TY - JOUR A1 - Gook, Sergej A1 - El-Batahgy, Abdel-Monem A1 - Gumenyuk, Andrey A1 - Biegler, Max A1 - Rethmeier, Michael T1 - Application of Hybrid Laser Arc Welding for Construction of LNG Tanks Made of Thick Cryogenic 9% Ni Steel Plates JF - Lasers in Manufacturing and Materials Processing N2 - Hybrid laser-arc welding (HLAW) was applied for butt welding of 14.5 mm thick plates of ferritic cryogenic steel X8Ni9 containing 9% Ni, which is used for manufacturing storage and transport facilities of liquefied natural gas (LNG). The weld seam formation and the achievable metallurgical and mechanical properties of the hybrid welds were investigated experimentally for two types of filler wire, an austenitic wire dissimilar to the base metal (BM) and an experimentally produced matching ferritic wire. Safe penetration and uniform distribution of the austenitic filler metal in the narrow hybrid weld could only be achieved in the upper, arcdominated part of the weld. The pronounced heterogeneous distribution of the austenitic filler metal in the middle part and in the root area of the weld could not ensure sufficient notched impact toughness of the weld metal (WM). As a result, a decrease in the impact energy down to 17±3 J was observed, which is below the acceptance level of ≥34 J for cryogenic applications. In contrast, the use of a matching ferritic filler wire resulted in satisfactory impact energy of the hybrid welds of up to 134±52 J at the concerned cryogenic temperature of -196 °C. The obtained results contribute to an important and remarkable conversion in automated manufacturing of LNG facilities. In other words, the results will help to develop a new laser-based welding technology, where both quality and productivity are considered.The efficiency of the developed welding process has been demonstrated by manufacturing a prototype where a segment of the inner wall of large size LNG storage tank was constructed. In this concern, hybrid laser arc welding was conducted in both horizontal (2G) and vertical (3G) positions as a simulation to the actual onsite manufacturing. The prototype was fabricated twice where its quality was confirmed based on non-destructive and destructive examinations. KW - Hardness KW - Hybrid Laser arc Welding KW - 9% Ni Steel KW - Fusion zone size KW - Microstructure KW - Tensile Strength KW - Impact Absorbed Energy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586080 DO - https://doi.org/10.1007/s40516-023-00229-2 SP - 1 EP - 22 PB - Springer Nature AN - OPUS4-58608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Vinzenz A1 - Fasselt, Janek Maria A1 - Kruse, Tobias A1 - Klötzer, Christian A1 - Kleba-Ehrhardt, Rafael A1 - Choma, Tomasz A1 - Biegler, Max A1 - Rethmeier, Michael T1 - Using ultrasonic atomization to recycle aluminium bronze chips for additive laser directed energy deposition JF - IOP Conference Series: Materials Science and Engineering N2 - Abstract In the post-processing of large maritime components, a considerable amount of waste in the form of milling and grinding chips is produced. At the same time, additive manufacturing technologies have shown great potential in producing high-volume parts for maritime applications, allowing novel design approaches and short lead times. In this context, this study presents a sustainable approach to recycle and use aluminium bronze waste material, generated during post-processing of large cast ship propellers, as feedstock for laser-powder directed energy deposition. The recycling technology used to produce powder batches is inductive re-melting in combination with ultrasonic atomization. The derived metal powders are characterized using digital image analysis, powder flowability tests, scanning electron microscopy as well as energy dispersive X-ray spectroscopy. Compared to conventional metal powders produced by gas atomization, the recycled material shows excellent sphericity and a powder size distribution with a higher content of finer and coarser particles. Metallographic sections of deposited additively produced specimens show an increased hardness and reduced ductility, but also competitive densities and higher yield and ultimate tensile strength compared to cast material. The process chain shows high potential for the maritime sector to enable circular and sustainable manufacturing. KW - Industrial and Manufacturing Engineering PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594444 DO - https://doi.org/10.1088/1757-899X/1296/1/012036 VL - 1296 IS - 1 SP - 1 EP - 11 PB - IOP Publishing AN - OPUS4-59444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lange, Fritz A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael A1 - Hilgenberg, Kai T1 - Numerical simulation of the weld pool dynamics during pulsed laser welding using adapted heat source models JF - Procedia CIRP N2 - A transient simulation including the impact of the laser energy, the melting of the metal and the development of the weld pool was conducted to observe the evolution of the vapor capillary and the solidification of the melt in pulsed laser beam welding of AISI 304 steel. The phase field method was implemented to investigate the evolution and behavior of the liquid-gas interface during welding and to describe the condensed and vapor phases. The effects of phase transition, recoil pressure, thermo-capillary and natural convection, vaporization and temperature dependent material properties were taken into account. A Gaussian-like heat source under consideration of the Fresnel absorption model was used to model the energy input of the laser beam. The heat source model was extended by a newly developed empirical approach of describing multiple beam reflections in the keyhole. To validate this new model, the numerical results were compared to experimental data and good agreement regarding the size and shape of the weld pool was observed. T2 - LANE Conference 2018 CY - Fürth, Germany DA - 03.09.2018 KW - Pulsed laser beam welding KW - Weld pool dynamics KW - Multiple reflections KW - Vaporization PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-458749 DO - https://doi.org/10.1016/j.procir.2018.08.044 SN - 2212-8271 VL - 74 SP - 679 EP - 682 PB - Elsevier Ltd. CY - Amsterdam [u.a.] AN - OPUS4-45874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brunner-Schwer, C. A1 - Simón Muzás, Juan A1 - Biegler, M. A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - Laser Welding of L-PBF AM components out of Inconel 718 JF - Procedia CIRP N2 - With regard to efficient production, it is desirable to combine the respective advantages of additively and conventionally manufactured components. Particularly in the case of large-volume components that also include filigree or complex structures, it makes sense to divide the overall part into individual elements, which afterwards have to be joined by welding. The following research represents a first step in fundamentally investigating and characterizing the joint welding of Laser Powder Bed Fusion (L-PBF) components made of Inconel 718. For this purpose, bead-on-plate welds were performed on plates manufactured using the L-PBF process and compared with the conventionally manufactured material. Conventional laser beam welding was used as welding process. The weld geometry was investigated as a function of the L-PBF build-up orientation. It was found that the welding depth and weld geometry differ depending on this orientation and in comparison to the conventional material. T2 - 12th CIRP Conference on Photonic Technologies [LANE 2022] CY - Fürth, Germany DA - 04.09.2022 KW - Laser Welding KW - L-PBF KW - PBF-LB/M KW - Seam geometry KW - Bead-on-plate welds PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560012 DO - https://doi.org/10.1016/j.procir.2022.08.072 SN - 2212-8271 VL - 111 SP - 92 EP - 96 PB - Elsevier B.V. AN - OPUS4-56001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -