TY - CONF A1 - Shashev, Yury A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Britzke, Ralf A1 - Bruno, Giovanni A1 - Mueller, Bernd R. A1 - Hentschel, Manfred P. T1 - Talbot- Lau interferometry with a non- binary phase grating for non-destructive testing N2 - Grating interferometric set-ups have been established in the last decade. They are promising candidates to obtain enhanced image contrast from weakly absorbing micro and nano structures. They are based on X-ray refraction and near-field diffraction using the Talbot effect. At the expense of taking multiple images, Talbot-Lau grating interferometry allows separating the absorption, refraction, and scattering contributions by analysing the disturbances of a phase grating interference pattern. Contrary to other refraction enhanced methods, this technique can be applied using conventional X-ray tubes (divergent, polychromatic source). This makes it attractive to solve typical non-destructive testing problems. We investigated the efficiency of phase gratings, i.e. the visibility (the amplitude of oscillations) upon variation of propagation distance and phase grating rotation around an axis parallel to the grid lines. This grating rotation changes the grating shape (i.e. the distributions of phase shifts). This can yield higher visibilities than derived from rectangular shapes. Our study includes experimental results obtained from synchrotron radiation, as well as simulations for monochromatic radiation. The advantages of Talbot-Lau interferometry are demonstrated at the example of glass capillaries. T2 - WCNDT2016 CY - Munich, Germany DA - 13.06.2016 KW - Phase-contrast X-ray imaging KW - Talbot- Lau interferometry KW - Phase grating KW - Visibility KW - Synchrotron radiation PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-365987 SN - 978-3-940283-78-8 VL - BB 158 SP - Tu.3.G.2., 1 EP - 9 AN - OPUS4-36598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Cabeza, Sandra A1 - Artzt, Katia A1 - Haubrich, J. A1 - Klaus, M. A1 - Genzel, Ch. A1 - Requena, G. A1 - Bruno, Giovanni T1 - An Assessment of Subsurface Residual Stress Analysis in SLM Ti-6Al-4V N2 - Ti-6Al-4V bridges were additively fabricated by selective laser melting (SLM) under different scanning speed conditions, to compare the effect of process energy density on the residual stress state. Subsurface lattice strain characterization was conducted by means of synchrotron diffraction in energy dispersive mode. High tensile strain gradients were found at the frontal surface for samples in an as-built condition. The geometry of the samples promotes increasing strains towards the pillar of the bridges. We observed that the higher the laser energy density during fabrication, the lower the lattice strains. A relief of lattice strains takes place after heat treatment. KW - Selective laser melting KW - Additive manufacturing KW - Heat treatment KW - Ti-6Al-4V KW - Synchrotron X-ray diffraction KW - Residual stress PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-395759 DO - https://doi.org/10.3390/ma10040348 SN - 1996-1944 VL - 10 IS - 4 SP - Article 348, 1 EP - 14 AN - OPUS4-39575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Obaton, A-F. A1 - Fain, J. A1 - Djemaï, M. A1 - Meinel, Dietmar A1 - Léonard, Fabien A1 - Mahé, E. A1 - Lécuelle, B. A1 - Fouchet, J-J. A1 - Bruno, Giovanni T1 - In vivo XCT bone characterization of lattice structured implants fabricated by additive manufacturing N2 - Several cylindrical specimens and dental implants, presenting diagonal lattice structures with different cell sizes (600, 900 and 1200 µm) were additively manufactured by selective laser melting process. Then they were implanted for two months in a sheep. After removal, they were studied by Archimedes’ method as well as X-ray computed tomography in order to assess the penetration of bone into the lattice. We observed that the additive manufactured parts were geometrically conform to the theoretical specifications. However, several particles were left adhering to the surface of the lattice, thereby partly or entirely obstructing the cells. Nevertheless, bone penetration was clearly visible. We conclude that the 900 µm lattice cell size is more favourable to bone penetration than the 1200 µm lattice cell size, as the bone penetration is 84 % for 900 µm against 54 % for 1200 µm cell structures. The lower bone penetration value for the 1200 µm lattice cell could possibly be attributed to the short residence time in the sheep. Our results lead to the conclusion that lattice implants additively manufactured by selective laser melting enable better bone integration. KW - Biomedical engineering KW - Dentistry KW - Medical imaging KW - X-ray computer tomography PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-418648 DO - https://doi.org/10.1016/j.heliyon.2017.e00374 SN - 2405-8440 IS - 3 SP - Article e00374, 1 EP - 21 PB - Elsevier Limited CY - 125 London Wall London, EC2Y 5AS United Kingdom AN - OPUS4-41864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shashev, Yury A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Evsevleev, Sergei A1 - Britzke, Ralf A1 - Bruno, Giovanni A1 - Müller, Bernd R. T1 - Talbot-Lau Röntgen-Interferometrie für die zerstörungsfreie Prüfung N2 - Im vergangenen Jahrzehnt sind gitterinterferometrische Röntgenabbildungen zunehmend in den Fokus des Interesses gerückt. Sie sind insbesondere dann Vorteil, wenn der in der Standardradiographie erreichbare Kontrast nicht genügt, schwach absorbierende Mikro- und Nanostrukturen abzubilden. Auf Kosten mehrerer Aufnahmen gestattet die Talbot-Lau Gitterinterferometrie, die Beiträge aus Absorption, Refraktion und (refraktiver) Streuung zu trennen. Dazu werden die Störungen der Interferenzmuster von Phasengittern ausgewertet. Im Gegensatz zu einer Vielzahl anderer refraktionsbasierter Abbildungsmethoden kann diese Technik mit konventionellen Röntgenröhren (mit divergenter, polychromatischer Strahlung) angewendet werden. Damit ist die Technik geeignet, typische ZfP-Fragestellungen zu lösen. Hier stellen wir Untersuchungen zur Effizienz von Phasengittern vor. Die Visibilität (d.h. die Höhe der Oszillation im Interferenzmuster) wird als Funktion verschiedener geometrischer Parameter verfolgt. Eine Rotation um die Achse parallel zu den Gitterstegen ändert die Form des Gitterprofils (d.h. die Verteilung der Phasenschiebungen). Die kontinuierliche Variation des Winkels und des Detektionsabstandes führt zur Identifikation von ausgezeichneten Kombinationen mit maximaler Visibilität, wobei die Abstände deutlich geringer sind als im Standardaufbau mit senkrechter Gitterbestrahlung. Unsere Studie umfasst Simulationen für monochromatische Quelle und den Vergleich zu experimentellen Ergebnissen mit der Synchrotronstrahlung. In der Literatur wurden die Vorteile der Talbot-Lau Interferometrie für die zerstörungsfreie Prüfung von Faserkompositen und Verbundwerkstoffen demonstriert. Hier werden als Beispiele Messungen an Aluminiumtitanat (Al2TiO5) Pulver gezeigt. T2 - DGZfP 2017 CY - Koblenz, Germany DA - 22.05.2017 KW - Gitterinterferometrische Röntgenabbildung KW - Phasengitter KW - Talbot-Lau Interferometrie KW - Zerstörungsfreie Prüfung PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-404691 SP - 1 EP - 10 PB - DGZfP AN - OPUS4-40469 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Laquai, René A1 - Müller, Bernd R. A1 - Kasperovich, G. A1 - Haubrich, J. A1 - Requena, G. A1 - Bruno, Giovanni T1 - X-ray refraction distinguishes unprocessed powder from empty pores in selective laser melting Ti-6Al-4V N2 - For the first time, X-ray refraction techniques are proven for the identification of void formation in Ti-6Al-4V parts produced by selective laser melting. The topology and volume fraction of pores are measured in samples produced with different laser energy density. Unique X-ray refraction methods identify different kinds of defects, characteristic to the regions below and above the Optimum laser energy density, namely unprocessed powder (unmolten powder particles, balling effect, and Fusion defects) from empty keyhole pores. Furthermore, it is possible to detect small inhomogeneities (voids or cracks) with sizes below the spatial resolution of optical microscopy and X-ray computed tomography. KW - Additive manufacturing KW - X-ray refraction KW - Microscopy KW - X-ray computed tomography KW - Porosity PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-434041 DO - https://doi.org/10.1080/21663831.2017.1409288 SN - 2166-3831 VL - 6 IS - 2 SP - 130 EP - 135 PB - Taylor & Francis Group CY - London, UK AN - OPUS4-43404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Laquai, René A1 - Müller, Bernd R. A1 - Kasperovich, G. A1 - Requena, G. A1 - Bruno, Giovanni T1 - Unterscheidung verschiedener charakteristischer Defekte in mittels selektivem Laserschmelzen hergestelltem Ti-6Al-4V durch Röntgen-Refraktionsradiographie N2 - Das selektive Laserschmelzen (SLM) ist eine pulverbasierte, additive Fertigungsmethode, welche die Herstellung von komplex und individuell geformten Bauteilen ermöglicht. Im Laufe der vergangenen Jahre haben verschiedene Branchen, unter anderem die Luft- und Raumfahrt Industrie, begonnen diese Technologie intensiv zu erforschen. Insbesondere die Titanlegierung Ti-6Al-V4, welche aufgrund ihrer Kombination von mechanischen Eigenschaften, geringer Dichte und Korrosionsbeständigkeit häufig in der Luft- und Raumfahrt eingesetzt wird, eignet sich für die Herstellung mittels SLM. Allerdings können durch nicht optimal gewählte Prozessparameter, welche für gewöhnlich in einer Energiedichte zusammengefasst werden, Defekte in den Bauteilen entstehen. In dieser Studie wurde untersucht, in wie weit Röntgen-Refraktionsradiographie geeignet ist diese Defekte zu detektieren und zu charakterisieren. Bei der Röntgen-Refraktionsradiographie wird die Röntgenstrahlung, nachdem sie die Probe transmittiert hat, über einen Analysatorkristall gemäß der Bragg-Bedingung in den 2D-Detektor reflektiert und dabei nach ihrer Ausbreitungsrichtung gefiltert. Dadurch wird neben der Schwächung auch die Ablenkung der Röntgenstrahlung durch Refraktion im inneren der Probe zur Bildgebung ausgenutzt. Aus den aufgenommen Refraktionsradiogrammen kann der Refraktionswert berechnet werden. Dieser ist ein Maß für die Menge an inneren Oberflächen in der Probe. Zum einen konnte gezeigt werden, dass die Röntgen-Refraktionsradiographie Defekte detektieren kann, die kleiner sind als die Ortsauflösung des verwendeten 2D-Detektors. Zum anderen können zwei verschiedene Typen von Defekten unterschieden werden. Bei dem ersten Typ handelt es sich um runde Poren mit geringer innerer Oberfläche. Diese, sogenannten „keyhole pores“ sind charakteristisch für eine zu hohe Energiedichte während des SLM Prozesses. Bei dem zweiten Typ handelt es sich um nicht komplett aufgeschmolzenes Pulver. Diese Defekte zeichnen sich durch eine hohe innere Oberfläche aus und sind charakteristisch für eine zu geringe Energiedichte. Vergleichende Messungen mit hochauflösender Synchrotron CT und optischer Mikroskopie bestätigen die charakteristischen Formen der verschiedenen Defekte. T2 - DGZfP-Jahrestagung 2018 CY - Leipzig, Germany DA - 07.05.2018 KW - Röntgen-Refraktion KW - Additive Fertigung KW - Porosität PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-449524 SN - 978-3-940283-92-4 VL - DGZfP BB166 SP - Mo.2.A.2., 1 EP - 7 AN - OPUS4-44952 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shashev, Yury A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Britzke, Ralf A1 - Bruno, Giovanni A1 - Müller, Bernd R. A1 - Hentschel, M. P. T1 - Talbot- Lau interferometry with a non- binary phase grating for non-destructive testing N2 - Grating interferometric set-ups have been established in the last decade. They are promising candidates to obtain enhanced image contrast from weakly absorbing micro and nano structures. They are based on X-ray refraction and near-field diffraction using the Talbot effect. At the expense of taking multiple images, Talbot-Lau grating interferometry allows separating the absorption, refraction, and scattering contributions by analysing the disturbances of a phase grating interference pattern. Contrary to other refraction enhanced methods, this technique can be applied using conventional X-ray tubes (divergent, polychromatic source). This makes it attractive to solve typical non-destructive testing problems. We investigated the efficiency of phase gratings, i.e. the visibility (the amplitude of oscillations) upon variation of propagation distance and phase grating rotation around an axis parallel to the grid lines. This grating rotation changes the grating shape (i.e. the distributions of phase shifts). This can yield higher visibilities than derived from rectangular shapes. Our study includes experimental results obtained from synchrotron radiation, as well as simulations for monochromatic radiation. The advantages of Talbot-Lau interferometry are demonstrated at the example of glass capillaries. T2 - 19th World Conference on Non-Destructive Testing 2016 CY - Munich, Germany DA - 13.06.2016 KW - Talbot- Lau interferometry KW - Phase grating KW - Non-destructive testing PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-383163 SP - Tu_3_G_2, 1 EP - 9 AN - OPUS4-38316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kupsch, Andreas A1 - Trappe, Volker A1 - Nielow, D. A1 - Schumacher, David A1 - Lange, A. A1 - Hentschel, M.P. A1 - Redmer, Bernhard A1 - Ewert, U. A1 - Bruno, Giovanni T1 - X-ray laminographic inspection of sandwich shell segments for wind turbine rotor blades N2 - 3D structural investigations are described by X-ray laminography studies of sandwich shell segments, made of a PVC foam core, covered by non-crimp fabric glass fibre composite lay-ups processed by vacuum assisted resin infusion of epoxy. The specific scope of this study is to image transversal flaws within the foam core (joints) and of single ply overlaps. Test flaws were purposely implemented in order to simulate typical failure under cyclic load. In a dedicated test rig for shell structures, the flaw evolution/propagation is monitored by thermography and optical 3D inspection of deformation. Due to the unfavourable preconditions for classical computed tomography as of large aspect ratio, the samples were investigated by coplanar translational laminography. Its limited range of observation angles of ± 45°, results in anisotropic artefacts about the normal to the sample surface, but the typical flaws are well visualized in the as-prepared state, in a state of early damage, and in the repaired state. T2 - 12th European conference on Non-Destructive Testing CY - Gothenburg, Sweden DA - 11.06.2018 KW - X-ray laminography KW - Wind turbine KW - Rotor blade PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-453931 SN - 978-91-639-6217-2 SP - 1 EP - 8 AN - OPUS4-45393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Buljak, V. A1 - Oesch, Tyler A1 - Bruno, Giovanni T1 - Simulating fiber-reinforced concrete mechanical performance using CT-based fiber orientation data N2 - The main hindrance to realistic models of fiber-reinforced concrete (FRC) is the local materials property variation, which does not yet reliably allow simulations at the structural level. The idea presented in this paper makes use of an existing constitutive model, but resolves the problem of localized material variation through X-ray computed tomography (CT)-based pre-processing. First, a three-point bending test of a notched beam is considered, where pre-test fiber orientations are measured using CT. A numerical model is then built with the zone subjected to progressive damage, modeled using an orthotropic damage model. To each of the finite elements within this zone, a local coordinate system is assigned, with its longitudinal direction defined by local fiber orientations. Second, the parameters of the constitutive damage model are determined through inverse analysis using load-displacement data obtained from the test. These parameters are considered to clearly explain the material behavior for any arbitrary external action and fiber orientation, for the same geometrical properties and volumetric ratio of fibers. Third, the effectiveness of the resulting model is demonstrated using a second, “control” experiment. The results of the “control” experiment analyzed in this research compare well with the model results. The ultimate strength was predicted with an error of about 6%, while the work-of-load was predicted within 4%. It demonstrates the potential of this method for accurately predicting the mechanical performance of FRC components. KW - Fiber-reinforced concrete KW - X-ray computed tomography (CT) KW - Anisotropic fiber orientation KW - Inverse analysis PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-474728 DO - https://doi.org/10.3390/ma12050717 SN - 1996-1944 VL - 12 IS - 5 SP - 717, 1 EP - 16 PB - MDPI AN - OPUS4-47472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Artzt, K. A1 - Haubrich, J. A1 - Requena, G. A1 - Bruno, Giovanni T1 - Exploring the correlation between subsurface residual stresses and manufacturing parameters in laser powder bed fused Ti-6Al-4V N2 - Subsurface residual stresses (RS) were investigated in Ti-6Al-4V cuboid samples by means of X-ray synchrotron diffraction. The samples were manufactured by laser powder bed fusion (LPBF) applying different processing parameters, not commonly considered in open literature, in order to assess their influence on RS state. While investigating the effect of process parameters used for the calculation of volumetric energy density (such as laser velocity, laser power and hatch distance), we observed that an increase of energy density led to a decrease of RS, although not to the same extent for every parameter variation. Additionally, the effect of support structure, sample roughness and LPBF machine effects potentially coming from Ar flow were studied. We observed no influence of support structure on subsurface RS while the orientation with respect to Ar flow showed to have an impact on RS.We conclude recommending monitoring such parameters to improve part reliability and reproducibility. KW - Additive manufacturing KW - Synchrotron X-ray diffraction KW - Residual stress KW - Ti-6Al-4V PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-474281 DO - https://doi.org/10.3390/met9020261 SN - 2075-4701 VL - 9 IS - 2 SP - 261, 1 EP - 13 PB - MDPI AN - OPUS4-47428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Laquai, René A1 - Gouraud, F. A1 - Müller, Bernd R. A1 - Huger, M. A1 - Chotard, T. A1 - Antou, G. A1 - Bruno, Giovanni T1 - Evolution of Thermal Microcracking in Refractory ZrO2-SiO2 after Application of External Loads at High Temperatures N2 - Zirconia-based cast refractories are widely used for glass furnace applications. Since they have to withstand harsh chemical as well as thermo-mechanical environments, internal stresses and microcracking are often present in such materials under operating conditions (sometimes in excess of 1700 °C). We studied the evolution of thermal (CTE) and mechanical (Young’s modulus) properties as a function of temperature in a fused-cast refractory containing 94 wt.% of monoclinic ZrO2 and 6 wt.% of a silicate glassy phase. With the aid of X-ray refraction techniques (yielding the internal specific surface in materials), we also monitored the evolution of microcracking as a function of thermal cycles (crossing the martensitic phase transformation around 1000 °C) under externally applied stress. We found that external compressive stress leads to a strong decrease of the internal surface per unit volume, but a tensile load has a similar (though not so strong) effect. In agreement with existing literature on -eucryptite microcracked ceramics, we could explain These phenomena by microcrack closure in the load direction in the compression case, and by microcrack propagation (rather than microcrack nucleation) under tensile conditions. KW - Electro-fused zirconia KW - Microcracking KW - Synchrotron x-ray refraction radiography (SXRR) KW - Thermal expansion PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-477431 DO - https://doi.org/10.3390/ma12071017 VL - 12 IS - 7 SP - 1 EP - 15 PB - MDPI AN - OPUS4-47743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Serrano-Munoz, Itziar A1 - Gollwitzer, Christian A1 - Bruno, Giovanni T1 - 3D shape analysis of powder for laser beam melting by synchrotron X-ray CT N2 - The quality of components made by laser beam melting (LBM) additive manufacturing is naturally influenced by the quality of the powder bed. A packing density <1 and porosity inside the powder particles lead to intrinsic voids in the powder bed. Since the packing density is determined by the particle size and shape distribution, the determination of these properties is of significant interest to assess the printing process. In this work, the size and shape distribution, the amount of the particle’s intrinsic porosity, as well as the packing density of micrometric powder used for LBM, have been investigated by means of synchrotron X-ray computed tomography (CT). Two different powder batches were investigated: Ti–6Al–4V produced by plasma atomization and stainless steel 316L produced by gas atomization. Plasma atomization particles were observed to be more spherical in terms of the mean anisotropy compared to particles produced by gas atomization. The two kinds of particles were comparable in size according to the equivalent diameter. The packing density was lower (i.e., the powder bed contained more voids in between particles) for the Ti–6Al–4V particles. The comparison of the tomographic results with laser diffraction, as another particle size measurement technique, proved to be in agreement. KW - Additive manufacturing KW - Laser beam melting KW - Synchrotron computed tomography KW - Powder analysis KW - Imaging PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-474070 DO - https://doi.org/10.3390/qubs3010003 SN - 2412-382X VL - 3 IS - 1 SP - 3, 1 EP - 12 PB - MDPI AN - OPUS4-47407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Cabeza, S. A1 - Mishurova, Tatiana A1 - Nadammal, Naresh A1 - Thiede, Tobias A1 - Bruno, Giovanni T1 - Residual Stresses in Selective Laser Melted Samples of a Nickel Based Superalloy N2 - Additive Manufacturing (AM) through the Selective Laser Melting (SLM) route offers ample scope for producing geometrically complex parts compared to the conventional subtractive manufacturing strategies. Nevertheless, the residual stresses which develop during the fabrication can limit application of the SLM components by reducing the load bearing capacity and by inducing unwanted distortion, depending on the boundary conditions specified during manufacturing. The present study aims at characterizing the residual stress states in the SLM parts using different diffraction methods. The material used is the nickel based superalloy Inconel 718. Microstructure as well as the surface and bulk residual stresses were characterized. For the residual stress analysis, X-ray, synchrotron and neutron diffraction methods were used. The measurements were performed at BAM, at the EDDI beamline of -BESSY II synchrotronand the E3 line -BER II neutron reactor- of the Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. The results reveal significant differences in the residual stress states for the different characterization techniques employed, which indicates the dependence of the residual state on the penetration depth in the sample. For the surface residual stresses, longitudinal and transverse stress components from X-ray and synchrotron agree well and the obtained values were around the yield strength of the material. Furthermore, synchrotron mapping disclosed gradients along the width and length of the sample for the longitudinal and transverse stress components. On the other hand, lower residual stresses were found in the bulk of the material measured using neutron diffraction. The longitudinal component was tensile and decreased towards the boundary of the sample. In contrast, the normal component was nearly constant and compressive in nature. The transversal component was almost negligible. The results indicate that a stress re-distribution takes place during the deposition of the consecutive layers. Further investigations are planned to study the phenomenon in detail. T2 - European Conference on Residual Stresses - ECRS10 CY - Leuven, Belgium DA - 11.09.2018 KW - Additive Manufacturing KW - Selective Laser Melting KW - Residual Stresses PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-459818 SN - 978-1-94529-189-0 SN - 978-1-94529-188-3 DO - https://doi.org/10.21741/9781945291890-41 SN - 2474-395X SN - 2474-3941 VL - 6 SP - 259 EP - 264 PB - Materials Research Forum LLC CY - Millersville, PA 17551, USA AN - OPUS4-45981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khrapov, D. A1 - Surmeneva, M. A1 - Koptioug, A. A1 - Evsevleev, Sergei A1 - Léonard, Fabien A1 - Bruno, Giovanni A1 - Surmenev, R. T1 - X-ray computed tomography of multiple-layered scaffolds with controlled gradient cell lattice structures fabricated via additive manufacturing N2 - In this paper we report on the characterization by X-ray computed tomography of calcium phosphate (CaP) and polycaprolactone (PCL) coatings on Ti-6Al-4V alloy scaffolds used as a material for medical implants. The cylindrical scaffold has greater porosity of the inner part than the external part, thus, mimicking trabecular and cortical bone, respectively. The prismatic scaffolds have uniform porosity. Surface of the scaffolds was modified with calcium phosphate (CaP) and polycaprolactone (PCL) by dip-coating to improve biocompatibility and mechanical properties. Computed tomography performed with X-ray and synchrotron radiation revealed the defects of structure and morphology of CaP and PCL coatings showing small platelet-like and spider-web-like structures, respectively. KW - Additive manufacturing KW - Lattice structure KW - Multiple-layered scaffold KW - Coating KW - Medical implants KW - Computed tomography KW - Polycaprolactone KW - Calcium phosphate PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471931 UR - http://stacks.iop.org/1742-6596/1145/i=1/a=012044 DO - https://doi.org/10.1088/1742-6596/1145/1/012044 SN - 1742-6596 VL - 1145 SP - 012044, 1 EP - 7 PB - IOP AN - OPUS4-47193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khrapov, D A1 - Koptyug, A. A1 - Manabaev, K. A1 - Léonard, Fabien A1 - Mishurova, Tatiana A1 - Bruno, Giovanni A1 - Cheneler, D. A1 - Loza, K. A1 - Epple, M. A1 - Surmenev, R. A1 - Surmeneva, M. T1 - The impact of post manufacturing treatment of functionally graded Ti6Al4V scaffolds on their surface morphology and mechanical strength N2 - An ultrasonic vibration post-treatment procedure was suggested for additively manufac-tured lattices. The aim of the present research was to investigate mechanical properties andthe differences in mechanical behavior and fracture modes of Ti6Al4V scaffolds treated withtraditional powder recovery system (PRS) and ultrasound vibration (USV). Scanning electronmicroscopy (SEM) was used to investigate the strut surface and the fracture surface mor-phology. X-ray computed tomography (CT) was employed to evaluate the inner structure,strut dimensions, pore size, as well as the surface morphology of additively manufacturedporous scaffolds. Uniaxial compression tests were conducted to obtain elastic modulus,compressive ultimate strength and yield stress. Finite element analysis was performedfor a body-centered cubic (BCC) element-based model and for CT-based reconstructiondata, as well as for a two-zone scaffold model to evaluate stress distribution during elasticdeformation. The scaffold with PRS post treatment displayed ductile behavior, while USVtreated scaffold displayed fragile behavior. Double barrel formation of PRS treated scaffoldwas observed during deformation. Finite element analysis for the CT-based reconstructionrevealed the strong impact of surface morphology on the stress distribution in comparisonwith BCC cell model because of partially molten metal particles on the surface of struts,which usually remain unstressed. KW - Additive manufacturing KW - Electron beam melting KW - Computed tomography KW - FEM KW - Lattice structures PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505960 DO - https://doi.org/10.1016/j.jmrt.2019.12.019 SN - 2238-7854 VL - 9 IS - 2 SP - 1866 EP - 1881 PB - Elsevier B.V. AN - OPUS4-50596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artzt, K. A1 - Mishurova, Tatiana A1 - Bauer, P.-P. A1 - Gussone, J. A1 - Barriobero-Vila, P. A1 - Evsevleev, Sergei A1 - Bruno, Giovanni A1 - Requena, G. A1 - Haubrich, J. T1 - Pandora’s Box–Influence of Contour Parameters on Roughness and Subsurface Residual Stresses in Laser Powder Bed Fusion of Ti-6Al-4V N2 - The contour scan strategies in laser powder bed fusion (LPBF) of Ti-6Al-4V were studied at the coupon level. These scan strategies determined the surface qualities and subsurface residual stresses. The correlations to these properties were identified for an optimization of the LPBF processing. The surface roughness and the residual stresses in build direction were linked: combining high laser power and high scan velocities with at least two contour lines substantially reduced the surface roughness, expressed by the arithmetic mean height, from values as high as 30 μm to 13 μm, while the residual stresses rose from ~340 to about 800 MPa. At this stress level, manufactured rocket fuel injector components evidenced macroscopic cracking. A scan strategy completing the contour region at 100 W and 1050 mm/s is recommended as a compromise between residual stresses (625 MPa) and surface quality (14.2 μm). The LPBF builds were monitored with an in-line twin-photodiode-based melt pool monitoring (MPM) system, which revealed a correlation between the intensity quotient I2/I1, the surface roughness, and the residual stresses. Thus, this MPM system can provide a predictive estimate of the surface quality of the samples and resulting residual stresses in the material generated during LPBF. KW - Additive manufacturing KW - Ti-6Al-4V KW - Contour scan strategy KW - Surface roughness KW - Melt pool monitoring KW - Residual stress KW - Synchrotron X-ray diffraction PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510585 DO - https://doi.org/10.3390/ma13153348 VL - 13 IS - 15 SP - 3348 AN - OPUS4-51058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Sydow, B. A1 - Thiede, Tobias A1 - Sizova, I. A1 - Ulbricht, Alexander A1 - Bambach, M. A1 - Bruno, Giovanni T1 - Residual Stress and Microstructure of a Ti-6Al-4V Wire Arc Additive Manufacturing Hybrid Demonstrator N2 - Wire Arc Additive Manufacturing (WAAM) features high deposition rates and, thus, allows production of large components that are relevant for aerospace applications. However, a lot of aerospace parts are currently produced by forging or machining alone to ensure fast production and to obtain good mechanical properties; the use of these conventional process routes causes high tooling and material costs. A hybrid approach (a combination of forging and WAAM) allows making production more efficient. In this fashion, further structural or functional features can be built in any direction without using additional tools for every part. By using a combination of forging basic geometries with one tool set and adding the functional features by means of WAAM, the tool costs and material waste can be reduced compared to either completely forged or machined parts. One of the factors influencing the structural integrity of additively manufactured parts are (high) residual stresses, generated during the build process. In this study, the triaxial residual stress profiles in a hybrid WAAM part are reported, as determined by neutron diffraction. The analysis is complemented by microstructural investigations, showing a gradient of microstructure (shape and size of grains) along the part height. The highest residual stresses were found in the transition Zone (between WAAM and forged part). The total stress range showed to be lower than expected for WAAM components. This could be explained by the thermal history of the component. KW - Additive manufacturing KW - Neutron diffraction KW - Residual stress KW - Hybrid manufacturing KW - WAAM KW - Ti-6Al-4V PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508245 DO - https://doi.org/10.3390/met10060701 VL - 10 IS - 6 SP - 701 PB - MDPI AN - OPUS4-50824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Laquai, René A1 - Müller, Bernd R. A1 - Schneider, J. A1 - Kupsch, Andreas A1 - Bruno, Giovanni T1 - Using SXRR to Probe the Nature of Discontinuities in SLM Additive Manufactured Inconel 718 Specimens N2 - The utilization of additive manufacturing (AM) to fabricate robust structural components relies on understanding the nature of internal anomalies or discontinuities, which can compromise the structural integrity. While some discontinuities in AM microstructures stem from similar mechanisms as observed in more traditional processes such as casting, others are unique to the AM process. Discontinuities in AM are challenging to detect, due to their submicron size and orientation dependency. Toward the goal of improving structural integrity, minimizing discontinuities in an AM build requires an understanding of the mechanisms of formation to mitigate their occurrence. This study utilizes various techniques to evaluate the shape, size, nature and distribution of discontinuities in AM Inconel 718, in a non-hot isostatic pressed (HIPed) as-built, non-HIPed and direct age, and HIPed with two step age samples. Non-destructive synchrotron radiation refraction and transmission radiography (SXRR) provides additional information beyond that obtained with destructive optical microscopy. SXRR was able to distinguish between voids, cracks and lack of melt in, due to its sensitivity to the orientation of the discontinuity. KW - Additive manufacturing KW - X-ray refraction radiography KW - INCONEL 718 KW - Selective laser melting PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509836 DO - https://doi.org/10.1007/s11661-020-05847-5 SN - 1543-1940 VL - 51 IS - 8 SP - 4146 EP - 4157 PB - Springer AN - OPUS4-50983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Artzt, K. A1 - Haubrich, J. A1 - Evsevleev, Sergei A1 - Evans, Alexander A1 - Meixner, M. A1 - Serrano-Munoz, Itziar A1 - Sevostianov, I. A1 - Requena, G. A1 - Bruno, Giovanni T1 - Connecting Diffraction-Based Strain with Macroscopic Stresses in Laser Powder Bed Fused Ti-6Al-4V N2 - The laser powder bed fusion (LPBF) production process often results in large residual stress (RS) in the parts. Nondestructive techniques to determine RS are badly needed. However, a reliable quantification of macro-RS (i.e., stress at the component level) by means of diffraction-based techniques is still a great challenge, because the link between diffraction-based strain and macro-RS is not trivial. In this study, we experimentally determine (by means of in-situ synchrotron radiation diffraction) this link for LPBF Ti-6Al-4V. We compare our results with commonly used models to determine the so-called diffraction elastic constants (DECs). We show that LPBF materials possess different DECs than wrought alloys, simply because their microstructural and mechanical properties are different. We also show that the existing models can be used to calculate DECs only if high accuracy of the RS values is not required. If the peculiarities of the microstructure have to be taken into account (as is the case of additively manufactured materials), a radically new approach is desirable. KW - Tiatanium KW - Synchrotron X-ray diffraction KW - Macroscopic stress KW - Laser powder bed fusion KW - Texture KW - Diffraction elastic constants PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506483 DO - https://doi.org/10.1007/s11661-020-05711-6 VL - 51 IS - 6 SP - 3194 EP - 3204 PB - Springer AN - OPUS4-50648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Evsevleev, Sergei A1 - Sevostianov, I. A1 - Mishurova, Tatiana A1 - Hofmann, M. A1 - Garcés, G. A1 - Bruno, Giovanni T1 - Explaining Deviatoric Residual Stresses in Aluminum Matrix Composites with Complex Microstructure N2 - The residual stresses in multiphase metal Matrix composites with both random planar-oriented short fibers and particles were studied by neutron diffraction and by a model based on the reformulation of classic Maxwell’s homogenization method. Contrary to common understanding and state-of-the-art models, we experimentally observed that randomly oriented phases possess non-hydrostatic residual stress. The recently developed modeling Approach allows calculating the residual stress in all phases of the composites. It rationalizes the presence of deviatoric stresses Accounting for the interaction of random oriented phases with fibers having preferential orientation. KW - Metal matrix composite KW - Residual stress KW - Deviatoric KW - Micromechanics PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506472 DO - https://doi.org/10.1007/s11661-020-05697-1 VL - 51 IS - 6 SP - 3104 EP - 3113 PB - Springer AN - OPUS4-50647 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -