TY - JOUR A1 - Bakir, Nasim A1 - Pavlov, V. A1 - Zavjalov, S. A1 - Volvenko, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Novel metrology to determine the critical strain conditions required for solidification cracking during laser welding of thin sheets N2 - This paper represents the results for proposed optical flow method based on the Lucas-Kanade (LK) algorithm applied to two different problems. The following observations can be made: - The estimated strain and displacement for conducted tensile test are generally very close to those measured with conventional DIC-technique. - The LK technique allows measurement of strain or displacement without special selection of a region of interest. Using a novel optical measurement technique together with the optical flow algorithm, a twodimensional deformation analysis during welding was conducted. This technique is the first to provide a measurement of the full strain field locally in the immediate vicinity of the solidification front. Additionally, the described procedure of the optical measurement allows the real material-dependent values of critical strain characterizing the transition to hot cracking during laser welding processes to be determined. T2 - Beam Technologies and Laser Application CY - Sankt Petersburg, Russia KW - Hot cracking test KW - Local critical strain KW - Solidification cracking KW - Laser beam welding KW - Novel metrology PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-467226 DO - https://doi.org/10.1088/1742-6596/1109/1/012047 SN - 1742-6596 VL - 1109 IS - 012047 SP - 1 EP - 9 PB - IOP Publ. CY - Bristol AN - OPUS4-46722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Petrat, T. A1 - Kersting, R. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Embedding electronics into additive manufactured components using laser metal deposition and selective laser melting N2 - The paper deals with the integration of a light emitting diode (LED) into an additive manufactured metal component. Selective laser melting (SLM) and laser metal deposition (LMD) are used. The material used is the chrome-nickel steel 316L. The basic component is manufactured by means of SLM and consists of a solid body and an area with grid structure. The solid body includes a duct in the shape of a groove with a recess for the positioning of the power cable. The LED is embedded in the grid structure via an inlet from the solid body. In further processing, the groove is filled with LMD. Two strategies with different parameter combinations were investigated. It shows that a high energy input near the power cable leads to its destruction. By using multiple parameter combinations during the manufacturing process, this destruction can be prevented. There was a comparison of both strategies with regard to the necessary number of tracks and duration of welding time. KW - Additive manufacturing KW - Condition monitoring KW - Process chain KW - Laser-metal-deposition KW - Selektive-laser-melting KW - Embedded electronics PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479469 DO - https://doi.org/10.1016/j.procir.2018.08.071 SP - 168 EP - 171 PB - Elsevier Ltd. AN - OPUS4-47946 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lange, Fritz A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael A1 - Hilgenberg, Kai T1 - Numerical simulation of the weld pool dynamics during pulsed laser welding using adapted heat source models N2 - A transient simulation including the impact of the laser energy, the melting of the metal and the development of the weld pool was conducted to observe the evolution of the vapor capillary and the solidification of the melt in pulsed laser beam welding of AISI 304 steel. The phase field method was implemented to investigate the evolution and behavior of the liquid-gas interface during welding and to describe the condensed and vapor phases. The effects of phase transition, recoil pressure, thermo-capillary and natural convection, vaporization and temperature dependent material properties were taken into account. A Gaussian-like heat source under consideration of the Fresnel absorption model was used to model the energy input of the laser beam. The heat source model was extended by a newly developed empirical approach of describing multiple beam reflections in the keyhole. To validate this new model, the numerical results were compared to experimental data and good agreement regarding the size and shape of the weld pool was observed. T2 - LANE Conference 2018 CY - Fürth, Germany DA - 03.09.2018 KW - Pulsed laser beam welding KW - Weld pool dynamics KW - Multiple reflections KW - Vaporization PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-458749 DO - https://doi.org/10.1016/j.procir.2018.08.044 SN - 2212-8271 VL - 74 SP - 679 EP - 682 PB - Elsevier Ltd. CY - Amsterdam [u.a.] AN - OPUS4-45874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jonietz, Florian A1 - Ziegler, Mathias A1 - Myrach, Philipp A1 - Suwala, H. A1 - Rethmeier, Michael T1 - Untersuchung von Punktschweißverbindungen mit aktiver Thermografie N2 - Widerstandspunktschweißen ist insbesondere im Automobilbau eine der wichtigsten Fügetechniken. Bislang erfolgt die Qualitätssicherung überwiegend durch stichprobenartige zerstörende Prüfung. Eine zerstörungsfreie Prüftechnik würde neben der Reduzierung der Prüfkosten auch eine Optimierung des Punktschweißverfahrens bedeuten, da prinzipiell jeder Schweißpunkt geprüft werden könnte und somit auch eine Reduzierung der Anzahl der Schweißpunkte möglich ist. Es wird ein Verfahren vorgestellt, bei dem die Punktschweißverbindung zwischen zwei Stahlblechen optisch auf einer Blechseite mittels Laser oder Blitzlicht erwärmt wird. Die aufgeschmolzene Zone, die sogenannte Schweißlinse, stellt dabei neben der mechanischen Verbindung auch eine Wärmebrücke zwischen den beiden verschweißten Blechen dar, die bei diesem Verfahren ausgenutzt wird. Durch den verbesserten thermischen Kontakt zwischen den verschweißten Blechen an der Schweißlinse kontrastiert diese deutlich mit dem umgebenden Blechmaterial, bei dem der Wärmeübertrag zwischen den Blechen vergleichsweise gering ist. Dieser Kontrast im thermischen Verhalten kann mittels zeitabhängiger Thermografie gemessen werden. Durch das hier vorgestellte Verfahren kann mittels aktiver Thermografie sowohl in Transmissions- als auch in Reflexionsanordnung die Größe des thermischen Kontaktes zwischen den beiden Blechen ermittelt werden, welche ein Maß für die Größe der Schweißlinse und damit für die qualitative Güte der Schweißung darstellt. Ein Vorteil des entwickelten Verfahrens ist seine Anwendbarkeit auf Bleche ohne Oberflächenbehandlung. T2 - DACH-Jahrestagung 2015 CY - Salzburg, Austria DA - 11.05.2015 PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-343476 UR - http://www.ndt.net/?id=19068 SN - 1435-4934 VL - 21 IS - 4 SP - 1 EP - 7 PB - NDT.net CY - Kirchwald AN - OPUS4-34347 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -