpolation between sparsely distributed sensor measurements that was trained on an extensive data set of realistic-shaped synthetic gas plumes based on actual airflow measurements. As access to ground truth representations of gas distributions remains a challenge in GDM research, we make our data sets, along with our models, publicly available. We test and compare GDD with state-of-the-art models on synthetic and real-world data. Our findings demonstrate that GDD significantly outperforms existing models, demonstrating a 35% improvement in accuracy on synthetic data when measured using the Root Mean Squared Error over the entire distribution map. Notably, GDD appears to have superior capabilities in reconstructing the edges and characteristic shapes of gas plumes compared to traditional models. These potentials offer new possibilities for more accurate and efficient environmental monitoring, and we hope to inspire other researchers to explore learning-based GDM. KW - Gas distribution mapping KW - Spatial interpolation KW - Sensor networks KW - Deep learning PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607786 DO - https://doi.org/10.1016/j.snb.2024.136267 SN - 0925-4005 VL - 419 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-60778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Davison, Nathan A1 - Hemingway, Jack M. A1 - Wills, Corinne A1 - Stolar, Tomislav A1 - Waddell, Paul G. A1 - Dixon, Casey M. A1 - Barron, Luke A1 - Dawson, James A. A1 - Lu, Erli T1 - Mechanochemical Synthesis of a Sodium Anion Complex [Na+(2,2,2-cryptand)Na] and Studies of Its Reactivity: Two-Electron and One-Electron Reductions N2 - Group 1 metal molecular chemistry is dominated by a +1 oxidation state, while a 0 oxidation state is widespread in the metals. A more exotic, yet still available, oxidation state of group 1 metal is −1, i.e., alkalide. Reported as early as the 1970s, the alkalides appear in every modern inorganic chemistry textbook as an iconic chemical curiosity, yet their reactivity remains unexplored. This is due to their synthetic hurdles. In this work, we report the first facile synthesis of the archetypical alkalide complex, [Na+(2,2,2-cryptand)Na–], which allows us to unveil a versatile reactivity profile of this once exotic species. KW - Mechanochemistry PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608632 DO - https://doi.org/10.1021/acs.inorgchem.4c02914 VL - 63 IS - 32 SP - 15247 EP - 15258 PB - American Chemical Society (ACS) AN - OPUS4-60863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schilling, Markus A1 - Marschall, Niklas A1 - Niebergall, Ute A1 - Wachtendorf, Volker A1 - Böhning, Martin T1 - Characteristics of environmental stress cracking of PE-HD induced by biodiesel and diesel fuels N2 - In the context of the increasing effect of carbon dioxide emissions on the global climate biodiesel produced from renewable sources has emerged as a promising contender replacing fossil fuels, especially in long-range transport vehicles, using existing engines and infrastructure. High-density polyethylene is one of the prevailing materials for pipe and container applications for storage and transport of such fuels, both, from fossil and renewable resources. The contact with the respective fuels raises questions concerning material compatibility as biodiesel exhibits significant differences compared to conventional diesel fuel affecting its sorption and plasticization behavior in polyethylene. In this study, its behavior with respect to environmental stress cracking, considered one of the most frequent damage mechanisms leading to failure of polymer parts and packaging, was evaluated using the well-established Full Notch Creep Test. This approach allows for a detailed fracture surface analysis using imaging techniques, such as optical and laser scanning microscopy, as well as infrared spectroscopy. Comparing the environmental stress cracking behavior in standard surfactant solutions with that in biodiesel and diesel, respective crack propagation rates, showing different levels of acceleration, were determined and details of the underlying mechanisms could be revealed. Furthermore, the specific infrared absorption of the biodiesel’s ester functionality allows its semi-quantitative determination on the fracture surface of the tested specimens after failure. Thus, a preferred uptake of sorptive fluids in the fracture zone due to local morphological changes of the polyethylene could be directly evidenced by infrared spectroscopy. KW - Environmental stress cracking (ESC) KW - Full notch creep test (FNCT) KW - Confocal laser scanning microscopy (LSM) KW - Biodiesel KW - Diesel PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608591 DO - https://doi.org/10.1016/j.polymertesting.2024.108547 VL - 138 SP - 1 EP - 16 PB - Elsevier Ltd. AN - OPUS4-60859 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhuang, Y. A1 - Spahr, S. A1 - Lutze, H.V. A1 - Reith, C.J. A1 - Hagemann, N. A1 - Paul, Andrea A1 - Haderlein, S.B. T1 - Persulfate activation by biochar and iron: Effect of chloride on formation of reactive species and transformation of N,N-diethyl-m-toluamide (DEET) N2 - Fenton-like processes using persulfate for oxidative water treatment and contaminant removal can be enhanced by the addition of redox-active biochar, which accelerates the reduction of Fe(III) to Fe(II) and increases the yield of reactive species that react with organic contaminants. However, available data on the formation of non-radical or radical species in the biochar/Fe(III)/persulfate system are inconsistent, which limits the evaluation of treatment efficiency and applicability in different water matrices. Based on competition kinetics calculations, we employed different scavengers and probe compounds to systematically evaluate the effect of chloride in presence of organic matter on the formation of major reactive species in the biochar/Fe(III)/persulfate system for the transformation of the model compound N,N‑diethyl-m-toluamide (DEET) at pH 2.5. We show that the transformation of methyl phenyl sulfoxide (PMSO) to methyl phenyl sulfone (PMSO2) cannot serve as a reliable indicator for Fe(IV), as previously suggested, because sulfate radicals also induce PMSO2 formation. Although the formation of Fe(IV) cannot be completely excluded, sulfate radicals were identified as the major reactive species in the biochar/Fe(III)/persulfate system in pure water. In the presence of dissolved organic matter, low chloride concentrations (0.1 mM) shifted the major reactive species likely to hydroxyl radicals. Higher chloride concentrations (1 mM), as present in a mining-impacted acidic surface water, resulted in the formation of another reactive species, possibly Cl2•−, and efficient DEET degradation. To tailor the application of this oxidation process, the water matrix must be considered as a decisive factor for reactive species formation and contaminant removal. KW - Water treatment KW - Organic contaminants KW - Fenton-like systems KW - Radicals KW - ESR PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608677 DO - https://doi.org/10.1016/j.watres.2024.122267 SN - 0043-1354 VL - 265 SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-60867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grohmann, Maria A1 - Niederleithinger, Ernst A1 - Büttner, Christoph A1 - Buske, Stefan T1 - Application of iterative elastic reverse time migration to shear horizontal ultrasonic echo data obtained at a concrete step specimen N2 - The ultrasonic echo technique is broadly applied in non‐destructive testing (NDT) of concrete structures involving tasks such as measuring thickness, determining geometry and locating built‐in elements. To address the challenge of enhancing ultrasonic imaging for complex concrete constructions, we adapted a seismic imaging algorithm – reverse time migration (RTM) – for NDT in civil engineering. Unlike the traditionally applied synthetic aperture focusing technique (SAFT), RTM takes into account the full wavefield including primary and reflected arrivals as well as multiples. This capability enables RTM to effectively handle all wave phenomena, unlimited by changes in velocity and reflector inclinations. This paper concentrates on applying and evaluating a two‐dimensional elastic RTM algorithm that specifically addresses horizontally polarized shear (SH) waves only, as these are predominantly used in ultrasonic NDT of concrete structures. The elastic SH RTM algorithm was deployed for imaging real ultrasonic echo SH‐wave data obtained at a concrete specimen exhibiting a complex back wall geometry and containing four tendon ducts. As these features are frequently encountered in practical NDT scenarios, their precise imaging holds significant importance. By applying the elastic SH RTM algorithm, we successfully reproduced nearly all reflectors within the concrete specimen. In particular, we were capable of accurately reconstructing all vertically oriented reflectors as well as the circular cross sections of three tendon ducts, which was not achievable with traditional SAFT imaging. These findings demonstrate that elastic SH RTM holds the ability to considerably improve the imaging of complex concrete geometries, marking a crucial advancement for accurate, high‐quality ultrasonic NDT in civil engineering. KW - Engineering KW - Finite-Difference Time Domain KW - Non-Destructive KW - Seismic KW - Migration KW - Ultrasonic-Echo Technique PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608744 DO - https://doi.org/10.1002/nsg.12318 SN - 1569-4445 VL - 2024 SP - 1 EP - 22 PB - Wiley AN - OPUS4-60874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Russo, Francesco F. A1 - Nowatzky, Yannek A1 - Jaeger, Carsten A1 - Parr, Maria K. A1 - Benner, Phillipp A1 - Muth, Thilo A1 - Lisec, Jan T1 - Machine learning methods for compound annotation in non‐targeted mass spectrometry—A brief overview of fingerprinting, in silico fragmentation and de novo methods N2 - Non‐targeted screenings (NTS) are essential tools in different fields, such as forensics, health and environmental sciences. NTSs often employ mass spectrometry (MS) methods due to their high throughput and sensitivity in comparison to, for example, nuclear magnetic resonance–based methods. As the identification of mass spectral signals, called annotation, is labour intensive, it has been used for developing supporting tools based on machine learning (ML). However, both the diversity of mass spectral signals and the sheer quantity of different ML tools developed for compound annotation present a challenge for researchers in maintaining a comprehensive overview of the field.In this work, we illustrate which ML‐based methods are available for compound annotation in non‐targeted MS experiments and provide a nuanced comparison of the ML models used in MS data analysis, unravelling their unique features and performance metrics. Through this overview we support researchers to judiciously apply these tools in their daily research. This review also offers a detailed exploration of methods and datasets to show gaps in current methods, and promising target areas, offering a starting point for developers intending to improve existing methodologies. KW - Mass Spectrometry KW - Spectra annotation KW - Machine learning PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608732 DO - https://doi.org/10.1002/rcm.9876 VL - 38 IS - 20 SP - 1 EP - 15 PB - Wiley AN - OPUS4-60873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Kolmangadi, Mohamed A. A1 - Böhning, Martin A1 - Frick, B. A1 - Apple, M. A1 - Mole, R. A. A1 - De Souza, N. R. A1 - Zorn, R. A1 - Schönhals, Andreas T1 - Confined Segmental Diffusion in Nanophase Separated Janus Polynorbornenes as Investigated by Quasielastic Neutron Scattering N2 - A combination of neutron time-of-flight and neutron backscattering spectroscopy was used to investigate the molecular dynamics of Janus polynorbornenes (Janus poly(tricyclononenes)) on a microscopic level. These Janus polynorbornenes, denoted as PTCNSiOR, have a semirigid backbone with −Si(OR)3 side groups attached to it. R represents the length of the alkyl side chain. Here side chain lengths of R = 3 (propyl) and R = 8 (octyl) were considered. It is worth mentioning that these polymers have some potential as active layers in gas separation membranes, especially for the separation of higher hydrocarbons. The combination of time-of-flight and backscattering will ensure a reasonably broad time window for analysis where the incoherent intermediate scattering function SInc(q,t) is considered. Previously, it was shown by X-ray investigations that the system undergoes a nanophase separation into alkyl side chain-rich domains surrounded by a backbone-rich matrix. For PTCNSiOPr (R = 3), the alkyl side-chain-rich domains are truly isolated in the backbone-rich matrix, whereas for PTCNSiOOc (R = 8) these domains percolate through the matrix. Further, it was also previously shown that the alkyl side-chain-rich domains undergo a glass transition. The advantage of neutron scattering experiments discussed here is that besides temporal also spatial information is obtained which will allow conclusions to be drawn about the type of molecular fluctuations. At the lowest measured temperature, the decay in Sinc(q,t) is due to the methyl group rotation. The methyl group dynamics is analyzed in terms of a modified jump-diffusion in a 3-fold potential and yields to a reasonable fraction of hydrogens which contribute to the methyl group rotation. At higher temperatures, the decay in SInc(q,t) is due to both the methyl group rotation and the segmental dynamics in the alkyl side-chain-rich domains. The segmental diffusion is modeled by a sublinear diffusion. For the analysis of the scattering function SInc(q,t) of PTCNSiOPr an elastic scattering due to the immobilized backbone-rich matrix must be taken into account. The analysis reveals that the segmental dynamics is confined by the finite size of alkyl chain-rich domains and that it is intrinsically heterogeneous in nature. Both effects are more pronounced for PTCNSiOPr in comparison to those of PTCNSiOOc. KW - Polynorbornene KW - Quasielastic Neutron Scattering PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608712 DO - https://doi.org/10.1021/acs.macromol.4c01045 SP - 1 EP - 14 PB - ACS Publications AN - OPUS4-60871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Dao, Radek A1 - Komarov, Pavel A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - Towards 3D determination of the surface roughness of core–shell microparticles as a routine quality control procedure by scanning electron microscopy N2 - AbstractRecently, we have developed an algorithm to quantitatively evaluate the roughness of spherical microparticles using scanning electron microscopy (SEM) images. The algorithm calculates the root-mean-squared profile roughness (RMS-RQ) of a single particle by analyzing the particle’s boundary. The information extracted from a single SEM image yields however only two-dimensional (2D) profile roughness data from the horizontal plane of a particle. The present study offers a practical procedure and the necessary software tools to gain quasi three-dimensional (3D) information from 2D particle contours recorded at different particle inclinations by tilting the sample (stage). This new approach was tested on a set of polystyrene core-iron oxide shell-silica shell particles as few micrometer-sized beads with different (tailored) surface roughness, providing the proof of principle that validates the applicability of the proposed method. SEM images of these particles were analyzed by the latest version of the developed algorithm, which allows to determine the analysis of particles in terms of roughness both within a batch and across the batches as a routine quality control procedure. A separate set of particles has been analyzed by atomic force microscopy (AFM) as a powerful complementary surface analysis technique integrated into SEM, and the roughness results have been compared. KW - Core–shell particles KW - Image analysis KW - Roughness KW - Scanning electron microscopy KW - Atomic force microscopy KW - Tilting KW - Batch analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607590 DO - https://doi.org/10.1038/s41598-024-68797-7 SN - 2045-2322 VL - 14 IS - 1 SP - 1 EP - 13 PB - Springer Science and Business Media LLC AN - OPUS4-60759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kosár, László A1 - Szabová, Zuzana A1 - Kuracina, Richard A1 - Spitzer, Stefan H. A1 - Mynarz, Miroslav A1 - Filipi, Bohdan T1 - Study of the Safety Characteristics of Different Types of Pepper Powder (Capsicum L.) N2 - This research was aimed at comparing the fire characteristics of different types of pepper in the context of explosion prevention. The following characteristics were studied: explosion pressure Pmax and Kst at selected concentrations, ignition temperature of the deposited dust layer from the hot surface, and minimum ignition energy. The comparison of the chemical properties of the used types of pepper was performed using TG/DSC. The results of the measurements suggest that different types of peppers exhibit different explosion characteristics. Each sample reached the maximum value of the explosion pressure and rate of pressure rise at different concentrations. The volume of the explosion chamber used also influenced the explosion characteristics. It is a consequence of the fact that the explosion characteristics strongly depend on the mechanism of action of a particular igniter. The minimum effect on the safety characteristics was observed when measuring the minimum ignition energy and the minimum ignition temperature of the dust layer from the hot surface. The results of the measurements suggest that different types of peppers exhibit different explosion characteristics. This information should then be considered in explosion prevention. KW - Dust explosions KW - Pepper samples KW - Explosion characteristics KW - Explosion protection PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605965 DO - https://doi.org/10.3390/fire7070229 VL - 7 IS - 7 SP - 1 EP - 14 PB - MDPI AG AN - OPUS4-60596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Eileen A. A1 - Brandhorst, Antonia K. M. A1 - Gorbushina, Anna A. A1 - Schumacher, Julia T1 - The Tet‑on system for controllable gene expression in the rock‑inhabiting black fungus Knufia petricola N2 - Knufia petricola is a black fungus that colonizes sun-exposed surfaces as extreme and oligotrophic environments. As ecologically important heterotrophs and biofilm-formers on human-made surfaces, black fungi form one of the most resistant groups of biodeteriorating organisms. Due to its moderate growth rate in axenic culture and available protocols for its transformation and CRISPR/Cas9-mediated genome editing, K. petricola is used for studying the morpho-physiological adaptations shared by extremophilic and extremotolerant black fungi. In this study, the bacteria-derived tetracycline (TET)-dependent promoter (Tet-on) system was implemented to enable controllable gene expression in K. petricola. The functionality i.e., the dose-dependent inducibility of TET-regulated constructs was investigated by using GFP fluorescence, pigment synthesis(melanin and carotenoids) and restored uracil prototrophy as reporters. The newly generated cloning vectors containing the Tet-on construct, and the validated sites in the K. petricola genome for color-selectable or neutral insertion of expression constructs complete the reverse genetics toolbox. One or multiple genes can be expressed on demand from different genomic loci or from a single construct by using 2A self-cleaving peptides, e.g., for localizing proteins and protein complexes in the K. petricola cell or for using K. petricola as host for the expression of heterologous genes. KW - Microcolonial fungi KW - Inducible promoter KW - Bimolecular fluorescence complementation KW - 2A peptide KW - CRISPR/ Cas9-mediated genome editing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607672 DO - https://doi.org/10.1007/s00792-024-01354-2 VL - 28 IS - 38 SP - 1 EP - 13 PB - Springer Nature AN - OPUS4-60767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Nina A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Influence of microalloying on precipitation behavior and notch impact toughness of welded high‑strength structural steels N2 - Microalloying elements such as Nb and Ti are essential to increase the strength of quenched and tempered high-strength low alloy (HSLA) structural steels with nominal yield strength ≥ 690 MPa and their welded joints. Standards such as EN 10025–6 only specify limits or ranges for chemical composition, which leads to variations in specific compositions between steel manufacturers. These standards do not address the mechanical properties of the material, and even small variations in alloy content can significantly affect these properties. This makes it difficult to predict the weldability and integrity of welded joints, with potential problems such as softening or excessive hardening of the heat-affected zone (HAZ). To understand these metallurgical effects, previous studies have investigated different microalloying routes with varying Ti and Nb contents using test alloys. The high-strength quenched and tempered fine-grained structural steel S690QL is the basic grade regarding chemical composition and heat treatment. To evaluate weldability, three-layer welds were made using high-performance MAG welding. HAZ formation was investigated, and critical microstructural areas were identified, focusing on phase transformations during cooling and metallurgical precipitation behavior. Isothermal thermodynamic calculations for different precipitations were also carried out. Mechanical properties, especially Charpy notch impact toughness, were evaluated to understand the influence of different microalloys on the microstructure of the HAZ and mechanical properties. KW - High-strength structural steel KW - Gas metal arc welding KW - HAZ-softening KW - Notch impact toughness KW - Microalloying influences KW - Thermodynamic simulation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608548 DO - https://doi.org/10.1007/s40194-024-01827-0 SP - 1 EP - 13 PB - Springer AN - OPUS4-60854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Haubrich, Jan A1 - Requena, Guillermo A1 - Madia, Mauro T1 - Investigation on the fatigue strength of AlSi10Mg fabricated by PBF-LB/M and subjected to low temperature heat treatments N2 - This work provides an investigation of the influence of low temperature heat treatments on the fatigue behavior of a PBF-LB AlSi10Mg alloy. Fatigue specimens are produced in form of round bars on a build platform preheated at 200 ◦C. The specimens have been tested in three different conditions: as-built, and after heat treatments at 265 ◦C for 1 h and 300 ◦C for 2 h. Prior to the fatigue testing, the defect distribution is analyzed by means of micro computed tomography. Subsequently, the peak over threshold method is successfully applied to provide a prediction of the size of killer defect. The defect population was of gas porosity type. No clear improvement of the fatigue performance is observed after the heat treatments. The fatigue strength predicted using fracture mechanics-based approaches is in good agreement with the experimental data. Among the studied approaches, short crack models provided the most conservative predictions. KW - PBF-LB/M AlSi10Mg KW - Fatigue strength KW - Defects KW - Kitagawa-Takahashi Diagram KW - Short Crack Models PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607071 DO - https://doi.org/10.1016/j.matdes.2024.113170 SN - 0264-1275 VL - 244 SP - 1 EP - 12 PB - Elsevier Ltd. AN - OPUS4-60707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ulrich, A. S. A1 - Kasatikov, S. A1 - König, T. A1 - Fantin, Andrea A1 - Margraf, J. T. A1 - Galetz, M. C. T1 - Decreased Metal Dusting Resistance of Ni-Cu Alloys by Fe and Mn Additions N2 - Ni-Cu alloys are promising for application at temperatures between 400–900 °C and reducing atmospheres with high C-contents. Typically, under such conditions, metallic materials in contact with the C-rich atmosphere are degraded by a mechanism called metal dusting (MD). Ni-Cu-alloys do not form protective oxide scales, but their resistance is attributed to Cu, which catalytically inhibits the C-deposition on the surface. Adding other alloying elements, such as Mn or Fe, was found to enhance the MD attack of Ni-Cu alloys again. In this study, the effect of the Mn and Fe is divided into two affected areas: the surface and the bulk. The MD attack on binary Ni-Cu alloys, model alloys with Fe and Mn additions, and commercial Monel Alloy 400 is experimentally demonstrated. The surface electronic structure causing the adsorption and dissociation of C-containing molecules is investigated for model alloys. Analytical methods such as scanning electron microscopy combined with energy-dispersive X-ray spectroscopy, electron probe microanalysis combined with wavelength-dispersive X-ray spectroscopy, X-ray diffraction analysis, and near-edge X-ray absorption fine structure measurements were used. The results are correlated to CALPHAD calculations and atomistic simulations combining density functional theory calculations and machine learning. It is found that the Cu content plays a significant role in the surface reaction. The effect of Mn and Fe is mainly attributed to oxide formation. A mechanism explaining the enhanced attack by adding both Fe and Mn is proposed. KW - Metal Dusting KW - XANES PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608226 DO - https://doi.org/10.1007/s11085-024-10263-w SN - 2731-8397 SP - 1 EP - 14 PB - Springer Science and Business Media LLC AN - OPUS4-60822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dobosy, Péter A1 - Nguyen, Hoang Thi Phuong A1 - Záray, Gyula A1 - Streli, Christina A1 - Ingerle, Dieter A1 - Ziegler, Philipp A1 - Radtke, Martin A1 - Buzanich, Ana Guilherme A1 - Endrédi, Anett A1 - Fodor, Ferenc T1 - Effect of iodine species on biofortification of iodine in cabbage plants cultivated in hydroponic cultures N2 - Iodine is an essential trace element in the human diet because it is involved in the synthesis of thyroid hormones. Iodine deficiency affects over 2.2 billion people worldwide, making it a significant challenge to find plant-based sources of iodine that meet the recommended daily intake of this trace element. In this study, cabbage plants were cultivated in a hydroponic system containing iodine at concentrations ranging from 0.01 to 1.0 mg/L in the form of potassium iodide or potassium iodate. During the experiments, plant physiological parameters, biomass production, and concentration changes of iodine and selected microelements in different plant parts were investigated. In addition, the oxidation state of the accumulated iodine in root samples was determined. Results showed that iodine addition had no effect on photosynthetic efficiency and chlorophyll content. Iodide treatment did not considerably stimulate biomass production but iodate treatment increased it at concentrations less than 0.5 mg/L. Increasing iodine concentrations in the nutrient solutions increased iodine content in all plant parts; however, the iodide treatment was 2–7 times more efficient than the iodate treatment. It was concluded, that iodide addition was more favourable on the target element accumulation, however, it should be highlighted that application of this chemical form in nutrient solution decreased the concetrations of selected micoelement concentration comparing with the control plants. It was established that iodate was reduced to iodide during its uptake in cabbage roots, which means that independently from the oxidation number of iodine (+ 5, − 1) applied in the nutrient solutions, the reduced form of target element was transported to the aerial and edible tissues. KW - BAMline KW - XANES KW - Synchrotron KW - Lodine PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608330 DO - https://doi.org/10.1038/s41598-024-66575-z VL - 14 IS - 1 SP - 1 EP - 12 PB - Springer Science and Business Media LLC AN - OPUS4-60833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, Junhao A1 - Klahn, Marcus A1 - Tian, Xinxin A1 - Bartling, Stephan A1 - Zimina, Anna A1 - Radtke, Martin A1 - Rockstroh, Nils A1 - Naliwajko, Pawel A1 - Steinfeldt, Norbert A1 - Peppel, Tim A1 - Grunwaldt, Jan‐Dierk A1 - Logsdail, Andrew J. A1 - Jiao, Haijun A1 - Strunk, Jennifer T1 - Fundamental Structural and Electronic Understanding of Palladium Catalysts on Nitride and Oxide Supports N2 - The nature of the support can fundamentally affect the function of a heterogeneous catalyst. For the novel type of isolated metal atom catalysts, sometimes referred to as single‐atom catalysts, systematic correlations are still rare. Here, we report a general finding that Pd on nitride supports (non‐metal and metal nitride) features a higher oxidation state compared to that on oxide supports (non‐metal and metal oxide). Through thorough oxidation state investigations by X‐ray absorption spectroscopy (XAS), X‐ray photoelectron spectroscopy (XPS), CO‐DRIFTS, and density functional theory (DFT) coupled with Bader charge analysis, it is found that Pd atoms prefer to interact with surface hydroxyl group to form a Pd(OH)x species on oxide supports, while on nitride supports, Pd atoms incorporate into the surface structure in the form of Pd−N bonds. Moreover, a correlation was built between the formal oxidation state and computational Bader charge, based on the periodic trend in electronegativity. KW - BAmline KW - XANES KW - Catalyst PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608341 DO - https://doi.org/10.1002/anie.202400174 SN - 1433-7851 VL - 63 IS - 20 SP - 1 EP - 9 PB - Wiley AN - OPUS4-60834 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Senges, Gene A1 - Buzanich, Ana Guilherme A1 - Lindič, Tilen A1 - Gully, Tyler A. A1 - Winter, Marlon A1 - Radtke, Martin A1 - Röder, Bettina A1 - Steinhauer, Simon A1 - Paulus, Beate A1 - Emmerling, Franziska A1 - Riedel, Sebastian T1 - Unravelling highly oxidized nickel centers in the anodic black film formed during the Simons process by in situ X-ray absorption near edge structure spectroscopy N2 - The electrofluorination after Simons has been used for the last century to produce everyday life materials. An in situ XANES investigation of the controversially debated black film apparent in the Simons process revealed high-valent nickel centers. KW - Synchrotron KW - BAMline KW - XANES PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608366 DO - https://doi.org/10.1039/d3sc06081k SN - 2041-6520 VL - 15 IS - 12 SP - 4504 EP - 4509 PB - Royal Society of Chemistry (RSC) AN - OPUS4-60836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Theiler, Géraldine A1 - Cano Murillo, Natalia A1 - Hausberger, Andreas T1 - Effect of hydrogen pressure on the fretting behavior of rubber materials N2 - Safety and reliability are the major challenges to face for the development and acceptance of hydrogen technology. It is therefore crucial to deeply study material compatibility, in particular for tribological components that are directly in contact with hydrogen. Some of the most critical parts are sealing materials that need increased safety requirements. In this study, the fretting behavior of several elastomer materials were evaluated against 316L stainless steel in an air and hydrogen environment up to 10 MPa. Several grades of cross-linked hydrogenated acrylonitrile butadiene (HNBR), acrylonitrile butadiene (NBR) and ethylene propylene diene monomer rubbers (EPDM) were investigated. Furthermore, aging experiments were conducted for 7 days under static contions in 100 MPa of hydrogen followed by rapid gas decompression. Fretting tests revealed that the wear of these compounds is significantly affected by the hydrogen environment compared to air, especially with NBR grades. After the aging experiment, the friction response of the HBNR grades is characterized by increased adhesion due to elastic deformation, leading to partial slip. KW - Fretting wear KW - Rubbers KW - Hydrogen KW - High-pressure PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608462 DO - https://doi.org/10.3390/lubricants12070233 VL - 12 IS - 7 SP - 1 EP - 17 PB - MDPI AN - OPUS4-60846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaeß, Carsten A1 - Müller, Ralf T1 - Viscous crack healing in soda–lime–magnesium–silicate–ZrO2 glass matrix composites N2 - AbstractThe present study investigates the influence of the crystal volume content on viscous crack healing in glass ceramic glass sealants. To ensure constant microstructure during healing, soda–lime–magnesium silicate glass matrix composites with varied volume fractions of ZrO2 filler particles were used. Crack healing was studied on radial cracks induced by Vickers indentation, which were stepwise annealed to monitor the healing progress by confocal laser scanning microscopy. Confirming previous studies, healing of radial cracks in pure glass was found delayed by global flow phenomena like crack widening and crack edge and tip rounding to minimize the sample surface. With increasing ZrO2 filler content, these global flow phenomena were progressively inhibited whereas local flow phenomena like sharp crack tip healing could still occur. As a result, crack healing was even accelerated by filler particles up to a maximum filler content of 17 vol% whereas crack healing was fully suppressed only at 33 vol% filler content. KW - Crack healing KW - Glass matrix composite KW - Solid oxide fuell cell KW - Vickers identation KW - Viscosity PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607860 DO - https://doi.org/10.1111/jace.20002 SN - 0002-7820 SP - 1 EP - 12 PB - Wiley AN - OPUS4-60786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Riechers, Birte A1 - Das, Amlan A1 - Dufresne, Eric A1 - Derlet, Peter M. A1 - Maaß, Robert T1 - Intermittent cluster dynamics and temporal fractional diffusion in a bulk metallic glass N2 - Glassy solids evolve towards lower-energy structural states by physical aging. This can be characterized by structural relaxation times, the assessment of which is essential for understanding the glass’ time-dependent property changes. Conducted over short times, a continuous increase of relaxation times with time is seen, suggesting a time-dependent dissipative transport mechanism. By focusing on micro-structural rearrangements at the atomic-scale, we demonstrate the emergence of sub-diffusive anomalous transport and therefore temporal fractional diffusion in a metallic glass, which we track via coherent x-ray scattering conducted over more than 300,000 s. At the longest probed decorrelation times, a transition from classical stretched exponential to a power-law behavior occurs, which in concert with atomistic simulations reveals collective and intermittent atomic motion. Our observations give a physical basis for classical stretched exponential relaxation behavior, uncover a new power-law governed collective transport regime for metallic glasses at long and practically relevant time-scales, and demonstrate a rich and highly non-monotonous aging response in a glassy solid, thereby challenging the common framework of homogeneous aging and atomic scale diffusion. KW - Glassy solids KW - Fractional diffusion KW - Coherent x-ray scattering PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608015 DO - https://doi.org/10.1038/s41467-024-50758-3 VL - 15 IS - 1 SP - 1 EP - 9 PB - Springer Science and Business Media LLC AN - OPUS4-60801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Preuß, Bianca A1 - Lindner, Thomas A1 - Hanisch, Niclas A1 - Giese, Marcel A1 - Schröpfer, Dirk A1 - Richter, Tim A1 - Rhode, Michael A1 - Lampke, Thomas T1 - Surface Functionalization of Novel Work‐Hardening Multi‐Principal‐Element Alloys by Ultrasonic Assisted Milling N2 - The development of multi‐principal‐element alloys (MPEAs) with unique characteristics such as high work hardening capacity similar to well‐known alloy systems like Hadfield steel X120Mn12 (ASTM A128) is a promising approach. Hence, by exploiting the core effects of MPEAs, the application range of conventional alloy systems can be extended. In the present study, work‐hardening MPEAs based on the equimolar composition CoFeNi are developed. Mn and C are alloyed in the same ratio as for X120Mn12. The production route consists of cast manufacturing by an electric arc furnace and surface functionalization via mechanical finishing using ultrasonic‐assisted milling (USAM) to initiate work hardening. The microstructure evolution, the hardness as well as the resulting oscillating wear resistance are detected. A pronounced lattice strain and grain refinement due to the plastic deformation during the USAM is recorded for the MPEA CoFeNi‐Mn12C1.2. Consequently, hardness increases by ≈380 HV0.025 in combination with a higher oscillating wear resistance compared to the X120Mn12. This shows the promising approach for developing work‐hardening alloys based on novel alloy concepts such as MPEAs. KW - Electric arc furnace KW - Finish milling KW - High manganese steels KW - Multi-principal element alloy KW - Ultrasonic-assisted milling KW - Work hardening PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608008 DO - https://doi.org/10.1002/adem.202400339 SN - 1438-1656 SP - 1 EP - 12 PB - Wiley VHC-Verlag AN - OPUS4-60800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klewe, Tim A1 - Strangfeld, Christoph A1 - Ritzer, Tobias A1 - Kruschwitz, Sabine T1 - Classification of Practical Floor Moisture Damage Using GPR - Limits and Opportunities N2 - Machine learning in non-destructive testing (NDT) offers significant potential for efficient daily data analysis and uncovering previously unknown relationships in persistent problems. However, its successful application heavily depends on the availability of a diverse and well-labeled training dataset, which is often lacking, raising questions about the transferability of trained algorithms to new datasets. To examine this issue closely, the authors applied classifiers trained with laboratory Ground Penetrating Radar (GPR) data to categorize on-site moisture damage in layered building floors. The investigations were conducted at five different locations in Germany. For reference, cores were taken at each measurement point and labeled as (i) dry, (ii) with insulation damage, or (iii) with screed damage. Compared to the accuracies of 84 % to 90 % within the laboratory training data (504 B-Scans), the classifiers achieved a lower overall accuracy of 53 % for on-site data (72 B-Scans). This discrepancy is mainly attributable to a significantly higher dynamic of all signal features extracted from on-site measurements compared to laboratory training data. Nevertheless, this study highlights the promising sensitivity of GPR for identifying individual damage cases. In particular the results showing insulation damage, which cannot be detected by any other non-destructive method, revealed characteristic patterns. The accurate interpretation of such results still depends on trained personnel, whereby fully automated approaches would require a larger and diverse on-site data set. Until then, the findings of this work contribute to a more reliable analysis of moisture damage in building floors using GPR and offer practical insights into applying machine learning to non-destructive testing for civil engineering (NDT-CE). KW - GPR KW - Material moisture KW - Building floor KW - Machine Learning PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607932 DO - https://doi.org/10.1007/s10921-024-01111-7 SN - 0195-9298 VL - 43 IS - 3 SP - 1 EP - 16 PB - Springer Science and Business Media LLC AN - OPUS4-60793 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Held, Mathias A1 - Bulling, Jannis A1 - Lugovtsova, Yevgeniya A1 - Prager, Jens T1 - Determination of isotropic elastic constants from dispersion images based on ultrasonic guided waves by using neural networks N2 - This article presents a method to use the dispersive behavior of ultrasonic guided waves and neural networks to determine the isotropic elastic constants of plate-like structures through dispersion images. Therefore, two different architectures are compared: one using convolutions and transfer learning based on the EfficientNetB7 and a Vision Transformer-like approach. To accomplish this, simulated and measured dispersion images are generated, where the first is applied to design, train, and validate and the second to test the neural networks. During the training of the neural networks, distinct data augmentation layers are employed to introduce artifacts appearing in measurement data into the simulated data. The neural networks can extrapolate from simulated to measured data using these layers. The trained neural networks are assessed using dispersion images from seven known material samples. Multiple variations of the measured dispersion images are tested to guarantee the prediction stability. The study demonstrates that neural networks can learn to predict the isotropic elastic constants from measured dispersion images using only simulated dispersion images for training and validation without needing an initial guess or manual feature extraction, independent of the measurement setup. Furthermore, the suitability of the different architectures for generating information from dispersion images in general is discussed. KW - Ultrasonic guided waves KW - Dispersion KW - Elastic constants KW - Neural networks KW - Image processing KW - Vision transformer PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607090 DO - https://doi.org/10.1016/j.ultras.2024.107403 SN - 0041-624X VL - 143 SP - 1 EP - 48 PB - Elsevier B.V. AN - OPUS4-60709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Omar, Hassan A1 - Ahamadi, Shayan A1 - Hülagü, Deniz A1 - Hidde, Gundula A1 - Hertwig, Andreas A1 - Szymoniak, Paulina A1 - Schönhals, Andreas T1 - Investigations of the adsorbed layer of polysulfone: Influence of the thickness of the adsorbed layer on the glass transition of thin films N2 - This work studies the influence of the adsorbed layer on the glass transition of thin films of polysulfone. Therefore, the growth kinetics of the irreversibly adsorbed layer of polysulfone on silicon substrates was first investigated using the solvent leaching approach, and the thickness of the remaining layer was measured with atomic force microscopy. Annealing conditions before leaching were varied in temperature and time (0–336 h). The growth kinetics showed three distinct regions: a pre-growth step where it was assumed that phenyl rings align parallel to the substrate at the shortest annealing times, a linear growth region, and a crossover from linear to logarithmic growth observed at higher temperatures for the longest annealing times. No signs of desorption were observed, pointing to the formation of a strongly adsorbed layer. Second, the glass transition of thin polysulfone films was studied in dependence on the film thickness using spectroscopic ellipsometry. Three annealing conditions were compared: two with only a tightly bound layer formed in the linear growth regime and one with both tightly bound and loosely adsorbed layers formed in the logarithmic growth regime. The onset thickness and increase in the glass transition temperature increases with annealing time and temperature. These differences were attributed to the distinct conformations of the formed adsorbed layers. KW - Glass transition KW - Adsorbed Layer PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607701 DO - https://doi.org/10.1063/5.0223415 SN - 0021-9606 VL - 161 IS - 5 SP - 1 EP - 12 PB - AIP Publishing AN - OPUS4-60770 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Kai A1 - Mirabella, Francesca A1 - Knigge, Xenia A1 - Mezera, Marek A1 - Weise, Matthias A1 - Sahre, Mario A1 - Wasmuth, Karsten A1 - Voss, Heike A1 - Hertwig, Andreas A1 - Krüger, Jörg A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Bonse, Jörn T1 - Chemical and topographical changes upon sub-100-nm laser-induced periodic surface structure formation on titanium alloy: the influence of laser pulse repetition rate and number of over-scans N2 - Titanium and its alloys are known to allow the straightforward laser-based manufacturing of ordered surface nanostructures, so-called high spatial frequency laser-induced periodic surface structures (HSFL). These structures exhibit sub-100 nm spatial periods – far below the optical diffraction limit. The resulting surface functionalities are usually enabled by both, topographic and chemical alterations of the nanostructured surfaces. For exploring these effects, multi-method characterizations were performed here for HSFL processed on Ti–6Al–4V alloy upon irradiation with near-infrared ps-laser pulses (1030 nm, ≈1 ps pulse duration, 1–400 kHz) under different laser scan processing conditions, i.e., by systematically varying the pulse repetition frequency and the number of laser irradiation passes. The sample characterization involved morphological and topographical investigations by scanning electron microscopy (SEM), atomic force microscopy (AFM), tactile stylus profilometry, as well as near-surface chemical analyses hard X-ray photoelectron spectroscopy (HAXPES) and depth-profiling time-of-flight secondary ion mass spectrometry (ToF-SIMS). This provides a quantification of the laser ablation depth, the geometrical HSFL characteristics and enables new insights into the depth extent and the nature of the non-ablative laser-induced near-surface oxidation accompanying these nanostructures. This allows to answer the questions how the processing of HSFL can be industrially scaled up, and whether the latter is limited by heat-accumulation effects. T2 - 2023 E-MRS Spring Meeting, Symposium L "Making light matter: lasers in material sciences and photonics" CY - Strasbourg, France DA - 29.05.2023 KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser pulses KW - Laser processing KW - Hard X-ray photoelectron spectroscopy (HAXPES) KW - Time-of-flight secondary ion mass spectrometry (ToF-SIMS) PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589902 UR - https://onlinelibrary.wiley.com/doi/full/10.1002/pssa.202300719 DO - https://doi.org/10.1002/pssa.202300719 SN - 1862-6319 VL - 221 IS - 15 SP - 1 EP - 12 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-58990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hupp, Vitus A1 - Schartel, Bernhard A1 - Flothmeier, K. A1 - Hartwig, A. T1 - Pyrolysis and flammability of phosphorus based flame retardant pressure sensitive adhesives and adhesive tapes N2 - Pressure-sensitive adhesive tapes are used in a variety of applications such as construction, aircrafts, railway vehicles, and ships, where flame retardancy is essential. Especially in these applications, phosphorus-based flame retardants are often chosen over halogenated ones due to their advantages in terms of toxicity. Although there are pressure-sensitive adhesives with phosphorus flame retardants available on the market, their flame-retardant modes of action and mechanisms are not entirely understood. This research article provides fundamental pyrolysis research of three phosphorus-based flame retardants that exhibit different mechanisms in a pressuresensitive adhesive matrix. The flame-retardants modes of action and mechanisms of a 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) derivate, an aryl phosphate, and a self-synthesized, covalently bonded DOPO derivate (copolymerized) are investigated. The blended DOPO derivate is volatilized at rather low temperatures while the covalently bonded DOPO derivate decomposes together with the polymer matrix at the same temperature. Both DOPO derivates release PO radicals which are known for their flame inhibition. The aryl phosphate decomposes at higher temperatures, releases small amounts of aryl phosphates into the gas phase, and acts predominantly the condensed phase. The aryl phosphate acts as precursor for phosphoric acid and improves the charring of the pressure sensitive adhesive matrix. All flame retardants enhance the flammability of the adhesives depending on their individual mode of action while the covalently bonded flame retardant additionally improves the mechanical properties at elevated temperatures making it a promising future technology for pressure-sensitive adhesives. KW - Pyrolysis of flame retardant KW - Pyrolysis gas chromatography KW - Mass spectrometry KW - Phosphorus flame retardant KW - Decomposition mechanism KW - Flame retardant pressure sensitive adhesives KW - Flame retardancy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607192 DO - https://doi.org/10.1016/j.jaap.2024.106658 SN - 0165-2370 SN - 1873-250X VL - 181 SP - 1 EP - 31 PB - Elsevier B.V. AN - OPUS4-60719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen A1 - Meyer, A. T1 - About alcohol-initiated polymerization of glycolide and separate crystallization of cyclic and linear polyglycolides N2 - Alcohol-initiated polymerizations of glycolide (GL) catalyzed by tin(II) 2-ethylhexanoate (SnOct2) were carried out in bulk with variation of GA/In ratio, temperature and time. Due to a rather strong competition of cyclization polyglycolide (PGA) free of cycles were never obtained. When the cyclic catalysts 2,2-dibutal-2-stanna − 1,3-dithiolane (DSTL) or 2-stanna 1,3-dioxo-4,5,6,7 bibenzepane (SnBiph) were used in combination with 1,4-butanediol the influence of cyclization was even stronger. Furthermore, the degrees of polymerization were higher than the GA/alcohol ratio due to rapid polycondensation in the solid state. At 160 °C or below, the matrixassisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra indicated separate crystallization of low molar mass cyclic and linear PGAs from the same reaction mixture (also observed for poly(L-lactide)s). KW - MALDI TOF MS KW - Polyglycolide KW - Ring opening polymerization KW - Cyclization KW - Crystallization PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607282 DO - https://doi.org/10.1016/j.polymer.2024.127440 SN - 0032-3861 VL - 309 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-60728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen T1 - The triple-isotope calibration approach: a universal and standard-free calibration approach for obtaining absolute isotope ratios of multi-isotopic elements N2 - The theory of a new calibration approach for obtaining absolute isotope ratios of multi-isotopic elements without the use of any standard has been developed. The calibration approach basically uses the difference in the instrumental isotope fractionation of two different types of mass spectrometers, leading to two different fractionation lines in a three-isotope diagram. When measuring the same sample with both mass spectrometers, the different fractionation lines have one point in common: this is the ‘true’ logarithmized isotope ratio pair of the sample. Thus, the intersection of both fractionation lines provides us with the absolute isotope ratios of the sample. This theory has been tested in practice by measuring Cd and of Pb isotope ratios in the certified reference materials BAM-I012 and NIST SRM981 by thermal ionization mass spectrometry and by inductively coupled plasma mass spectrometry while varying the ionization conditions for both mass spectrometers. With this experiment, the theory could be verified, and absolute isotope ratios were obtained, which were metrologically compatible with the certified isotope ratios. The so-obtained absolute isotope ratios are biased by − 0.5% in average, which should be improved with further developments of the method. This calibration approach is universal, as it can be applied to all elements with three or more isotopes and it is not limited to the type of mass spectrometers applied; it can be applied as well to secondary ion mass spectrometry or others. Additionally, this approach provides information on the fractionation process itself via the triple-isotope fractionation exponent θ. KW - Triple isotope fractionation KW - Absolute isotope ratio KW - Mass spectrometry KW - Calibration KW - Uncertainty PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516364 DO - https://doi.org/10.1007/s00216-020-03050-4 VL - 413 IS - 3 SP - 821 EP - 826 PB - Springer Verlag AN - OPUS4-51636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Retzmann, Anika A1 - Faßbender, Sebastian A1 - Rosner, M. A1 - von der Au, Marcus A1 - Vogl, Jochen T1 - Performance of second generation ICP-TOFMS for (multi-)isotope ratio analysis: a case study on B, Sr and Pb and their isotope fractionation behavior during the measurements N2 - The performance of second generation ICP-TOFMS, equipped with a micro-channel plate (MCP) enabling multi-isotope detection, in terms of isotope ratio precision and instrumental isotopic fractionation (IIF) for (multi-)isotope ratio analysis was thoroughly assessed for B, Sr and Pb. Experimental isotope ratio precision of 0.14 % for 11B/10B intensity ratio, 0.15 % for 87Sr/86Sr intensity ratio and 0.07% for 208Pb/206Pb intensity ratio were obtained at high signal levels ($500 mg L−1) which is comparable to first generation ICP-TOFMS. The long-term stability of isotope ratios, measured over several hours and expressed as repeatability, is between 0.05 % and 1.8 % for B, Sr and Pb. The observed IIF per mass unit is negative for B (i.e., −11 % for 11B/10B) which is in accordance with measurements using sector field (MC) ICP-MS. But the observed IIF per mass unit is positive for Sr (i.e., 2 % for 87Sr/86Sr) and Pb (i.e., 4.5 % for 208Pb/206Pb) which is not in accordance with measurements using sector field (MC) ICP-MS. Furthermore, different IIFs per mass unit were observed for different isotope pairs of the same isotopic system (i.e., Sr, Pb) and adjacent isotopic systems (i.e., Pb vs. Tl). This and the observations from three-isotope plots for Sr and Pb show that ion formation, ion extraction, ion transmission, ion separation and ion detection in second generation ICP-TOFMS is subject to IIF that does not follow the known mass dependent fractionation laws and is possibly caused by mass independent fractionation and/or multiple (contradictory) fractionation processes with varying contributions. The non-mass dependent IIF behavior observed for second generation ICP TOFMS has profound consequences for the IIF correction of isotope raw data, including application of multi-isotope dilution mass spectrometry (IDMS) using ICP-TOFMS. Hence, only IIF correction models that correct also for mass independent fractionation are applicable to calculate reliable isotope ratios using second generation ICP-TOFMS. In the present study, reliable d11B values, and absolute B, Sr and Pb isotope ratios could be determined using the SSB approach in single-element solutions as well as in a mixture of B, Sr and Pb, where the isotopes were measured simultaneously. KW - ICP-TOFMS KW - Isotope delta value KW - Isotope amount ratio KW - Conventional isotope ratio KW - Instrumental isotope fractionation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582239 DO - https://doi.org/10.1039/d3ja00084b SN - 0267-9477 VL - 38 IS - 10 SP - 2144 EP - 2158 PB - Royal Society of Chemistry AN - OPUS4-58223 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Solovyev, N. A1 - El-Khatib, Ahmed A1 - Costas-Rodrigues, M. A1 - Schwab, K. A1 - Griffin, E. A1 - Raab, A. A1 - Platt, B. A1 - Theuring, F. A1 - Vogl, Jochen A1 - Vanhaecke, F. T1 - Cu, Fe and Zn isotope ratios in murine Alzheimer's disease models suggest specific signatures of amyloidogenesis and tauopathy N2 - Alzheimer’s disease (AD) is characterized by accumulation of tau and amyloid-beta in the brain, and recent evidence suggests a correlation between associated protein aggregates and trace elements, such as copper, iron and zinc. In AD, distorted brain redox homeostasis and complexation by amyloid-beta and hyperphosphorylated tau May alter the isotopic composition of essential mineral elements. Therefore, high-precision isotopic analysis may reveal changes in the homeostasis of these elements. We used inductively coupled plasma-mass spectrometry (ICP-MS)-based techniques to determine the total Cu, Fe and Zn contents in the brain, as well as their isotopic compositions in both mouse brain and serum. Results for male transgenic tau (Line 66, L66) and amyloid/presenilin (5xFAD) mice were compared to those for the corresponding age- and gendermatched wild-type control mice (WT). Our data show that L66 brains showed significantly higher Fe levels than the corresponding WT. Significantly less Cu, but more Zn was found in 5xFAD brains. We observed significantly lighter isotopic compositions of Fe (enrichment in the lighter isotopes) in the brain, and in serum of L66 mice compared to WT. For 5xFAD mice, Zn exhibited a trend towards a lighter isotopic composition in brain and a heavier isotopic composition in serum compared to WT. Neither mouse model yielded differences in the isotopic composition of Cu. Our findings indicate significant pathology-specific alterations of Fe and Zn brain homeostasis in mouse models of AD. The associated changes in isotopic composition May serve as a marker for proteinopathies Underlying AD and other types of dementia. KW - Alzheimer’s disease KW - Tau KW - Amyloid-beta KW - Copper KW - Iron KW - Zinc KW - Multi-collector inductively coupled plasma-mass spectrometry (ICP-MS) KW - Brain KW - Serum KW - Isotopic analysis KW - Total element determination PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520214 DO - https://doi.org/10.1016/j.jbc.2021.100292 VL - 296 SP - 100292 PB - Elsevier Inc. CY - Amsterdam AN - OPUS4-52021 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Coplen, T. B. A1 - Holden, N. E. A1 - Ding, T. A1 - Meijer, H. A. J. A1 - Vogl, Jochen A1 - Zhu, X. T1 - The Table of Standard Atomic Weights—An exercise in consensus N2 - The present Table of Standard Atomic Weights (TSAW) of the elements is perhaps one of the most familiar data sets in science. Unlike most parameters in physical science whose values and uncertainties are evaluated using the “Guide to the Expression of Uncertainty in Measurement” (GUM), the majority of standard atomic weight values and their uncertainties are consensus values, not GUM-evaluated values. The Commission on Isotopic Abundances and Atomic Weights of the International Union of Pure and Applied Chemistry (IUPAC) regularly evaluates the literature for new isotopic-abundance measurements that can lead to revised standard atomic-weight values, Ar(E) for element E. The Commission strives to provide utmost clarity in products it disseminates, namely the TSAW and the Table of Isotopic Compositions of the Elements (TICE). In 2016, the Commission recognized that a guideline recommending the expression of uncertainty listed in parentheses following the standard atomic-weight value, for example, Ar(Se) = 78.971(8), did not agree with the GUM, which suggests that this parenthetic notation be reserved to express standard uncertainty, not the expanded uncertainty used in the TSAW and TICE. In 2017, to eliminate this noncompliance with the GUM, a new format was adopted in which the uncertainty value is specified by the “±” symbol, for example, Ar(Se) = 78.971 ± 0.008. To clarify the definition of uncertainty, a new footnote has been added to the TSAW. This footnote emphasizes that an atomic-weight uncertainty is a consensus (decisional) uncertainty. Not only has the Commission shielded users of the TSAW and TICE from unreliable measurements that appear in the literature as a result of unduly small uncertainties, but the aim of IUPAC has been fulfilled by which any scientist, taking any natural sample from commerce or research, can expect the sample atomic weight to lie within Ar(E) ± its uncertainty almost all of the time. KW - Atomic weight KW - Standard atomic weight KW - Uncertainty PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551299 DO - https://doi.org/10.1002/rcm.8864 SN - 1097-0231 VL - 36 IS - 15 SP - 1 EP - 15 PB - Wiley AN - OPUS4-55129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Faßbender, Sebastian A1 - von der Au, Marcus A1 - Koenig, Maren A1 - Pelzer, J. A1 - Piechotta, Christian A1 - Vogl, Jochen A1 - Meermann, Björn T1 - Species-specific isotope dilution analysis of monomethylmercury in sediment using GC/ICP-ToF-MS and comparison with ICP-Q-MS and ICP-SF-MS N2 - A recently introduced inductively coupled plasma-time-of-flight-mass spectrometer (ICP-ToF-MS) shows enhanced sensitivity compared to previous developments and superior isotope ratio precision compared to other ToF and commonly used single-collector ICP-MS instruments. Following this fact, an improvement for isotope dilution ICP-MS using the new instrumentation has been reported. This study aimed at investigating whether this improvement also meets the requirements of species-specific isotope dilution using GC/ICP-MS, where short transient signals are recorded. The results of the analysis of monomethylmercury (MMHg) of a sediment reference material show that isotope ratio precision of ICP-MS instruments equipped with quadrupole, sector-field, and time-of-flight mass analyzers is similar within a broad range of peak signal-to-noise ratio when analyzing one isotopic system. The procedural limit of quantification (LOQ) for MMHg, expressed as mass fraction of Hg being present as MMHg, w(Hg)MMHg, was similar as well for all investigated instruments and ranged between 0.003 and 0.016 μg/kg. Due to the simultaneous detection capability, the ICP-ToF-MS might, however, be more favorable when several isotopic systems are analyzed within one measurement. In a case study, the GC/ICP-ToF-MS coupling was applied for analysis of MMHg in sediments of Finow Canal, a historic German canal heavily polluted with mercury. Mass fractions between 0.180 and 41 μg/kg (w(Hg)MMHg) for MMHg, and 0.056 and 126 mg/kg (w(Hg)total) for total mercury were found in sediment samples taken from the canal upstream and downstream of a former chemical plant. KW - Methylmercury KW - Legacy pollution KW - Finow Canal KW - Isotope dilution KW - Mercury speciation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529967 DO - https://doi.org/10.1007/s00216-021-03497-z SN - 1618-2642 VL - 413 IS - 21 SP - 5279 EP - 5289 PB - Springer CY - Berlin AN - OPUS4-52996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brauckmann, C. A1 - Pramann, A. A1 - Rienitz, O. A1 - Schulze, A. A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen T1 - Combining Isotope Dilution and Standard Addition—Elemental Analysis in Complex Samples N2 - A new method combining isotope dilution mass spectrometry (IDMS) and standard addition has been developed to determine the mass fractions w of different elements in complex matrices: (a) silicon in aqueous tetramethylammonium hydroxide (TMAH), (b) sulfur in biodiesel fuel, and (c) iron bound to transferrin in human serum. All measurements were carried out using inductively coupled plasma mass spectrometry (ICP–MS). The method requires the gravimetric preparation of several blends (bi)—each consisting of roughly the same masses (mx,i) of the sample solution (x) and my,i of a spike solution (y) plus different masses (mz,i) of a reference solution (z). Only these masses and the isotope ratios (Rb,i) in the blends and reference and spike solutions have to be measured. The derivation of the underlying equations based on linear regression is presented and compared to a related concept reported by Pagliano and Meija. The uncertainties achievable, e.g., in the case of the Si blank in extremely pure TMAH of urel (w(Si)) = 90% (linear regression method, this work) and urel (w(Si)) = 150% (the method reported by Pagliano and Meija) seem to suggest better applicability of the new method in practical use due to the higher robustness of regression analysis. KW - Isotope dilution mass spectrometry KW - tandard addition KW - ICP-MS KW - lank characterization KW - Silicon KW - Sulfur KW - Transferrin KW - Tetramethylammonium hydroxide KW - Biodiesel fuel KW - Human serum PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-526376 DO - https://doi.org/10.3390/molecules26092649 VL - 26 IS - 9 SP - 2649 PB - MDPI CY - Basel AN - OPUS4-52637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kazlagic, Anera A1 - Russo, Francesco A1 - Vogl, Jochen A1 - Sturm, Patrick A1 - Stephan, D. A1 - Gluth, Gregor ED - Resch-Genger, Ute ED - Koch, Matthias ED - Meermann, Björn ED - Weller, Michael G. T1 - Development of a sample preparation procedure for Sr isotope analysis of Portland cements N2 - The 87Sr/86Sr isotope ratio can, in principle, be used for provenancing of cement. However, while commercial cements consist of multiple components, no detailed investigation into their individual 87Sr/86Sr isotope ratios or their influence on the integral 87Sr/86Sr isotope ratio of the resulting cement was conducted previously. Therefore, the present study aimed at determining and comparing the conventional 87Sr/86Sr isotope ratios of a diverse set of Portland cements and their corresponding Portland clinkers, the major component of these cements. Two approaches to remove the additives from the cements, i.e. to measure the conventional 87Sr/86Sr isotopic fingerprint of the clinker only, were tested, namely, treatment with a potassium hydroxide/sucrose solution and sieving on a 11-µm sieve. Dissolution in concentrated hydrochloric acid/nitric acid and in diluted nitric acid was employed to determine the 87Sr/86Sr isotope ratios of the cements and the individual clinkers. The aim was to find the most appropriate sample preparation procedure for cement provenancing, and the selection was realised by comparing the 87Sr/86Sr isotope ratios of differently treated cements with those of the corresponding clinkers. None of the methods to separate the clinkers from the cements proved to be satisfactory. However, it was found that the 87Sr/86Sr isotope ratios of clinker and cement generally corresponded, meaning that the latter can be used as a proxy for the clinker 87Sr/86Sr isotope ratio. Finally, the concentrated hydrochloric acid/nitric acid dissolution method was found to be the most suitable sample preparation method for the cements; it is thus recommended for 87Sr/86Sr isotope analyses for cement provenancing. KW - Cement KW - Provenancing KW - Sr isotopes KW - Portland clinker KW - Dissolution PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542239 DO - https://doi.org/10.1007/s00216-021-03821-7 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - 15 (Topical collection: Analytical methods and applications in the materials and life sciences) SP - 4379 EP - 4389 PB - Springer CY - Berlin AN - OPUS4-54223 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Zengchao A1 - Winckelmann, Alexander A1 - Vogl, Jochen A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique T1 - Determination of calcium, iron, and selenium in human serum by isotope dilution analysis using nitrogen microwave inductively coupled atmospheric pressure plasma mass spectrometry (MICAP-MS) N2 - In this study, we demonstrate the applicability of nitrogen microwave inductively coupled atmospheric pressure mass spectrometry (MICAP-MS) for Ca, Fe, and Se quantification in human serum using isotope dilution (ID) analysis. The matrix tolerance of MICAP-MS in Na matrix was investigated, uncovering that high Na levels can suppress the signal intensity. This suppression is likely due to the plasma loading and the space charge effect. Moreover, 40Ca and 44Ca isotopic fractionation was noted at elevated Na concentration. Nine certified serum samples were analyzed using both external calibration and ID analysis. Overestimation of Cr, Zn, As, and Se was found in the results of external calibration, which might be resulted from C-induced polyatomic interference and signal enhancement, respectively. Further investigations performed with methanol showed a similar enhancement effect for Zn, As, and Se, potentially supporting this assumption. The mass concentrations determined with ID analysis show metrological compatibility with the reference values, indicating that MICAP-MS combined with ID analysis can be a promising method for precise Ca, Fe, and Se determination. Moreover, this combination reduces the influences of matrix effects, broadening the applicability of MICAP-MS for samples with complex matrix. KW - Selenium KW - Nitrogen microwave inductively coupled atmospheric pressure mass spectrometry KW - Isotope dilution KW - Human serum KW - Calcium KW - Iron PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598664 DO - https://doi.org/10.1007/s00216-024-05274-0 SN - 1618-2642 SP - 3117 EP - 3125 PB - Springer CY - Berlin AN - OPUS4-59866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winckelmann, Alexander A1 - Morcillo Garcia-Morato, Dalia A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Riedel, Jens A1 - Vogl, Jochen A1 - Panne, Ulrich A1 - Abad Andrade, Carlos Enrique T1 - Determination of lithium in human serum by isotope dilution atomic absorption spectrometry N2 - The therapeutic dose of lithium (Li) compounds, which are widely used for the treatment of psychiatric and hematologic disorders, is close to its toxic level; therefore, drug monitoring protocols are mandatory. Herein, we propose a fast, simple, and low-cost analytical procedure for the traceable determination of Li concentration in human serum, based on the monitoring of the Li isotope dilution through the partially resolved isotope shift in its electronic transition around 670.80 nm using a commercially available high-resolution continuum source graphite furnace atomic absorption spectrometer. With this technique, serum samples only require acidic digestion before analysis. The procedure requires three measurements—an enriched 6Li spike, a mixture of a certified standard solution and spike, and a mixture of the sample and spike with a nominal 7Li/6Li ratio of 0.82. Lanthanum has been used as an internal spectral standard for wavelength correction. The spectra are described as the linear superposition of the contributions of the respective isotopes, each consisting of a spin-orbit doublet, which can be expressed as Gaussian components with constant spectral position and width and different relative intensity, reflecting the isotope ratio in the sample. Both the spectral constants and the correlation between isotope ratio and relative band intensity have been experimentally obtained using commercially available materials enriched with Li isotopes. The Li characteristic mass (mc) obtained corresponds to 0.6 pg. The procedure has been validated using five human serum certified reference materials. The results are metrologically comparable and compatible to the certified values. The measurement uncertainties are comparable to those obtained by the more complex and expensive technique, isotope dilution mass spectrometry. KW - Lithium KW - Human serum KW - Isotope dilution KW - Atomic absorption spectrometry KW - High-resolution continuum source graphite furnace atomic absorption spectrometry PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-532446 DO - https://doi.org/10.1007/s00216-021-03636-6 VL - 414 IS - 1 SP - 251 EP - 256 PB - Springer CY - Berlin AN - OPUS4-53244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Giv, Ali Nemati A1 - Asante, Bright A1 - Yan, Libo A1 - Kasal, Bohumil T1 - Shear performance and durability of adhesively bonded spruce wood-concrete composite joints: Effects of indoor and outdoor environmental conditions, mechanical load, and their coupled effect N2 - A long-term study was conducted on double-lap spruce wood-concrete joints to investigate their shear strength and stiffness over a 12-month period. These joints were manufactured using both wet and dry processes, each incorporating two adhesive types for bonding the wood to the concrete: a brittle epoxy and a ductile polyurethane (PUR). The experimental design exposed the joints to three specific long-term environments: (1) outdoor exposure, (2) indoor conditions with applied load, and (3) outdoor conditions with applied load. The wood concrete joints exposed to outdoor conditions were subjected to destructive shear testing at intervals of 0 (serving as the reference sample), 2, 4, 6, and 12 months, respectively. For joints subjected to both indoor and outdoor conditions with shear loading, the shear deformation of joints was monitored continuously over the 12 months before performing the destructive tests. A gradual reduction in the shear stiffness and strength of dry joints (produced using the dry bond method) exposed to outdoor conditions was observed over a 12-month period, primarily due to bond failure at the concrete-adhesive interface. The wet joints exhibited no degradation in shear stiffness and strength across long-term conditions over the same period. The bond failure observed in dry joints was predominantly associated with stresses arising from dimensional changes in the wood. No degradation was found in the cross-linking density of the adhesive or in the concrete’s compressive stiffness and strength. KW - Adhesively bonded joints KW - Long-term study KW - Ductile PUR KW - Brittle epoxy KW - Outdoor condition KW - Mechanical load KW - Indoor condition PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608878 DO - https://doi.org/10.1016/j.conbuildmat.2024.136905 VL - 436 SP - 1 EP - 22 PB - Elsevier BV AN - OPUS4-60887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peter, Elisa K. A1 - Jaeger, Carsten A1 - Lisec, Jan A1 - Peters, R. Sven A1 - Mourot, Rey A1 - Rossel, Pamela E. A1 - Tranter, Martyn A1 - Anesio, Alexandre M. A1 - Benning, Liane G. T1 - Endometabolic profiling of pigmented glacier ice algae: the impact of sample processing N2 - Introduction Glacier ice algae, mainly Ancylonema alaskanum and Ancylonema nordenskiöldi, bloom on Greenland Ice Sheet bare ice surfaces. They significantly decrease surface albedo due to their purple-brown pigmentation, thus increasing melt. Little is known about their metabolic adaptation and factors controlling algal growth dynamics and pigment formation. A challenge in obtaining such data is the necessity of melting samples, which delays preservation and introduces bias to metabolomic analysis. There is a need to evaluate the physiological response of algae to melting and establish consistent sample processing strategies for metabolomics of ice microbial communities. Objectives To address the impact of sample melting procedure on metabolic characterization and establish a processing and analytical workflow for endometabolic profiling of glacier ice algae. Methods We employed untargeted, high-resolution mass spectrometry and tested the effect of sample melt temperature (10, 15, 20 °C) and processing delay (up to 49 h) on the metabolome and lipidome, and complemented this approach with cell counts (FlowCam), photophysiological analysis (PAM) and diversity characterization. Results and Conclusion We putatively identified 804 metabolites, with glycerolipids, glycerophospholipids and fatty acyls being the most prominent superclasses ( 50% of identified metabolites). Among the polar metabolome, carbohydrates and amino acid-derivatives were the most abundant. We show that 8% of the metabolome is affected by melt duration, with a pronounced decrease in betaine membrane lipids and pigment precursors, and an increase in phospholipids. Controlled fast melting at 10 °C resulted in the highest consistency, and is our recommendation for future supraglacial metabolomics studies. KW - Metabolic profiling KW - Mass Spectrometry KW - Ice algae PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607921 DO - https://doi.org/10.1007/s11306-024-02147-6 VL - 20 IS - 5 SP - 1 EP - 15 PB - Springer Science and Business Media LLC AN - OPUS4-60792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sänger, Johanna A1 - König, N.F. A1 - De Marzi, A. A1 - Zocca, Andrea A1 - Franchin, G. A1 - Bermejo, R. A1 - Colombo, P. A1 - Günster, Jens T1 - Linear volumetric additive manufacturing of zirconia from a transparent photopolymerizable ceramic slurry via Xolography N2 - Advanced ceramics printed with photon-based additive manufacturing deals with anisotropic mechanical properties from the layer-by-layer manufacturing. Motivated by the success in using highly filled transparent slurries containing nanoparticles for powder-based two-photon-polymerization (2PP) for advanced ceramic printing, this works approach is the transfer to Xolography, a volumetric additive manufacturing technology based on linear two-photon excitation and without recoating steps. This paper reports the results of a preliminary investigation optimizing the photocurable slurry to the requirements of Xolography in terms of transparency, over a significantly larger mean free path, compared to 2PP. A feedstock filled with 70 % weight fraction of ceramic particles (∼30 vol%) exhibiting an exceptionally high degree of transparency in the relevant wavelength range of 400–800 nm was prepared from 5 nm zirconia nanoparticles. The high transparency of the photocurable slurry is attributed to the near-monomodal particle size distribution of the zirconia nanoparticles used. KW - Additive manufacturing KW - Xolography KW - Ceramic PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608908 DO - https://doi.org/10.1016/j.oceram.2024.100655 VL - 19 SP - 1 EP - 9 PB - Elsevier BV AN - OPUS4-60890 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghata, Anupama A1 - Bernges, Tim A1 - Maus, Oliver A1 - Wankmiller, Björn A1 - Naik, Aakash Ashok A1 - Bustamante, Joana A1 - Gaultois, Michael W. A1 - Delaire, Olivier A1 - Hansen, Michael Ryan A1 - George, Janine A1 - Zeier, Wolfgang G. T1 - Exploring the Thermal and Ionic Transport of Cu+ Conducting Argyrodite Cu7PSe6 N2 - AbstractUnderstanding the origin of low thermal conductivities in ionic conductors is essential for improving their thermoelectric efficiency, although accompanying high ionic conduction may present challenges for maintaining thermoelectric device integrity. This study investigates the thermal and ionic transport in Cu7PSe6, aiming to elucidate their fundamental origins and correlation with the structural and dynamic properties. Through a comprehensive approach including various characterization techniques and computational analyses, it is demonstrated that the low thermal conductivity in Cu7PSe6 arises from structural complexity, variations in bond strengths, and high lattice anharmonicity, leading to pronounced diffuson transport of heat and fast ionic conduction. It is found that upon increasing the temperature, the ionic conductivity increases significantly in Cu7PSe6, whereas the thermal conductivity remains nearly constant, revealing no direct correlation between ionic and thermal transport. This absence of direct influence suggests innovative design strategies in thermoelectric applications to enhance stability by diminishing ionic conduction, while maintaining low thermal conductivity, thereby linking the domains of solid‐state ionics and thermoelectrics. Thus, this study attempts to clarify the fundamental principles governing thermal and ionic transport in Cu+‐superionic conductors, similar to recent findings in Ag+ argyrodites. KW - Thermoelectrics KW - Phonons KW - Chemically Complex Materials KW - DFT KW - Bonding Analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608866 DO - https://doi.org/10.1002/aenm.202402039 SP - 1 EP - 9 PB - Wiley AN - OPUS4-60886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Casali, Lucia A1 - Carta, Maria A1 - Michalchuk, Adam A. L. A1 - Delogu, Francesco A1 - Emmerling, Franziska T1 - Kinetics of the mechanically induced ibuprofen–nicotinamide co-crystal formation by in situ X-ray diffraction N2 - Mechanochemistry is drawing attention from the pharmaceutical industry given its potential for sustainable material synthesis and manufacture. Scaling mechanochemical processes to industrial level remains a challenge due to an incomplete understanding of their underlying mechanisms. We here show how time-resolved in situ powder X-ray diffraction data, coupled with analytical kinetic modelling, provides a powerful approach to gain mechanistic insight into mechanochemical reactions. By using the ibuprofen–nicotinamide co-crystal mechanosynthesis as a benchmark system, we investigate the behaviour of the solids involved and identify the factors that promote the reaction. As mechanochemical mechanisms become increasingly clear, it promises to become a breakthrough in the industrial preparation of advanced pharmaceuticals. KW - Mechanochemistry KW - Kinetics PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608820 DO - https://doi.org/10.1039/D4CP01457J SN - 1463-9084 VL - 26 SP - 22041 EP - 22048 PB - Royal Society of Chemistry (RSC) AN - OPUS4-60882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sänger, Johanna C. A1 - Riechers, Birte A1 - Pauw, Brian R. A1 - Maaß, Robert A1 - Günster, Jens T1 - Microplastic response of 2PP‐printed ceramics N2 - AbstractTwo‐photon polymerization (2PP) additive manufacturing (AM) utilizes feedstocks of ceramic nanoparticles of a few nanometers in diameter, enabling the fabrication of highly accurate technical ceramic design with structural details as small as 500 nm. The performance of these materials is expected to differ from conventional AM ceramics, as nanoparticles and three‐dimensional printing at high resolution introduce new microstructural aspects. This study applies 2PP‐AM of yttria‐stabilized zirconia to investigate the mechanical response behavior under compressive load, probing the influence of smallest structural units induced by the line packing during the printing process, design of sintered microblocks, and sintering temperature and thereby microstructure. We find a dissipative mechanical response enhanced by sintering at lower temperatures than conventional. The pursued 2PP‐AM approach yields a microstructured material with an increased number of grain boundaries that proposedly play a major role in facilitating energy dissipation within the here printed ceramic material. This microplastic response is further triggered by the filigree structures induced by hollow line packing at the order of the critical defect size of ceramics. Together, these unique aspects made accessible by the 2PP‐AM approach contribute to a heterogeneous nano‐ and microstructure, and hint toward opportunities for tailoring the mechanical response in future ceramic applications. KW - Additive manufacturing KW - Ceramic KW - Microplasticity PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608897 DO - https://doi.org/10.1111/jace.19849 VL - 107 IS - 10 SP - 6636 EP - 6645 PB - Wiley AN - OPUS4-60889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Schönauer-Kamin, D. A1 - Moos, R. A1 - Reimann, T. A1 - Giovannelli, F. A1 - Rabe, Torsten T1 - Influence of pressure and dwell time on pressure‐assisted sintering of calcium cobaltite N2 - Calcium cobaltite Ca3Co4O9, abbreviated Co349, is a promising thermoelectric material for high‐temperature applications in air. Its anisotropic properties can be assigned to polycrystalline parts by texturing. Tape casting and pressure‐assisted sintering (PAS) are a possible future way for a cost‐effective mass‐production of thermoelectric generators. This study examines the influence of pressure and dwell time during PAS at 900°C of tape‐cast Co349 on texture and thermoelectric properties. Tape casting aligns lentoid Co349. PAS results in a textured Co349 microstructure with the thermoelectrically favorable ab‐direction perpendicular to the pressing direction. By pressure variation during sintering, the microstructure of Co349 can be tailored either toward a maximum figure of merit as required for energy harvesting or toward a maximum power factor as required for energy harvesting. Moderate pressure of 2.5 MPa results in 25% porosity and a textured microstructure with a figure of merit of 0.13 at 700°C, two times higher than the dry‐pressed, pressureless‐sintered reference. A pressure of 7.5 MPa leads to 94% density and a high power factor of 326 µW/mK2 at 800°C, which is 11 times higher than the dry‐pressed reference (30 MPa) from the same powder. KW - Hot pressing KW - Texture KW - Thermoelectric properties PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515973 DO - https://doi.org/https://doi.org/10.1111/jace.17541 SN - 0002-7820 VL - 104 IS - 2 SP - 917 EP - 927 PB - Wiley Periodicals LLC AN - OPUS4-51597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Mrkwitschka, Paul A1 - Moos, R. A1 - Rabe, Torsten T1 - Glass-ceramic composites as insulation material for thermoelectric oxide multilayer generators N2 - Thermoelectric generators can be used as energy harvesters for sensor applications. Adapting the ceramic multilayer technology, their production can be highly automated. In such multilayer thermoelectric generators, the electrical insulation material, which separates the thermoelectric legs, is crucial for the performance of the device. The insulationmaterial should be adapted to the thermoelectric regarding its averaged coefficient of thermal expansion α and its sintering temperature while maintaining a high resistivity. In this study, starting from theoretical calculations, a glass-ceramic Composite material adapted for multilayer generators fromcalciummanganate and Calcium cobaltite is developed. The material is optimized towards an α of 11 × 10−6 K−1 (20–500◦C), a sintering temperature of 900◦C, and a high resistivity up to 800◦C. Calculated and measured α are in good agreement. The chosen glass-ceramic composite with 45 vol.% quartz has a resistivity of 1 × 107 Ωcm and an open porosity of <3%. Sintered multilayer samples from tape-cast thermoelectric oxides and screen-printed insulation show only small reaction layers. It can be concluded that glass-ceramic composites are a well-suited material class for insulation layers as their physical properties can be tuned by varying glass composition or dispersion phases. KW - Electrical insulators KW - Glass-ceramics KW - Multilayers KW - Thermal expansion PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538898 DO - https://doi.org/10.1111/jace.18235 SN - 0002-7820 SP - 1 EP - 10 PB - Wiley Online Library AN - OPUS4-53889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mieller, Björn T1 - Influence of test procedure on dielectric breakdown strength of alumina N2 - Dielectric strength testing of ceramics can be performed with various setups and parameters. Comparisons of results from different sources are often not meaningful, because the results are strongly dependent on the actual testing procedure. The aim of this study is to quantify the influence of voltage ramp rate, electrode size, electrode conditioning, and sample thickness on the measured AC dielectric strength of a commercial alumina. Mean values, Weibull moduli, and failure probabilities determined in standardized short time tests are evaluated and related to withstand voltage tests. Dielectric strength values in the range from 21.6 to 33.2 kV/mm were obtained for the same material using different testing procedures. Short time tests resulted in small standard deviations (< 2 kV/mm) and high Weibull moduli around 30, while withstand tests at voltage levels with low and virtual zero failure probability in short time tests resulted in large scatter of withstand time and Weibull moduli < 1. The strong decrease in Weibull moduli is attributed to progressive damage from partial discharge and depolarization during AC testing. These findings emphasize the necessity of a thorough documentation of testing procedure and highlight the importance of withstand voltage tests for a comprehensive material characterization. KW - Ceramic KW - High-voltage testing KW - Dielectric breakdown KW - Alumina PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483852 DO - https://doi.org/10.1007/s40145-018-0310-4 SN - 2226-4108 SN - 2227-8508 VL - 8 IS - 2 SP - 247 EP - 255 PB - Springer AN - OPUS4-48385 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -