TY - JOUR A1 - Titscher, Thomas A1 - van Dijk, T. A1 - Kadoke, Daniel A1 - Robens-Radermacher, Annika A1 - Herrmann, Ralf A1 - Unger, Jörg F. T1 - Bayesian model calibration and damage detection for a digital twin of a bridge demonstrator N2 - Using digital twins for decision making is a very promising concept which combines simulation models with corresponding experimental sensor data in order to support maintenance decisions or to investigate the reliability. The quality of the prognosis strongly depends on both the data quality and the quality of the digital twin. The latter comprises both the modeling assumptions as well as the correct parameters of these models. This article discusses the challenges when applying this concept to realmeasurement data for a demonstrator bridge in the lab, including the data management, the iterative development of the simulation model as well as the identification/updating procedure using Bayesian inference with a potentially large number of parameters. The investigated scenarios include both the iterative identification of the structural model parameters as well as scenarios related to a damage identification. In addition, the article aims at providing all models and data in a reproducibleway such that other researcher can use this setup to validate their methodologies. KW - Damage detection KW - Finite element analysis KW - Load identification KW - Model updating KW - Estimation KW - System identification KW - Variational Bayesian statistics PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-574496 DO - https://doi.org/10.1002/eng2.12669 SN - 2577-8196 SP - 1 EP - 27 PB - Wiley CY - Hoboken, NJ AN - OPUS4-57449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diercks, Philipp A1 - Veroy, K. A1 - Robens-Radermacher, Annika A1 - Unger, Jörg F. T1 - Multiscale modeling of linear elastic heterogeneous structures via localized model order reduction N2 - In this paper, a methodology for fine scale modeling of large scale linear elastic structures is proposed, which combines the variational multiscale method, domain decomposition and model order reduction. The influence of the fine scale on the coarse scale is modelled by the use of an additive split of the displacement field, addressing applications without a clear scale separation. Local reduced spaces are constructed by solving an oversampling problem with random boundary conditions. Herein, we inform the boundary conditions by a global reduced problem and compare our approach using physically meaningful correlated samples with existing approaches using uncorrelated samples. The local spaces are designed such that the local contribution of each subdomain can be coupled in a conforming way, which also preserves the sparsity pattern of standard finite element assembly procedures. Several numerical experiments show the accuracy and efficiency of the method, as well as its potential to reduce the size of the local spaces and the number of training samples compared to the uncorrelated sampling. KW - Multiscale methods KW - Variational multiscale method KW - Localized model order reduction KW - Domain decomposition methods PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580671 DO - https://doi.org/10.1002/nme.7326 SN - 0029-5981 SP - 1 EP - 23 PB - Wiley online library AN - OPUS4-58067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Rupprecht, C. A1 - Ziegler, Mathias T1 - Nondestructive thermographic detection of internal defects using pixel-pattern based laser excitation and photothermal super resolution reconstruction N2 - In this work, we present a novel approach to photothermal super resolution based thermographic resolution of internal defects using two-dimensional pixel pattern-based active photothermal laser heating in conjunction with subsequent numerical reconstruction to achieve a high-resolution reconstruction of internal defect structures. With the proposed adoption of pixelated patterns generated using laser coupled high-power DLP projector technology the complexity for achieving true two-dimensional super resolution can be dramatically reduced taking a crucial step forward towards widespread practical viability. Furthermore, based on the latest developments in high-power DLP projectors, we present their first application for structured pulsed thermographic inspection of macroscopic metal samples. In addition, a forward solution to the underlying inverse problem is proposed along with an appropriate heuristic to find the regularization parameters necessary for the numerical inversion in a laboratory setting. This allows the generation of synthetic measurement data, opening the door for the application of machine learning based methods for future improvements towards full automation of the method. Finally, the proposed method is experimentally validated and shown to outperform several established conventional thermographic testing techniques while conservatively improving the required measurement times by a factor of 8 compared to currently available photothermal super resolution techniques. KW - Thermography KW - Super resolution KW - NDT KW - Inspection KW - Internal defects KW - DMD KW - DLP PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570551 DO - https://doi.org/10.1038/s41598-023-30494-2 SN - 2045-2322 VL - 13 SP - 1 EP - 13 PB - Nature Research AN - OPUS4-57055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Straße, Anne A1 - Rethmeier, Michael A1 - Gumenyuk, Andrey T1 - Influence of edge‑deposited layers on mechanical and corrosion properties of laser beam welds of 15 mm thick AISI 2205 duplex stainless steel N2 - AISI 2205 duplex stainless steel is used in a variety of industries, including the chemical and petrochemical industries. This is due to its high tensile strength combined with good ductility and corrosion resistance. However, in laser beam welding, these properties are negatively afected by the high cooling rates typical of the welding process. The resulting higher ferrrite content in the weld metal than in the base material leads to a reduction in the ductility and corrosion resistance of the welded joint. To overcome this problem, in this study, thick plates were coated by direct energy deposition (DED) prior to laser beam welding, whereas a duplex powder mixture containing a higher nickel concentration was used as a coating material. To improve the weld quality for the proposed two-step process, a method of additional material deposition instead of conventional tack weld was investigated. The resulting welded joints showed a well-balanced austenite to ferrite ratio and their properties and microstructure were verifed by metallographic analysis, electron backscatter difraction and Charpy impact testing. Using the standard ASTM G48 test method, it was found that the corrosion resistance of the welds was improved by a factor of four in average compared to the conventionally welded joints. The resulting properties, such as good ductility and corrosion resistance, of the welds with pre-coated edges showed good agreement with those of the base metal and confrmed the proposed two-step process as a promising alternative to the conventional approaches for welding thick duplex stainless steel plates. KW - Laser metal deposition KW - Laser beam welding KW - Duplex steels PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581731 UR - https://rdcu.be/dlb6E DO - https://doi.org/10.1007/s40194-023-01567-7 SN - 0043-2288 SP - 1 EP - 12 PB - Springer AN - OPUS4-58173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Andrés Arcones, Daniel A1 - Weiser, M. A1 - Koutsourelakis, F. A1 - Unger, Jörg F. T1 - A Bayesian Framework for Simulation-based Digital Twins of Bridges N2 - Simulation-based digital twins have emerged as a powerful tool for evaluating the mechanical response of bridges. As virtual representations of physical systems, digital twins can provide a wealth of information that complements traditional inspection and monitoring data. By incorporating virtual sensors and predictive maintenance strategies, they have the potential to improve our understanding of the behavior and performance of bridges over time. However, as bridges age and undergo regular loading and extreme events, their tructural characteristics change, often differing from the predictions of their initial design. Digital twins must be continuously adapted to reflect these changes. In this article, we present a Bayesian framework for updating simulation-based digital twins in the context of bridges. Our approach integrates information from measurements to account for inaccuracies in the simulation model and quantify uncertainties. Through its implementation and assessment, this work demonstrates the potential for digital twins to provide a reliable and up-to-date representation of bridge behavior, helping to inform decision-making for maintenance and management. T2 - Eurostruct 2023 CY - Vienna, Austria DA - 25.09.2023 KW - Digital Twins KW - Bayesian Inference KW - Bridge Monitoring KW - Uncertainty Quantification PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586803 UR - https://eurostruct.org/eurostruct-2023/ DO - https://doi.org/10.1002/cepa.2177 SN - 2509-7075 VL - 6 IS - 5 SP - 734 EP - 740 PB - Ernst & Sohn CY - Berlin AN - OPUS4-58680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strobl, Dominic A1 - Unger, Jörg F. A1 - Ghnatios, C. A1 - Klawoon, Alexander A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Robens-Radermacher, Annika T1 - Efficient bead-on-plate weld model for parameter estimation towards effective wire arc additive manufacturing simulation N2 - Despite the advances in hardware and software techniques, standard numerical methods fail in providing real-time simulations, especially for complex processes such as additive manufacturing applications. A real-time simulation enables process control through the combination of process monitoring and automated feedback, which increases the flexibility and quality of a process. Typically, before producing a whole additive manufacturing structure, a simplified experiment in the form of a beadon-plate experiment is performed to get a first insight into the process and to set parameters suitably. In this work, a reduced order model for the transient thermal problem of the bead-on-plate weld simulation is developed, allowing an efficient model calibration and control of the process. The proposed approach applies the proper generalized decomposition (PGD) method, a popular model order reduction technique, to decrease the computational effort of each model evaluation required multiple times in parameter estimation, control, and optimization. The welding torch is modeled by a moving heat source, which leads to difficulties separating space and time, a key ingredient in PGD simulations. A novel approach for separating space and time is applied and extended to 3D problems allowing the derivation of an efficient separated representation of the temperature. The results are verified against a standard finite element model showing excellent agreement. The reduced order model is also leveraged in a Bayesian model parameter estimation setup, speeding up calibrations and ultimately leading to an optimized real-time simulation approach for welding experiment using synthetic as well as real measurement data. KW - Proper generalized decomposition KW - Model order reduction KW - Hardly separable problem KW - Additive manufacturing KW - Model calibration KW - Wire arc additive manufacturing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596502 DO - https://doi.org/10.1007/s40194-024-01700-0 SN - 0043-2288 SP - 1 EP - 18 PB - Springer AN - OPUS4-59650 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strobl, Dominic A1 - Unger, Jörg F. A1 - Ghnatios, C. A1 - Robens-Radermacher, Annika T1 - PGD in thermal transient problems with a moving heat source: A sensitivity study on factors affecting accuracy and efficiency N2 - Thermal transient problems, essential for modeling applications like welding and additive metal manufacturing, are characterized by a dynamic evolution of temperature. Accurately simulating these phenomena is often computationally expensive, thus limiting their applications, for example for model parameter estimation or online process control. Model order reduction, a solution to preserve the accuracy while reducing the computation time, is explored. This article addresses challenges in developing reduced order models using the proper generalized decomposition (PGD) for transient thermal problems with a specific treatment of the moving heat source within the reduced model. Factors affecting accuracy, convergence, and computational cost, such as discretization methods (finite element and finite difference), a dimensionless formulation, the size of the heat source, and the inclusion of material parameters as additional PGD variables are examined across progressively complex examples. The results demonstrate the influence of these factors on the PGD model’s performance and emphasize the importance of their consideration when implementing such models. For thermal example, it is demonstrated that a PGD model with a finite difference discretization in time, a dimensionless representation, a mapping for a moving heat source, and a spatial domain non-separation yields the best approximation to the full order model. KW - Additive manufacturing KW - Mapping for unseparable load KW - Model order reduction (MOR) KW - Thermal transient problem KW - Sensitivity analysis KW - Proper generalized decomposition (PGD) PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598001 DO - https://doi.org/10.1002/eng2.12887 IS - e12887 SP - 1 EP - 22 PB - John Wiley & Sons Ltd. CY - Berlin AN - OPUS4-59800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartelmeß, Jürgen A1 - Valderrey, Virginia A1 - Rurack, Knut T1 - Development of a “Turn-on” Fluorescent Probe-Based Sensing System for Hydrogen Sulfide in Liquid and Gas Phase N2 - A “turn-on” fluorescence sensing system based on a BODIPY-cobaloxime complex for the detection of H2S in liquid and gas phase was developed. To that aim, two cobaloxime complexes bearing an axial pyridyl-BODIPY ligand were initially evaluated as sensitive fluorescent HS− indicators in aqueous solution. The sensing mechanism involves the selective substitution of the BODIPY ligand by the HS− anion at the cobalt center, which is accompanied by a strong fluorescence enhancement. The selection of a complex with an ideal stability and reactivity profile toward HS− relied on the optimal interaction between the cobalt metal-center and two different pyridyl BODIPY ligands. Loading the best performing BODIPY-cobaloxime complex onto a polymeric hydrogel membrane allowed us to study the selectivity of the probe for HS− against different anions and cysteine. Successful detection of H2S by the fluorescent “light-up” membrane was not only accomplished for surface water but could also be demonstrated for relevant H2S concentrations in gas phase. KW - Sulfide sensing KW - Fluorescence KW - BODIPYs KW - Cobaloxime complex KW - Gas sensing PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-492186 DO - https://doi.org/10.3389/fchem.2019.00641 SN - 2296-2646 VL - 7 SP - Art. Nr. 641 PB - Frontiers Media CY - Lausanne AN - OPUS4-49218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Wilbig, Janka A1 - Mohr, Gunther A1 - Villatte, T. A1 - Léonard, Fabien A1 - Nolze, Gert A1 - Sparenberg, M. A1 - Melcher, J. A1 - Hilgenberg, Kai A1 - Günster, Jens T1 - Enabling the 3D Printing of Metal Components in μ-Gravity N2 - As humanity contemplates manned missions to Mars, strategies need to be developed for the design and operation of hospitable environments to safely work in space for years. The supply of spare parts for repair and replacement of lost equipment will be one key need, but in-space manufacturing remains the only option for a timely supply. With high flexibility in design and the ability to manufacture ready-to-use components directly from a computeraided model, additive manufacturing (AM) technologies appear extremely attractive. For the manufacturing of metal parts, laser-beam melting is the most widely used AM process. However, the handling of metal powders in the absence of gravity is one prerequisite for its successful application in space. A gas flow throughout the powder bed is successfully applied to compensate for missing gravitational forces in microgravity experiments. This so-called gas-flow-assisted powder deposition is based on a porous Building platform acting as a filter for the fixation of metal particles in a gas flow driven by a pressure difference maintained by a vacuum pump. KW - Additive manufacturing KW - µ-gravity KW - Laser beam melting KW - Parabolic flight KW - 3D printing PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-492190 DO - https://doi.org/10.1002/admt.201900506 SP - 1900506 PB - WILEY-VCH Verlag GmbH AN - OPUS4-49219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Habib, Abdel Karim A1 - Schalau, Bernd T1 - Pool evaporation - experimental data collection and modelling N2 - When handling flammable or toxic liquids or liquefied gases, the occurrence of a leakage and formation of a liquid pool is a scenario to be considered for risk assessment. Several models are available for the estimation of the evaporating mass flow, but only a very reduced number of experimental data is available for Validation purposes. In the last years, the Federal Institute for Materials Research and Testing (BAM) in Berlin, Germany, carried out pool Evaporation experiments with different substances in basins with a Diameter ranging from 0,50 m to 1 m mainly on open air test sites with a built up (inner city) and a non-built-up (flat terrain) topography, but also in an enclosed space. The resulting experimental data sets cover a range of vapor pressures from 0,1 bar to 0,94 bar. The aim of this work is to make the füll data set publicly available and to provide a description of the experimental boundary conditions. Based on these data, a Validation of existing pool Evaporation models has been carried out and eventually led to a new formulation of an evaporation model, which is also presented here, covering the whole ränge from low wind speeds up to high vapor pressures. KW - Lache KW - Verdunstung KW - Verdampfung KW - Dampfdruck KW - Windgeschwindigkeit PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-491826 DO - https://doi.org/10.1002/ceat.201800093 VL - 42 IS - 11 SP - 2450 EP - 2457 PB - WILEY‐VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-49182 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwibbert, Karin A1 - Menzel, F. A1 - Epperlein, N. A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Bacterial adhesion on femtosecond laser-modified polyethylene N2 - In this study, femtosecond laser-induced sub-micrometer structures are generated to modify polyethylene (PE) surface topographies. These surfaces were subjected to bacterial colonization studies with Escherichia coli and Staphylococcus aureus as test strains. The results reveal that the nanostructures do not influence S. aureus coverage, while the adhesion of E. coli is reduced. KW - Bacterial adhesion KW - Laser-modified surface KW - Polyethylene KW - Laser-induced nanostructures KW - Biofilm PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-492280 DO - https://doi.org/10.3390/ma12193107 VL - 12 IS - 19 SP - 3107 PB - MDPI CY - Basel, Schweiz AN - OPUS4-49228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haustein, T. A1 - Busweiler, Sabine A1 - Haustein, V. A1 - von Laar, C. A1 - Plarre, Rüdiger T1 - Laboratory breeding of Korynetes caeruleus (Coleoptera: Cleridae) for the biological of Anobium punctatum) (Coleoptera, Ptinidae) N2 - Larvae and adults of Korynetes caeruleus (de Geer 1775) (Coleoptera: Cleridae) were collected from old churches and reared in the laboratory on Anobium punctatum (de Geer 1774) (Coleoptera: Ptinidae). Breeding success of K. caeruleus was low, but basic parameters of this species’ developmental cycle were identifi ed. At 21°C and 75% relative humidity and a fourmonth cold period at 4°C, the development of K. caeruleus from egg to adult appearance lasted 2 years. The pupal stage may be reached and completed after one and a half years. Feeding on larvae of A. punctatum by larvae of K. caeruleus was observed and consisted of a combination of sucking haemolymph and consuming body parts. The sickle-like mandibles of larvae of K. caeruleus penetrate the cuticle of prey larvae; this is followed by pumping and sucking body movements. Adult beetles of A. punctatum were not attacked by K. caeruleus larvae. Feeding behaviour of adult K. caeruleus was not investigated. KW - Cultural heritage KW - Coleoptera KW - Korynetes caeruleus KW - Cleridae KW - Ptinidae KW - Anobium punctatum KW - Biological pest control KW - Life history data KW - Laboratory breeding KW - Wood protection PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-494999 DO - https://doi.org/10.14411/eje.2019.038 SN - 1802-8829 VL - 116 SP - 362 EP - 371 PB - České Budějovice AN - OPUS4-49499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markwart, J. C. A1 - Battig, Alexander A1 - Velencoso, M. M. A1 - Pollok, D. A1 - Schartel, Bernhard A1 - Wurm, F. R. T1 - Aromatic vs. Aliphatic Hyperbranched Polyphosphoesters as Flame Retardants in Epoxy Resins N2 - The current trend for future flame retardants (FRs) goes to novel efficient halogen-free materials, due to the ban of several halogenated FRs. Among the most promising alternatives are phosphorus-based FRs, and of those, polymeric materials with complex shape have been recently reported. Herein, we present novel halogen-free aromatic and aliphatic hyperbranched polyphosphoesters (hbPPEs), which were synthesized by olefin Metathesis polymerization and investigated them as a FR in epoxy resins. We compare their efficiency (aliphatic vs. aromatic) and further assess the differences between the monomeric compounds and the hbPPEs. The decomposition and vaporizing behavior of a compound is an important factor in its flame-retardant behavior, but also the interaction with the pyrolyzing matrix has a significant influence on the performance. Therefore, the challenge in designing a FR is to optimize the chemical structure and its decomposition pathway to the matrix, with regards to time and temperature. This behavior becomes obvious in this study, and explains the superior gas phase activity of the aliphatic FRs. KW - Phosphorus KW - Metathesis KW - Dendritic KW - Cone calorimeter KW - Fire test PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-494535 DO - https://doi.org/10.3390/molecules24213901 SN - 1420-3049 VL - 24 IS - 21 SP - 3901 PB - MDPI AN - OPUS4-49453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schütz, R. A1 - Maragh, J. A1 - Weaver, J. A1 - Rabin, Ira A1 - Masic, A. T1 - The Temple Scroll: Reconstructing an ancient manufacturing practice N2 - The miraculously preserved 2000-year-old Dead Sea Scrolls, ancient texts of invaluable historical significance, were discovered in the mid-20th century in the caves of the Judean desert. The texts were mainly written on parchment and exhibit vast diversity in their states of preservation. One particular scroll, the 8-m-long Temple Scroll is especially notable because of its exceptional thinness and bright ivory color. The parchment has a layered structure, consisting of a collagenous base material and an atypical inorganic overlayer. We analyzed the chemistry of the inorganic layer using x-ray and Raman spectroscopies and discovered a variety of evaporitic sulfate salts. This points toward a unique ancient production technology in which the parchment was modified through the addition of the inorganic layer as a writing surface. Furthermore, understanding the properties of these minerals is particularly critical for the development of suitable conservation methods for the preservation of these invaluable historical documents. KW - Temple Scroll KW - Dead Sea Scrolls PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-495314 DO - https://doi.org/10.1126/sciadv.aaw7494 VL - 5 IS - 9 SP - 1 EP - 9 PB - AAAS AN - OPUS4-49531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bayerlein, Bernd A1 - Hanke, T. A1 - Muth, Thilo A1 - Riedel, Jens A1 - Schilling, Markus A1 - Schweizer, C. A1 - Skrotzki, Birgit A1 - Todor, A. A1 - Moreno Torres, Benjami A1 - Unger, Jörg F. A1 - Völker, Christoph A1 - Olbricht, Jürgen T1 - A Perspective on Digital Knowledge Representation in Materials Science and Engineering N2 - The amount of data generated worldwide is constantly increasing. These data come from a wide variety of sources and systems, are processed differently, have a multitude of formats, and are stored in an untraceable and unstructured manner, predominantly in natural language in data silos. This problem can be equally applied to the heterogeneous research data from materials science and engineering. In this domain, ways and solutions are increasingly being generated to smartly link material data together with their contextual information in a uniform and well-structured manner on platforms, thus making them discoverable, retrievable, and reusable for research and industry. Ontologies play a key role in this context. They enable the sustainable representation of expert knowledge and the semantically structured filling of databases with computer-processable data triples. In this perspective article, we present the project initiative Materials-open-Laboratory (Mat-o-Lab) that aims to provide a collaborative environment for domain experts to digitize their research results and processes and make them fit for data-driven materials research and development. The overarching challenge is to generate connection points to further link data from other domains to harness the promised potential of big materials data and harvest new knowledge. KW - Data infrastructures KW - Digital representations KW - Digital workflows KW - Knowledge graphs KW - Materials informatics KW - Ontologies KW - Vocabulary providers PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546729 DO - https://doi.org/10.1002/adem.202101176 SN - 1438-1656 SP - 1 EP - 14 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-54672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ehlert, Christopher A1 - Unger, Wolfgang A1 - Saalfrank, P. T1 - C K-edge NEXAFS spectra of graphene with physical and chemical defects: a study based on density functional theory N2 - Recently, C K-edge Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra of graphite (HOPG) surfaces have been measured for the pristine material, and for HOPG treated with either bromine or krypton plasmas (Lippitz et al., Surf. Sci., 2013, 611, L1). Changes of the NEXAFS spectra characteristic for physical (krypton) and/or chemical/physical modifications of the surface (bromine) upon plasma treatment were observed. Their molecular origin, however, remained elusive. In this work we study by density functional theory, the effects of selected point and line defects as well as chemical modifications on NEXAFS carbon K-edge spectra of single graphene layers. For Br-treated surfaces, also Br 3d X-ray Photoelectron Spectra (XPS) are simulated by a cluster approach, to identify possible chemical modifications. We observe that some of the defects related to plasma treatment lead to characteristic changes of NEXAFS spectra, similar to those in experiment. Theory provides possible microscopic origins for these changes. KW - Graphene KW - NEXAFS KW - Spectrum simulation KW - Density functional theory PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-309658 DO - https://doi.org/10.1039/c4cp01106f SN - 1463-9076 SN - 1463-9084 VL - 16 IS - 27 SP - 14083 EP - 14095 PB - The Royal Soc. of Chemistry CY - Cambridge AN - OPUS4-30965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kaur, I. A1 - Ellis, L.-J. A1 - Romer, I. A1 - Tantra, R. A1 - Carriere, M. A1 - Allard, S. A1 - Mayne-L'Hermite, M. A1 - Minelli, C. A1 - Unger, Wolfgang A1 - Potthoff, A. A1 - Rades, Steffi A1 - Valsami-Jones, E. T1 - Dispersion of nanomaterials in aqueous media: Towards protocol optimization N2 - The sonication process is commonly used for de-agglomerating and dispersing nanomaterials in aqueous based media, necessary to improve homogeneity and stability of the suspension. In this study, a systematic step-wise approach is carried out to identify optimal sonication conditions in order to achieve a stable dispersion. This approach has been adopted and shown to be suitable for several nanomaterials (cerium oxide, zinc oxide, and carbon nanotubes) dispersed in deionized (DI) water. However, with any change in either the nanomaterial type or dispersing medium, there needs to be optimization of the basic protocol by adjusting various factors such as sonication time, power, and sonicator type as well as temperature rise during the process. The approach records the dispersion process in detail. This is necessary to identify the time Points as well as other above-mentioned conditions during the sonication process in which there may be undesirable changes, such as damage to the particle surface thus affecting surface properties. Our goal is to offer a harmonized approach that can control the Quality of the final, produced dispersion. Such a guideline is instrumental in ensuring dispersion quality repeatability in the nanoscience community, particularly in the field of nanotoxicology. KW - Dispersion of nanomaterials KW - Aqueous media KW - Protocol development PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-435886 UR - https://www.jove.com/video/56074 DO - https://doi.org/10.3791/56074 SN - 1940-087X IS - 130 SP - e560741, 1 EP - e560741, 23 PB - MyJove Corp. CY - Cambridge, MA, USA AN - OPUS4-43588 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abbas, F. A1 - Donskyi, Ievgen A1 - Gholami, M. A1 - Ziem, B. A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Böttcher, C. A1 - Rabe, J. A1 - Haag, R. A1 - Adeli, M. T1 - Controlled covalent functionalization of thermally reduced graphene oxide to generate defined bifunctional 2D nanomaterials N2 - A controlled, reproducible, gram-scale method is reported for the covalent functionalization of graphene Sheets by a one-pot nitrene [2+1] cycloaddition reaction under mild conditions. The reaction between commercially available 2,4,6-trichloro-1,3,5-triazine and sodium azide with thermally reduced graphene oxide (TRGO) results in defined dichlorotriazine-functionalized sheets. The different reactivities of the chlorine substituents on the functionalized graphene allow stepwise post-modification by manipulating the temperature. This new method provides unique access to defined bifunctional 2D nanomaterials, as exemplified by chiral surfaces and multifunctional hybrid architectures. KW - Graphene oxide KW - Bifunctional 2D nanomaterials KW - XPS KW - NEXAFS KW - AFM PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-394789 DO - https://doi.org/10.1002/ange.201612422 SN - 1433-7851 VL - 56 IS - 10 SP - 2675 EP - 2679 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-39478 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Swaraj, S. A1 - Dietrich, Paul A1 - Unger, Wolfgang T1 - Simultaneous surface and bulk sensitive XAS measurements of magnetic particle clusters N2 - Magnetic iron oxide nanoparticle clusters (mnpc) coated with organic stabilizers were investigated using scanning transmission x-ray microscopy (STXM). Simultaneous surface and bulk sensitive Fe L₃ edge absorption spectra, obtained using a photomultiplier tube and a channeltron, were used to detect subtle changes in the oxidation state in the surface and bulk of Iron Oxide mnpc. The effectiveness of this mode of STXM operation is demonstrated for these nanoparticle clusters. T2 - X-Ray Microscopy Conference 2016 (XRM 2016) CY - Oxford, UK DA - 15.08. 2016 KW - Fe L3 edge absorption spectra KW - Scanning transmission x- ray microscopy KW - Magnetic iron oxide nanoparticle clusters KW - XAS PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-410576 UR - http://iopscience.iop.org/article/10.1088/1742-6596/849/1/012014/pdf DO - https://doi.org/10.1088/1742-6596/849/1/012014 SN - 1742-6588 VL - 849 SP - 012014, 1 EP - 012014, 5 PB - IOP Publishing AN - OPUS4-41057 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Swaraj, S. A1 - Dietrich, Paul A1 - Unger, Wolfgang T1 - Simultaneous surface and bulk sensitive XAS measurements of magnetic particle clusters N2 - Magnetic iron oxide nanoparticle clusters (mnpc) coated with organic stabilizers were investigated using scanning transmission x-ray microscopy (STXM). Simultaneous surface and bulk sensitive Fe L3 edge absorption spectra, obtained using a photomultiplier tube and a channeltron, were used to detect subtle changes in the oxidation state in the surface and bulk of Iron Oxide mnpc. The effectiveness of this mode of STXM operation is demonstrated for These nanoparticle clusters. T2 - X-Ray Microscopy Conference 2016 (XRM 2016) CY - Oxford, UK DA - 15.08.2016 KW - Scanning transmission x-ray microscopy (STXM) KW - Magnetic nanoparticles KW - Fe L3 edge absorption spectra PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-435907 UR - http://iopscience.iop.org/article/10.1088/1742-6596/849/1/012014/meta DO - https://doi.org/10.1088/1742-6596/849/1/012014 VL - 849 SP - 012014, 1 EP - 012014, 4 PB - IOP Publishing AN - OPUS4-43590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Tina A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Breese, Philipp Peter A1 - Metz, C. A1 - Hilgenberg, Kai A1 - Maierhofer, Christiane T1 - In-situ monitoring of the Laser Powder Bed Fusion build process via bi- chromatic optical tomography N2 - As metal additive manufacturing (AM) is entering industrial serial production of safety relevant components, the need for reliable process qualification is growing continuously. Especially in strictly regulated industries, such as aviation, the use of AM is strongly dependent on ensuring consistent quality of components. Because of its numerous influencing factors, up to now, the metal AM process is not fully controllable. Today, expensive part qualification processes for each single component are common in industry. This contribution focusses on bi-chromatic optical tomography as a new approach for AM in-situ quality control. In contrast to classical optical tomography, the emitted process radiation is monitored simultaneously with two temperature calibrated cameras at two separate wavelength bands. This approach allows one to estimate the local maximum temperatures during the manufacturing process, thus increases the comparability of monitoring data of different processes. A new process information level at low investment cost is reachable, compared to, e.g., infrared thermography. T2 - LANE 2022 CY - Fürth, Germany DA - 04.08.2022 KW - Optical tomography KW - Additive Manufacturing KW - L-PBF KW - In-process monitoring PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560270 DO - https://doi.org/10.1016/j.procir.2022.08.035 SN - 2212-8271 VL - 111 SP - 340 EP - 344 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-56027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weigert, Florian A1 - Müller, A. A1 - Häusler, I. A1 - Geißler, Daniel A1 - Skroblin, D. A1 - Unger, Wolfgang A1 - Radnik, Jörg A1 - Resch-Genger, Ute T1 - Combining HR‑TEM and XPS to elucidate the core–shell structure of ultrabright CdSe/CdS semiconductor quantum dots N2 - Controlling thickness and tightness of surface passivation shells is crucial for many applications of core–shell nanoparticles (NP). Usually, to determine shell thickness, core and core/shell particle are measured individually requiring the availability of both nanoobjects. This is often not fulfilled for functional nanomaterials such as many photoluminescent semiconductor quantum dots (QD) used for bioimaging, solid state lighting, and display technologies as the core does not show the applicationrelevant functionality like a high photoluminescence (PL) quantum yield, calling for a whole nanoobject approach. By combining high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS), a novel whole nanoobject approach is developed representatively for an ultrabright oleic acid-stabilized, thick shell CdSe/CdS QD with a PL quantum yield close to unity. The size of this spectroscopically assessed QD, is in the range of the information depth of usual laboratory XPS. Information on particle size and monodispersity were validated with dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) and compared to data derived from optical measurements. In addition to demonstrating the potential of this novel whole nanoobject approach for determining architectures of small nanoparticles, the presented results also highlight challenges faced by different sizing and structural analysis methods and method-inherent uncertainties. KW - Photoluminescence KW - Single particle KW - Microscopy KW - Particle architecture KW - Thickness KW - SAXS KW - Shell KW - XPS KW - TEM KW - Semiconductor KW - Quantum dot KW - Photophysics KW - Quantum yield PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517911 DO - https://doi.org/10.1038/s41598-020-77530-z VL - 10 IS - 1 SP - 20712 PB - Springer Nature AN - OPUS4-51791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Anja A1 - Sparnacci, K. A1 - Unger, Wolfgang A1 - Tougaard, S. T1 - Determining nonuniformities of core-shell nanoparticle coatings by analysis of the inelastic background of X-ray photoelectron spectroscopy survey spectra N2 - Most real core-shell nanoparticle (CSNP) samples deviate from an ideal core-shell structure potentially having significant impact on the particle properties. An ideal structure displays a spherical core fully encapsulated by a shell of homogeneous thickness, and all particles in the sample exhibit the same shell thickness. Therefore, analytical techniques are required that can identify and characterize such deviations. This study demonstrates that by analysis of the inelastic background in X-ray photoelectron spectroscopy (XPS) survey spectra, the following types of deviations can be identified and quantified: the nonuniformity of the shell thickness within a nanoparticle sample and the incomplete encapsulation of the cores by the shell material. Furthermore, CSNP shell thicknesses and relative coverages can be obtained. These results allow for a quick and straightforward comparison between several batches of a specific CSNP, different coating approaches, and so forth. The presented XPS methodology requires a submonolayer distribution of CSNPs on a substrate. Poly(tetrafluoroethylene)-poly(methyl methacrylate) and poly(tetrafluoroethylene)-polystyrene polymer CSNPs serve as model systems to demonstrate the applicability of the approach. KW - Core-shell KW - Nanoparticles KW - Inelastic background KW - Polymers KW - QUASES KW - XPS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511315 DO - https://doi.org/10.1002/sia.6865 SN - 0142-2421 SN - 1096-9918 VL - 52 SP - 1 EP - 8 PB - Wiley CY - Chichester AN - OPUS4-51131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kovacevic, E. A1 - Strunskus, T. A1 - Santhosh, N. M. A1 - Zavasnik, Z. A1 - Unger, Wolfgang A1 - Sauvage, T. A1 - Ammar, M.-R. A1 - Cvelbar, U. A1 - Berndt, J. T1 - Thermal stability studies of plasma deposited hydrogenated carbon nitride nanostructures N2 - Thermally stable carbon nitride nanostructures have potential applications in surface coatings and automotive fields. In this work, hydrogenated nitrogen-rich carbon nitride nanoparticles have been synthesised via low-pressure low-power plasma vapour deposition technique from methane/Nitrogen gas mixture in a dry process. Thermal stability of the initially prepared hydrogenated carbon Nitride structures has been analysed by near-edge X-ray absorption fine-structure spectroscopy (NEXAFS, insitu), Raman spectroscopy, scanning and transmission electron microscopy and nuclear reaction Analysis (NRA). Thermal studies reveal the excellent stability of the material and nitrogen-rich characteristics (N/C ratio 0.5e0.2 ± 0.01). The obtained results suggest transformation of sp3-rich as-deposited carbon Nitride into sp2-carbon phase with more graphitic features upon thermal annealing. Such in-situ thermal studies of plasma deposited carbon nitrides confirm the conversion of sp3-rich phase to sp2-rich carbon phase at the critical temperature (about 450 K), without a huge loss in nitrogen content. The analysis revealed that the material is a stable plasma deposit after this critical temperature up to >1100 K. Additionally, super hydrophilic carbon nitride nanostructure transforms into a hydrophobic surface after thermal annealing. These thermally stable hydrophobic carbon nitride nanoparticles could be used as a promising material for the hydrophobic coatings for various applications, especially for harsh conditions. KW - Carbon nanoparticles KW - Hydrogenated nanostructures KW - Plasma deposition KW - NEXAFS KW - Thermal annealing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536163 DO - https://doi.org/10.1016/j.carbon.2021.08.008 SN - 0008-6223 VL - 184 SP - 82 EP - 90 PB - Elsevier Ltd. AN - OPUS4-53616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pohl, Christoph A1 - Smilauer, V. A1 - Unger, Jörg F. T1 - A three-phase transport model for high-temperature concrete simulations validated with X-ray CT data N2 - Concrete exposure to high temperatures induces thermo-hygral phenomena, causing water phase changes, buildup of pore pressure and vulnerability to spalling. In order to predict these phenomena under various conditions, a three-phase transport model is proposed. The model is validated on X-ray CT data up to 320 ◦C, showing good agreement of the temperature profiles and moisture changes. A dehydration description, traditionally derived from thermogravimetric analysis, was replaced by a formulation based on data from neutron radiography. In addition, treating porosity and dehydration evolution as independent processes, previous approaches do not fulfil the solid mass balance. As a consequence, a new formulation is proposed that introduces the porosity as an independent variable, ensuring the latter condition. KW - Concrete KW - Porous media KW - Spalling KW - Dehydration KW - Moisture transport KW - Heat transfer KW - Pore pressure KW - Porosity KW - Finite elements PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-532840 UR - https://doi.org/10.5281/zenodo.4890635 DO - https://doi.org/10.3390/ma14175047 SN - 1996-1944 VL - 14 IS - 17 SP - 1 EP - 21 PB - MDPI CY - Basel AN - OPUS4-53284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Anja A1 - Krahl, T. A1 - Radnik, Jörg A1 - Wagner, Andreas A1 - Werner, W. S. M. A1 - Ritter, B. A1 - Kemnitz, E. A1 - Unger, Wolfgang T1 - Chemical in-depth analysis of (Ca/Sr)F2 core–shell like nanoparticles by X-ray photoelectron spectroscopy with tunable excitation energy N2 - The fluorolytic sol–gel synthesis is applied with the intention to obtain two different types of core–shell nanoparticles, namely, SrF2–CaF2 and CaF2–SrF2. In two separate fluorination steps for core and shell formation, the corresponding metal lactates are reacted with anhydrous HF in ethylene glycol. Scanning transmission electron microscopy (STEM) and dynamic light scattering (DLS) confirm the formation of particles with mean dimensions between 6.4 and 11.5 nm. The overall chemical composition of the particles during the different reaction steps is monitored by quantitative Al Kα excitation X-ray photoelectron spectroscopy (XPS). Here, the formation of stoichiometric metal fluorides (MF2) is confirmed, both for the core and the final core–shell particles. Furthermore, an in-depth analysis by synchrotron radiation XPS (SR-XPS) with tunable excitation energy is performed to confirm the core–Shell character of the nanoparticles. Additionally, Ca2p/Sr3d XPS intensity ratio in-Depth profiles are simulated using the software Simulation of Electron Spectra for Surface Analysis (SESSA). In principle, core–shell like particle morphologies are formed but without a sharp interface between calcium and strontium containing phases. Surprisingly, the in-depth chemical distribution of the two types of nanoparticles is equal within the error of the experiment. Both comprise a SrF2-rich core domain and CaF2-rich shell domain with an intermixing zone between them. Consequently, the internal morphology of the final nanoparticles seems to be independent from the synthesis chronology. KW - Metal fluorides KW - Sol-gel synthesis KW - Synchrotron radiation KW - X-ray photoelectron spectroscopy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522284 DO - https://doi.org/10.1002/sia.6937 SN - 0142-2421 VL - 53 IS - 5 SP - 494 EP - 508 PB - Wiley VCH AN - OPUS4-52228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kjaervik, Marit A1 - Ramstedt, M. A1 - Schwibbert, Karin A1 - Dietrich, P. M A1 - Unger, Wolfgang T1 - Comparative Study of NAP-XPS and Cryo-XPS for the Investigation of Surface Chemistry of the Bacterial Cell-Envelope N2 - Bacteria generally interact with the environment via processes involving their cell-envelope. Thus, techniques that may shed light on their surface chemistry are attractive tools for providing an understanding of bacterial interactions. One of these tools is Al Kα-excited photoelectron spectroscopy (XPS) with its estimated information depth of <10 nm. XPS-analyses of bacteria have been performed for several decades on freeze-dried specimens in order to be compatible with the vacuum in the analysis chamber of the spectrometer. A limitation of these studies has been that the freeze-drying method may collapse cell structure as well as introduce surface contaminants. However, recent developments in XPS allow for analysis of biological samples at near ambient pressure (NAP-XPS) or as frozen hydrated specimens (cryo-XPS) in vacuum. In this work, we have analyzed bacterial samples from a reference strain of the Gram-negative bacterium Pseudomonas fluorescens using both techniques. We compare the results obtained and, in general, observe good agreement between the two techniques. Furthermore, we discuss advantages and disadvantages with the two analysis approaches and the output data they provide. XPS reference data from the bacterial strain are provided, and we propose that planktonic cells of this strain (DSM 50090) are used as a reference material for surface chemical analysis of bacterial systems. KW - P. Fluorescens KW - Cryo XPS KW - NAP-XPS KW - DSM 5009 PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525640 DO - https://doi.org/10.3389/fchem.2021.666161 VL - 9 SP - Article 666161 PB - Frontiers CY - Switzerland AN - OPUS4-52564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unger, Wolfgang A1 - Senoner, M. A1 - Stockmann, Jörg M. A1 - Fernandez, V. A1 - Fairley, N. A1 - Passiu, C. A1 - Spencer, N. D. A1 - Rossi, A. T1 - Summary of ISO/TC 201 International Standard ISO 18516:2019 Surface chemical analysis - Determination of lateral resolution and sharpness in beam-based methods with a range from nanometres to micrometres and its implementation for imaging laboratory X-ray photoelectron spectrometers (XPS) N2 - ISO 18516:2019 Surface chemical analysis—Determination of lateral resolution and sharpness in beam-based methods with a range from nanometres to micrometres revises ISO 18516:2006 Surface chemical analysis—Auger electron spectroscopy and X-ray photoelectron spectroscopy—Determination of lateral resolution. It implements three different methods delivering parameters useful to express the lateral resolution: (1) the straight edge method, (2) the narrow line method and (3) the grating method. The theoretical background of these methods is introduced in ISO/TR 19319:2013 Surface chemical analysis—Fundamental approaches to determination of lateral resolution and sharpness in beam-based methods. The revised International Standard ISO 18516 delivers standardized procedures for the determination of the (1) effective lateral resolution by imaging of square-wave gratings, the (2) lateral resolution expressed as the parameter D12–88 characterizing the steepness of the sigmoidal edge spread function (ESF) determined by imaging a straight edge and (3) the lateral resolution expressed as the full width of half maximum of the line spread function (LSF), wLSF, determined by imaging a narrow line. The last method also delivers information on the shape of the LSF, which characterizes an individual imaging instrument. Finally, the implementation of all three standardized methods in the field of imaging laboratory X-ray photoelectron spectroscopy (XPS) is shortly presented. This part of the letter is based on the use of a new test sample developed at ETH Zurich, Switzerland. This test sample displays a micrometre scaled pattern motivated by the resolving power of recent imaging XPS instruments. KW - Grating method KW - Imaging AES KW - Imaging SIMS KW - Imaging XPS KW - Lateral resolution KW - Narrow line method KW - Noise in image KW - Resolution criterion KW - Straight edge method PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536330 DO - https://doi.org/10.1002/sia.7025 SN - 1096-9918 VL - 54 IS - 4 SP - 320 EP - 327 PB - Wiley CY - Chichester AN - OPUS4-53633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steiner, S. A1 - Heldt, J. A1 - Sobol, Oded A1 - Unger, Wolfgang A1 - Frömeling, T. T1 - Influence of oxygen vacancies on core-shell formation in solid solutions of (Na,Bi)TiO3 and SrTiO3 N2 - Solid solutions of (Na,Bi)TiO3 (NBT) and SrTiO3 (ST) are materials of interest for high-strain or high-energy density capacitor applications. Often, they exhibit chemical heterogeneity and develop core-shell structures during regular solid-state synthesis with an NBT-rich core. In this case, the NBT forms first so that the strontium needs to diffuse into the material to reach chemical homogeneity. Depending on the presence of core-shell structures, the electrical properties can vary drastically. In this work, we rationalize the effect of variations in oxygen vacancy concentration by Fe-acceptor and Nb-donor doping. It can be shown that a diffusion couple of strontium and oxygen is responsible for chemical homogenization and that the oxygen vacancy content can control the formation of a core-shell structure. KW - Lead-free ceramics KW - Bismuth titanates KW - Core-shell structures KW - Diffusion/diffusivity KW - Ferroelectricity/ferroelectric materials PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525988 DO - https://doi.org/10.1111/jace.17845 SP - 1 EP - 10 PB - Wiley Periodicals LLC, John Wiley & Sons, Inc. AN - OPUS4-52598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Robens-Radermacher, Annika A1 - Held, Felix A1 - Coelho Lima, Isabela A1 - Titscher, Thomas A1 - Unger, Jörg F. T1 - Efficient identification of random fields coupling Bayesian inference and PGD reduced order model for damage localization N2 - One of the main challenges regarding our civil infrastructure is the efficient operation over their complete design lifetime while complying with standards and safety regulations. Thus, costs for maintenance or replacements must be optimized while still ensuring specified safety levels. This requires an accurate estimate of the current state as well as a prognosis for the remaining useful life. Currently, this is often done by regular manual or visual inspections within constant intervals. However, the critical sections are often not directly accessible or impossible to be instrumented at all. Model‐based approaches can be used where a digital twin of the structure is set up. For these approaches, a key challenge is the calibration and validation of the numerical model based on uncertain measurement data. The aim of this contribution is to increase the efficiency of model updating by using the advantage of model reduction (Proper Generalized Decomposition, PGD) and applying the derived method for efficient model identification of a random stiffness field of a real bridge.” KW - Model reduction KW - Model updating KW - Proper generalized decomposition KW - Random field KW - Variational Bayesian Inference PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521275 DO - https://doi.org/10.1002/pamm.202000063 VL - 20 IS - 1 SP - e202000063 PB - Wiley Online Libary AN - OPUS4-52127 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wegner, Karl David A1 - Dussert, F. A1 - Truffier-Boutry, D. A1 - Benayad, A. A1 - Beal, D. A1 - Mattera, L. A1 - Ling, W. L. A1 - Carrière, M. A1 - Reiss, P. T1 - Influence of the Core/Shell Structure of Indium Phosphide Based Quantum Dots on Their Photostability and Cytotoxicity N2 - With the goal to improve their photostability, InP-based QDs are passivated with three types of inorganic shells, namely (i) a gradient ZnSexS1−x shell, (ii) an additional ZnS shell on top of the gradient shell with two different thicknesses (core/shell/shell, CSS), (iii) an alumina coating on top of ZnS. All three systems have photoluminescence Quantum yields (PLQY) > 50%and similar PL decay times (64–67 ns). To assess their photostability they are incorporated into a transparent poly (methyl methacrylate) (PMMA) matrix and exposed to continuous irradiation with simulated sunlight in a climate chamber. The alumina coated core/shell system exhibits the highest stability in terms of PLQY Retention as well as the lowest shift of the PL maximum and lowest increase of the PL linewidth, followed by the CSS QDs and finally the gradient shell system. By means of XPS studies we identify the degradation of the ZnS outer layer and concomitant xidation of the emissive InZnP core as the main origins of degradation in the gradient structure. These modifications do not occur in the case of the alumina-capped sample, which exhibits excellent chemical stability. The gradient shell and CSS systems could be transferred to the aqueous phase using surface ligand exchange with penicillamine. Cytotoxicity studies on human primary keratinocytes revealed that exposure for 24 h to 6.25–100 nM of QDs did not affect cell viability. However, a trend toward reduced cell proliferation is observed for higher concentrations of gradient shell and CSS QDs with a thin ZnS shell, while CSS QDs with a thicker ZnS shell do not exhibit any impact. KW - Indium phosphide KW - Quantum dots KW - Cytotoxicity KW - Photostability PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-494249 DO - https://doi.org/10.3389/fchem.2019.00466 VL - 7 SP - Article Number: 466 PB - Frontiers Media SA AN - OPUS4-49424 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Franz-Georg A1 - Scholz, Philipp T1 - Sequential Extraction of Incineration Bottom Ash: Conclusions Regarding Ecotoxicity N2 - The classification of incineration bottom ash (IBA) as hazardous or non-hazardous according to ecotoxic hazard property HP14 is still under debate. In this context, only the compounds of Zn and Cu with the hazard statement code H410 are of relevance. With an approach based on the grouping of substances, it was shown that such substances are either readily water-soluble or slightly and sparingly soluble. The concentrations of readily soluble Cu and Zn compounds in IBA are far below the cut-off value of 0.1%. Slightly and sparingly soluble Zn and Cu compounds could be quantified in the first fraction of a four-step sequential extraction procedure. With the results from the complete sequence, the dimensionless synthesis toxicity index (STI) was calculated and was in the range of 494 to 1218 for the four investigated IBA samples. It was concluded that IBA can usually be classified as non-hazardous. KW - Incineration bottom ash KW - Hazard properties KW - Ecotoxicity PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605262 DO - https://doi.org/10.3390/app14135541 SN - 2076-3417 VL - 14 IS - 13 SP - 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-60526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Ulbricht, Alexander A1 - Heinrich, Ph. A1 - Baum, D. A1 - Maierhofer, Christiane A1 - Hilgenberg, Kai T1 - In-Situ Defect Detection in Laser Powder Bed Fusion by Using Thermography and Optical Tomography—Comparison to Computed Tomography N2 - Among additive manufacturing (AM) technologies, the laser powder bed fusion (L-PBF) is one of the most important technologies to produce metallic components. The layer-wise build-up of components and the complex process conditions increase the probability of the occurrence of defects. However, due to the iterative nature of its manufacturing process and in contrast to conventional manufacturing technologies such as casting, L-PBF offers unique opportunities for in-situ monitoring. In this study, two cameras were successfully tested simultaneously as a machine manufacturer independent process monitoring setup: a high-frequency infrared camera and a camera for long time exposure, working in the visible and infrared spectrum and equipped with a near infrared filter. An AISI 316L stainless steel specimen with integrated artificial defects has been monitored during the build. The acquired camera data was compared to data obtained by computed tomography. A promising and easy to use examination method for data analysis was developed and correlations between measured signals and defects were identified. Moreover, sources of possible data misinterpretation were specified. Lastly, attempts for automatic data analysis by data Integration are presented. KW - Laser powder bed fusion (L-PBF) KW - Selective laser melting (SLM) KW - Additive manufacturing (AM) KW - Process monitoring KW - Infrared thermography KW - Optical tomography KW - Computed tomography (CT) KW - Data fusion KW - Lack-of-fusion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502417 DO - https://doi.org/10.3390/met10010103 VL - 10 IS - 1 SP - 103 PB - MDPI CY - Basel, Schweiz AN - OPUS4-50241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ehlert, Christopher A1 - Holzweber, Markus A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Saalfrank, Peter T1 - A detailed assignment of NEXAFS resonances of imidazolium based ionic liquids N2 - In Near Edge X-Ray Absorption Fine Structure (NEXAFS) spectroscopy X-Ray photons are used to excite tightly bound core electrons to low-lying unoccupied orbitals of the system. This technique offers insight into the electronic structure of the system as well as useful structural information. In this work, we apply NEXAFS to two kinds of imidazolium based ionic liquids ([CnC₁im]⁺[NTf₂]⁻ and [C₄C₁im]⁺[I]⁻). A combination of measurements and quantum chemical calculations of C K and N K NEXAFS resonances is presented. The simulations, based on the transition potential density functional theory method (TP-DFT), reproduce all characteristic features observed by the experiment. Furthermore, a detailed assignment of resonance features to excitation centers (carbon or nitrogen atoms) leads to a consistent interpretation of the spectra. KW - Ionic liquids KW - NEXAFS KW - DFT spectrum simulations PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-367223 DO - https://doi.org/10.1039/c5cp07434g SN - 1463-9076 SN - 1463-9084 VL - 18 IS - 12 SP - 8654 EP - 8661 PB - Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-36722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unger, Wolfgang A1 - Beiranvand, Z. A1 - Kakanejadifard, A. A1 - Donskyi, Ievgen A1 - Faghani, A. A1 - Tu, Z. A1 - Lippitz, Andreas A1 - Sasanpour, P. A1 - Maschietto, F. A1 - Paulus, B. A1 - Haag, R. A1 - Adeli, M. T1 - Functionalization of fullerene at room temperature: toward new carbon vectors with improved physicochemical properties N2 - In this work, fullerene has been functionalized with cyanuric Chloride at room temperature by a nitrene mediated [2 + 1] cycloaddition reaction. The adduct after functionalization is inherently in the form of azafulleroid and shows broad UV absorption in the wavelength range of 200–800 nm, as well as photothermal conversion and fluorescence with a high quantum yield. KW - Functionalization of fullerenes KW - XPS KW - NEXAFS PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-387076 DO - https://doi.org/10.1039/c6ra23419d SN - 2046-2069 VL - 6 IS - 114 SP - 112771 EP - 112775 PB - Royal Society of Chemistry (RSC) AN - OPUS4-38707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwarz, F. A1 - Heinrich, Thomas A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Schalley, C. T1 - A photoswitchable rotaxane operating in monolayers on solid support N2 - A novel photoswitchable rotaxane was synthesised and its switching behaviour in solution was analysed with NMR and UV-Vis. A monolayer of rotaxanes was deposited on glass surfaces and the on-surface photoswitching was investigated. Angle-resolved NEXAFS spectra revealed a preferential orientation that reversibly changes upon switching. KW - XPS KW - NEXAFS KW - Photoswitchable rotaxane KW - Self assembly PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-386814 DO - https://doi.org/10.1039/c6cc08586e SN - 0022-4936 SN - 1364-548X SN - 0009-241x SN - 1359-7345 VL - 52 IS - 100 SP - 14458 EP - 14461 PB - Royal Society of Chemistry (RSC) AN - OPUS4-38681 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - Comprehensive study of deuterium-induced effects in in austenitic stainless steel AISI 304L N2 - The damaging impact of hydrogen on the austenitic stainless steel AISI 304 L was analysed. To this aim, samples were charged electrochemically with the hydrogen isotope deuterium (2H, D) and examined with time-of-flight secondary ion mass spectrometry (ToF-SIMS) and electron backscatter diffraction (EBSD). The fusion of the obtained chemical and structural information revealed local enrichment of deuterium in austenite, transformation into martensite, crack formation and severe roughening of the specimen surface. The results indicated that martensite was not only formed during charging but also during Desorption and ToF-SIMS examinations. Furthermore, cross-sections of deuterium-charged samples revealed that in preferred deformation bands a g/ε/a 0 evolution is taking place. By means of microscopic analyses and carrier gas hot extraction (CGHE), it was found that the use of NaAsO2 as recombination poison decreased the uptake of hydrogen significantly and resulted in severe precipitation on the specimen surfaces. This is in contrast to the popular presumption that NaAsO2 enhances the uptake of hydrogen (and deuterium) during electrochemical charging by hampering its recombination from Atoms to molecules. KW - AISI 304L KW - Hydrogen KW - ToF-SIMS KW - Deuterium KW - Martensite PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-477540 DO - https://doi.org/10.1016/j.ijhydene.2019.03.058 SN - 0360-3199 SN - 1879-3487 VL - 44 IS - 23 SP - 12228 EP - 12238 PB - Elsevier Ltd. AN - OPUS4-47754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Anja A1 - Swaraj, S. A1 - Sparnacci, K. A1 - Unger, Wolfgang T1 - Shell thickness determination for PTFE‐PS core‐shell nanoparticles using scanning transmission X‐ray microscopy (STXM) N2 - A scanning transmission X‐ray microscopy (STXM)‐based methodology is introduced for determining the dimensions (shell thickness, core and total diameter) of core‐shell nanoparticles, which exhibit a strong X‐ray absorption contrast and a well‐defined interface between core and shell material. A low radiation dosage during data acquisition and, therefore, less X‐ray beam‐induced damage of the sample is achieved by recording STXM images only at 2 predetermined energies of maximum Absorption contrast, instead of recording a stack of images across the whole absorption edge. A model core‐shell nanoparticle, polytetrafluoroethylene (PTFE) cores with polystyrene (PS) shell, is used for demonstration. Near‐edge X‐ray absorption fine structure spectroscopy confirms the significant difference in X‐ray absorption behavior between PTFE and PS. Additionally, because of the insolubility of styrene in PTFE a well‐defined interface between particle core and shell is expected. To validate the STXM results, both the naked PTFE cores as well as the complete core‐shell nanoparticles are examined by scanning electron microscopy (SEM). The introduced STXM‐based methodology yields particle dimensions in agreement with the SEM results and provides additional information such as the position of the particle core, which cannot be extracted from a SEM micrograph. T2 - European conference on applications of surface and interface analysis (ECASIA'17) CY - Montpellier, France DA - 24.09.2017 KW - Core-shell nanoparticles KW - Polymers KW - PS KW - PTFE KW - SEM KW - STXM PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-449700 DO - https://doi.org/10.1002/sia.6464 SN - 1096-9918 SN - 0142-2421 VL - 50 IS - 11 SP - 1077 EP - 1082 PB - John Wiley & Sons CY - Hoboken, New Jersey, USA AN - OPUS4-44970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kjaervik, Marit A1 - Schwibbert, Karin A1 - Dietrich, P. A1 - Thissen, A. A1 - Unger, Wolfgang T1 - Surface characterisation of Escherichia coli under various conditions by near-ambient pressure XPS N2 - Bacteria are inherently in a hydrated state and therefore not compatible to ultra-high vacuum techniques such as XPS without prior sample preparation involving freeze drying or fast freezing. This has changed with the development of near-ambient pressure (NAP)-XPS, which makes it possible to characterise the bacterial surface with minimal sample preparation. This paper presents NAP-XPS measurements of Escherichia coli under various NAP conditions: at 11 mbar in a humid environment, at 2 mbar after drying in the chamber, pre-dried at 4 mbar, and at 1 mbar after overnight pumping at 10^−4 mbar. The high-resolution spectra of carbon, nitrogen, and oxygen are presented and found to be in general agreement with XPS measurements from freeze-dried and fast-frozen bacteria. However, it was found that the amount of carbon components associated with polysaccharides increases relative to aliphatic carbon during drying and increases further after overnight pumping. This implies that drying has an impact on the bacterial surface. T2 - European conference on applications of surface and interface analysis (ECASIA'17) CY - Montpellier, France DA - 24.09.2018 KW - Bacteria KW - E. coli KW - NAP-XPS PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-454047 DO - https://doi.org/10.1002/sia.6480 SN - 0142-2421 SN - 1096-9918 VL - 50 IS - 11 SP - 996 EP - 1000 PB - John Wiley & Sons CY - Hoboken, New Jersey, USA AN - OPUS4-45404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Afantitis, A. A1 - Melagraki, G. A1 - Isigonis, P. A1 - Tsoumanis, A. A1 - Varsou, D. D. A1 - Valsami-Jones, E. A1 - Papadiamantis, A. A1 - Ellis, L.-J. A. A1 - Sarimveis, H. A1 - Doganis, P. A1 - Karatzas, P. A1 - Tsiros, P. A1 - Liampa, I. A1 - Lobaskin, V. A1 - Greco, D. A1 - Serra, A. A1 - Kinaret, P. A. S. A1 - Saarimäki, L. A. A1 - Grafström, R. A1 - Kohonen, P. A1 - Nymark, P. A1 - Willighagen, E. A1 - Puzyn, T. A1 - Rybinska-Fryca, A. A1 - Lyubartsev, A. A1 - Jensen, K. A. A1 - Brandenburg, J. G. A1 - Lofts, S. A1 - Svendsen, C. A1 - Harrison, S. A1 - Maier, D. A1 - Tamm, K. A1 - Jänes, J. A1 - Sikk, L. A1 - Dusinska, M. A1 - Longhin, E. A1 - Rundén-Pran, E. A1 - Mariussen, E. A1 - El Yamani, N. A1 - Unger, Wolfgang A1 - Radnik, Jörg A1 - Tropsha, A. A1 - Cohen, Y. A1 - Lesczynski, J. A1 - Hendren, C. O. A1 - Wiesner, M. A1 - Winkler, D. A1 - Suzuki, N. A1 - Yoon, T. H. A1 - Choi, J.-S. A1 - Sanabria, N. A1 - Gulumian, M. A1 - Lynch, I. T1 - NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for in silico nanosafety assessment N2 - Nanotechnology has enabled the discovery of a multitude of novel materials exhibiting unique physicochemical (PChem) properties compared to their bulk analogues. These properties have led to a rapidly increasing range of commercial applications; this, however, may come at a cost, if an association to long-term health and environmental risks is discovered or even just perceived. Many nanomaterials (NMs) have not yet had their potential adverse biological effects fully assessed, due to costs and time constraints associated with the experimental assessment, frequently involving animals. Here, the available NM libraries are analyzed for their suitability for integration with novel nanoinformatics approaches and for the development of NM specific Integrated Approaches to Testing and Assessment (IATA) for human and environmental risk assessment, all within the NanoSolveIT cloud-platform. These established and well-characterized NM libraries (e.g. NanoMILE, NanoSolutions, NANoREG, NanoFASE, caLIBRAte, NanoTEST and the Nanomaterial Registry (>2000 NMs)) contain physicochemical characterization data as well as data for several relevant biological endpoints, assessed in part using harmonized Organisation for Economic Co-operation and Development (OECD) methods and test guidelines. Integration of such extensive NM information sources with the latest nanoinformatics methods will allow NanoSolveIT to model the relationships between NM structure (morphology), properties and their adverse effects and to predict the effects of other NMs for which less data is available. The project specifically addresses the needs of regulatory agencies and industry to effectively and rapidly evaluate the exposure, NM hazard and risk from nanomaterials and nano-enabled products, enabling implementation of computational ‘safe-by-design’ approaches to facilitate NM commercialization. KW - Nanoinformatics KW - Hazard assessment KW - (Quantitative) Structure-Active Relationships KW - Safe-by-design KW - Predictive modelling PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505952 DO - https://doi.org/10.1016/j.csbj.2020.02.023 VL - 18 SP - 583 EP - 602 PB - Elsevier B.V. AN - OPUS4-50595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Robens-Radermacher, Annika A1 - Unger, Jörg F. T1 - Efficient structural reliability analysis by using a PGD model in an adaptive importance sampling schema N2 - One of the most important goals in civil engineering is to guarantee the safety of the construction. Standards prescribe a required failure probability in the order of 10−4 to 10−6. Generally, it is not possible to compute the failure probability analytically. Therefore, many approximation methods have been developed to estimate the failure probability. Nevertheless, these methods still require a large number of evaluations of the investigated structure, usually finite element (FE) simulations, making full probabilistic design studies not feasible for relevant applications. The aim of this paper is to increase the efficiency of structural reliability analysis by means of reduced order models. The developed method paves the way for using full probabilistic approaches in industrial applications. In the proposed PGD reliability analysis, the solution of the structural computation is directly obtained from evaluating the PGD solution for a specific parameter set without computing a full FE simulation. Additionally, an adaptive importance sampling scheme is used to minimize the total number of required samples. The accuracy of the failure probability depends on the accuracy of the PGD model (mainly influenced on mesh discretization and mode truncation) as well as the number of samples in the sampling algorithm. Therefore, a general iterative PGD reliability procedure is developed to automatically verify the accuracy of the computed failure probability. It is based on a goal-oriented refinement of the PGD model around the adaptively approximated design point. The methodology is applied and evaluated for 1D and 2D examples. The computational savings compared to the method based on a FE model is shown and the influence of the accuracy of the PGD model on the failure probability is studied. KW - Reliability KW - Probability of failure KW - Adaptive importance sampling KW - Reduced order models KW - Proper Generalized Decomposition PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510345 DO - https://doi.org/10.1186/s40323-020-00168-z VL - 7 SP - Article number: 29 PB - SpringerOpen AN - OPUS4-51034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Anja A1 - Heinrich, Thomas A1 - Tougaard, S. A1 - Werner, W. S. M. A1 - Hronek, M. A1 - Kunz, Valentin A1 - Radnik, Jörg A1 - Stockmann, Jörg M. A1 - Hodoroaba, Vasile-Dan A1 - Benemann, Sigrid A1 - Nirmalananthan-Budau, Nithiya A1 - Geißler, Daniel A1 - Sparnacci, K. A1 - Unger, Wolfgang T1 - Determining the thickness and completeness of the shell of polymer core-shell nanoparticles by X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and transmission scanning electron microscopy N2 - Core–shell nanoparticles (CSNPs) have become indispensable in various industrial applications. However, their real internal structure usually deviates from an ideal core–shell structure. To control how the particles perform with regard to their specific applications, characterization techniques are required that can distinguish an ideal from a nonideal morphology. In this work, we investigated poly(tetrafluoroethylene)–poly(methyl methacrylate) (PTFE–PMMA) and poly(tetrafluoroethylene)–polystyrene (PTFE–PS) polymer CSNPs with a constant core diameter (45 nm) but varying shell thicknesses (4–50 nm). As confirmed by transmission scanning electron microscopy (T-SEM), the shell completely covers the core for the PTFE–PMMA nanoparticles, while the encapsulation of the core by the shell material is incomplete for the PTFE–PS nanoparticles. X-ray photoelectron spectroscopy (XPS) was applied to determine the shell thickness of the nanoparticles. The software SESSA v2.0 was used to analyze the intensities of the elastic peaks, and the QUASES software package was employed to evaluate the shape of the inelastic background in the XPS survey spectra. For the first time, nanoparticle shell thicknesses are presented, which are exclusively based on the analysis of the XPS inelastic background. Furthermore, principal component analysis (PCA)-assisted time-of-flight secondary-ion mass spectrometry (ToF-SIMS) of the PTFE–PS nanoparticle sample set revealed a systematic variation among the samples and, thus, confirmed the incomplete encapsulation of the core by the shell material. As opposed to that, no variation is observed in the PCA score plots of the PTFE–PMMA nanoparticle sample set. Consequently, the complete coverage of the core by the shell material is proved by ToF-SIMS with a certainty that cannot be achieved by XPS and T-SEM. KW - XPS KW - T-SEM KW - ToF-SIMS KW - Core-shell nanoparticles PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-499165 DO - https://doi.org/10.1021/acs.jpcc.9b09258 VL - 123 IS - 49 SP - 29765 EP - 29775 PB - American Chemical Society CY - Washington, DC AN - OPUS4-49916 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tu, Z. A1 - Donskyi, Ievgen A1 - Qiao, H. A1 - Zhu, Z. A1 - Unger, Wolfgang A1 - Hackenberger, C. P. R. A1 - Chen, W. A1 - Adeli, M. A1 - Haag, R. T1 - Graphene Oxide-Cyclic R10 Peptide Nuclear Translocation Nanoplatforms for the Surmounting of Multiple-Drug Resistance N2 - Multidrug resistance resulting from a variety of defensive pathways in Cancer has become a global concern with a considerable impact on the mortality associated with the failure of traditional chemotherapy. Therefore, further research and new therapies are required to overcome this challenge. In this work, a cyclic R10 peptide (cR10) is conjugated to polyglycerol-covered nanographene oxide to engineer a nanoplatform for the surmounting of multidrug resistance. The nuclear translocation of the nanoplatform, facilitated by cR10 peptide, and subsequently, a laser-triggered release of the loaded doxorubicin result in efficient anticancer activity confirmed by both in vitro and in vivo experiments. The synthesized nanoplatform with a combination of different features, including active nucleus-targeting, highloading capacity, controlled release of cargo, and photothermal property, provides a new strategy for circumventing multidrug resistant cancers. KW - Graphen Oxide KW - Nanoplatform KW - Cancer PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510061 DO - https://doi.org/10.1002/adfm.202000933 VL - 30 IS - 35 SP - 2000933 PB - Wiley VCH AN - OPUS4-51006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Otto, Peter A1 - de Lorenzis, L. A1 - Unger, Jörg F. T1 - Explicit dynamics in impact simulation using a NURBS contact interface N2 - In this paper, the impact problem and the subsequent wave Propagation are considered. For the contact discretization an intermediate non-uniform rational B-spline (NURBS) layer is added between the contacting finite element bodies, which allows a smooth contact formulation and efficient element-based integration. The impact event is ill-posed and requires a regularization to avoid propagating stress oscillations. A nonlinear mesh-dependent penalty regularization is used, where the stiffness of the penalty regularization increases upon mesh refinement. Explicit time integration methods are well suited for wave propagation problems, but are efficient only for diagonal mass matrices. Using a spectral element discretization in combination with a NURBS contact layer the bulk part of the mass matrix is diagonal. KW - Explicit dynamics KW - Impact simulation KW - Isogeometric analysis KW - mortar method KW - spectral elements PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506041 DO - https://doi.org/10.1002/nme.6264 VL - 121 IS - 6 SP - 1248 EP - 1267 PB - Wiley Online Libary AN - OPUS4-50604 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Otto, Peter A1 - Lorenzis, L. A1 - Unger, Jörg F. T1 - Explicit dynamics in impact simulation using a NURBS contact interface N2 - In this paper, the impact problem and the subsequent wave propagation are considered. For the contact discretization an intermediate NURBS layer is added between the contacting finite element bodies, which allows a smooth contact formulation and efficient element‐based integration. The impact event is ill‐posed and requires a regularization to avoid propagating stress oscillations. A nonlinear mesh dependent penalty regularization is used, where the stiffness of the penalty regularization increases upon mesh refinement. Explicit time integration methods are well suited for wave propagation problems, but are efficient only for diagonal mass matrices. Using a spectral element discretization and the coupled FE‐NURBS approach the bulk part of the mass matrix is diagonal. KW - Impact simulation KW - Explicit dynamics KW - Isogeometric analysis KW - Spectral elements KW - Mortar method PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-494947 DO - https://doi.org/10.1002/nme.6264 SP - 1 EP - 21 PB - Wiley Online Libary AN - OPUS4-49494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stockmann, Jörg M. A1 - Radnik, Jörg A1 - Bütefisch, S. A1 - Busch, I. A1 - Weimann, T. A1 - Passiu, C. A1 - Rossi, A. A1 - Unger, Wolfgang T1 - A new test specimen for the determination of the field of view of small-area X-ray photoelectron spectrometers N2 - Small-area/spot photoelectron spectroscopy (SAXPS) is a powerful tool for the investigation of small surface features like microstructures of electronic devices, sensors or other functional surfaces, and so forth. For evaluating the quality of such microstructures, it is often crucial to know whether a small signal in a spectrum is an unwanted contamination of the field of view (FoV), defined by the instrument settings, or it originated from outside. To address this issue, the d80/20 parameter of a line scan across a chemical edge is often used. However, the typical d80/20 parameter does not give information on contributions from the long tails of the X-ray beam intensity distribution or the electron-optical system as defined by apertures. In the VAMAS TWA2 A22 project “Applying planar, patterned, multi-metallic samples to assess the impact of analysis area in surface-chemical analysis,” new test specimen was developed and tested. The here presented testing material consists of a silicon wafer substrate with an Au-film and embedded Cr circular and square spots with decreasing dimensions from 200 μm down to 5 μm. The spot sizes are traceable to the length unit due to size measurements with a metrological SEM. For the evaluation of the FoV, we determined the Au4f intensities measured with the center of the FoV aligned with the center of the spot and normalized to the Au4f intensity determined on the Au-film. With this test specimen, it was possible to characterize, as an example, the FoV of a Kratos AXIS Ultra DLD XPS instrument. T2 - ECASIA 2019 CY - Dresden, Germany DA - 15.09.2019 KW - Field of view KW - Reference material KW - Selected area XPS KW - Small-area XPS KW - Small-spot XPS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509902 DO - https://doi.org/10.1002/sia.6831 SN - 1096-9918 VL - 52 IS - 12 SP - 890 EP - 894 PB - John Wiley & Sons Ltd AN - OPUS4-50990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahmadi, Samim A1 - Thummerer, G. A1 - Breitwieser, S. A1 - Mayr, G. A1 - Lecompagnon, Julien A1 - Burgholzer, P. A1 - Jung, P. A1 - Caire, G. A1 - Ziegler, Mathias T1 - Multi-dimensional reconstruction of internal defects in additively manufactured steel using photothermal super resolution combined with virtual wave based image processing N2 - We combine three different approaches to greatly enhance the defect reconstruction ability of active thermographic testing. As experimental approach, laser-based structured illumination is performed in a step-wise manner. As an intermediate signal processing step, the virtual wave concept is used in order to effectively convert the notoriously difficult to solve diffusion-based inverse problem into a somewhat milder wavebased inverse problem. As a final step, a compressed-sensing based optimization procedure is applied which efficiently solves the inverse problem by making advantage of the joint sparsity of multiple blind measurements. To evaluate our proposed processing technique, we investigate an additively manufactured stainless steel sample with eight internal defects. The concerted super resolution approach is compared to conventional thermographic reconstruction techniques and shows an at least four times better spatial resolution. KW - Active thermography KW - Additive manufacturing KW - Stainless steel KW - ADMM KW - Block regularization KW - Internal defects KW - Joint sparsity KW - Laser excitation KW - Multi-dimensional reconstruction KW - Photothermal super resolution KW - Virtual waves PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525330 DO - https://doi.org/10.1109/tii.2021.3054411 SN - 1551-3203 SN - 1941-0050 VL - 17 IS - 11 SP - 7368 EP - 7378 PB - IEEE CY - New York, NY AN - OPUS4-52533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Nowakowski, Susanna A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Hilgenberg, Kai T1 - Experimental Determination of the Emissivity of Powder Layers and Bulk Material in Laser Powder Bed Fusion Using Infrared Thermography and Thermocouples N2 - Recording the temperature distribution of the layer under construction during laser powder bed fusion (L-PBF) is of utmost interest for a deep process understanding as well as for quality assurance and in situ monitoring means. While having a notable number of thermal monitoring approaches in additive manufacturing (AM), attempts at temperature calibration and emissivity determination are relatively rare. This study aims for the experimental temperature adjustment of an off-axis infrared (IR) thermography setup used for in situ thermal data acquisition in L-PBF processes. The temperature adjustment was conducted by means of the so-called contact method using thermocouples at two different surface conditions and two different materials: AISI 316L L-PBF bulk surface, AISI 316L powder surface, and IN718 powder surface. The apparent emissivity values for the particular setup were determined. For the first time, also corrected, closer to real emissivity values of the bulk or powder surface condition are published. In the temperature region from approximately 150 °C to 580 °C, the corrected emissivity was determined in a range from 0.2 to 0.25 for a 316L L-PBF bulk surface, in a range from 0.37 to 0.45 for 316L powder layer, and in a range from 0.37 to 0.4 for IN718 powder layer. KW - Emisssivity KW - Laser Powder Bed Fusion (L-PBF) KW - Selective Laser Melting (SLM) KW - Additive Manufacturing (AM) KW - Process monitoring KW - Infrared thermography PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516148 DO - https://doi.org/10.3390/met10111546 VL - 10 IS - 11 SP - 1546 PB - MDPI CY - Basel, Schweiz AN - OPUS4-51614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Oster, Simon A1 - Maierhofer, Christiane A1 - Bruno, Giovanni ED - Czujko, T. ED - Benedetti, M. T1 - Can Potential Defects in LPBF Be Healed from the Laser Exposure of Subsequent Layers? A Quantitative Study N2 - Additive manufacturing (AM) of metals and in particular laser powder bed fusion (LPBF) enables a degree of freedom in design unparalleled by conventional subtractive methods. To ensure that the designed precision is matched by the produced LPBF parts, a full understanding of the interaction between the laser and the feedstock powder is needed. It has been shown that the laser also melts subjacent layers of material underneath. This effect plays a key role when designing small cavities or overhanging structures, because, in these cases, the material underneath is feed-stock powder. In this study, we quantify the extension of the melt pool during laser illumination of powder layers and the defect spatial distribution in a cylindrical specimen. During the LPBF process, several layers were intentionally not exposed to the laser beam at various locations, while the build process was monitored by thermography and optical tomography. The cylinder was finally scanned by X-ray computed tomography (XCT). To correlate the positions of the unmolten layers in the part, a staircase was manufactured around the cylinder for easier registration. The results show that healing among layers occurs if a scan strategy is applied, where the orientation of the hatches is changed for each subsequent layer. They also show that small pores and surface roughness of solidified material below a thick layer of unmolten material (>200 µm) serve as seeding points for larger voids. The orientation of the first two layers fully exposed after a thick layer of unmolten powder shapes the orientation of these voids, created by a lack of fusion. KW - Computed tomography KW - Laser Powder Bed Fusion KW - In situ monitoring KW - infrared Thermography KW - Optical Tomography KW - Additive manufacturing KW - AISI 316L PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528778 DO - https://doi.org/10.3390/met11071012 VL - 11 IS - 7 SP - 1012 PB - MDPI CY - Basel AN - OPUS4-52877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altenburg, Simon A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Maierhofer, Christiane T1 - In-situ monitoring of a laser metal deposition (LMD) process: comparison of MWIR, SWIR and high-speed NIR thermography N2 - Additive manufacturing offers a range of novel applications. However, the manufacturing process is complex and the production of almost defect-free parts with high reliability and durability is still a challenge. Thermography is a valuable tool for process surveillance, especially in metal additive manufacturing processes. The high process temperatures allow one to use cameras usually operating in the visible spectral range. Here, we compare the results of measurements during the manufacturing process of a commercial laser metal deposition setup using a mid wavelength infrared camera with those from a short wavelength infrared camera and those from a visual spectrum high-speed camera with band pass filter in the near infrared range. KW - Additive Manufacturing KW - Process monitoring KW - Thermography KW - LMD KW - Metal KW - MWIR KW - SWIR KW - NIR PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516318 DO - https://doi.org/10.1080/17686733.2020.1829889 VL - 19 IS - 2 SP - 97 EP - 114 PB - Taylor & Francis Group CY - London, UK AN - OPUS4-51631 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahmadi, Samim A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Burgholzer, P. A1 - Jung, P. A1 - Caire, G. A1 - Ziegler, Mathias T1 - Laser excited super resolution thermal imaging for nondestructive inspection of internal defects N2 - A photothermal super resolution technique is proposed for an improved inspection of internal defects. To evaluate the potential of the laser-based thermographic technique, an additively manufactured stainless steel specimen with closely spaced internal cavities is used. Four different experimental configurations in transmission, reflection, stepwise and continuous scanning are investigated. The applied image post-processing method is based on compressed sensing and makes use of the block sparsity from multiple measurement events. This concerted approach of experimental measurement strategy and numerical optimization enables the resolution of internal defects and outperforms conventional thermographic inspection techniques. KW - Super Resolution KW - Laser Thermography KW - Non Destructive Testing KW - Comressed Sensing KW - Inverse Problem KW - Thermography PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519016 DO - https://doi.org/10.1038/s41598-020-77979-y VL - 10 IS - 1 SP - 22357 PB - Springer Nature AN - OPUS4-51901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rothbart, Nick A1 - Maierhofer, Christiane A1 - Goldammer, M. A1 - Hohlstein, F. A1 - Koch, J. A1 - Kryukov, I. A1 - Mahler, G. A1 - Stotter, B. A1 - Oswald-Tranta, B. A1 - Sengebusch, M. T1 - A round robin test of flash thermography of CFRP and metal structures N2 - Within the scope of a DIN INS project, a flash thermography round robin test that evaluates reliability, comparability and efficiency of different testing situations is organized. The results give information about the detectability of defects e.g. by their size and depth, the evaluation method and by the materials used. Besides, the influence of equipment and parameters used by the participants on the results were analysed. All of the quantitative results as well as the feedback given by the participants will be presented in a DIN committee in order to contribute to a flash thermography standard. T2 - 7th International Symposium on NDT in Aerospace CY - Bremen, Germany DA - 16.11.2015 KW - Flash thermography KW - Round robin test KW - Metal KW - Flat bottom holes KW - SNR PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-351070 UR - https://www.ndt.net/?id=18921 SN - 1435-4934 VL - 21 IS - 4 SP - 1 EP - 8 PB - NDT.net CY - Kirchwald AN - OPUS4-35107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stroh, Julia A1 - Ali, Naveed Zafar A1 - Maierhofer, Christiane A1 - Emmerling, Franziska T1 - Ettringite via Mechanochemistry: A Green and Rapid Approach for Industrial Application N2 - Here, we report on a first mechanochemical synthesis of ettringite, an important cement hydrate phase. The mineral compound ettringite ([Ca3Al(OH)6]2·(SO4)3·26H2O) occurs rarely in nature, but is common for cement-based materials. Ettringite has wide technical application in the ceramic and paper industry. However, its typical wet-chemical synthesis is cumbersome and produces waste water and CO2 emissions. Here, we investigate the first mechanochemical synthesis of ettringite for developing an easy and sustainable alternative for industrial application. The mechanosynthesis was monitored in situ by coupled synchrotron X-ray diffraction (XRD) and infrared thermography (IRT). The consumption of the reactants and the formation of the reaction product were monitored with time-resolved XRD. IRT showed the temperature increase based on the exothermic reaction. The reaction conversion was significantly improved changing the strategy of the mechanosynthesis from a one- to a two-step process. The latter included neat pregrinding of solid reactants followed by a delayed addition of the stoichiometric amount of water. Thus, an increase of reaction conversion from 34 to 94% of ettringite could be achieved. KW - XRD KW - Mechanochemistry KW - Ettringite KW - In situ PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479016 DO - https://doi.org/10.1021/acsomega.9b00560 SN - 2470-1343 VL - 4 IS - 4 SP - 7734 EP - 7737 PB - ACS Publications CY - Washington, DC AN - OPUS4-47901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - da Costa, P. F. G. M. A1 - Merízio, L. G. A1 - Wolff, N. A1 - Terraschke, H. A1 - de Camargo, Andrea Simone Stucchi T1 - Real-time monitoring of CdTe quantum dots growth in aqueous solution N2 - Quantum dots (QDs) are remarkable semiconductor nanoparticles, whose optical properties are strongly size-dependent. Therefore, the real-time monitoring of crystal growth pathway during synthesis gives an excellent opportunity to a smart design of the QDs luminescence. In this work, we present a new approach for monitoring the formation of QDs in aqueous solution up to 90 °C, through in situ luminescence analysis, using CdTe as a model system. This technique allows a detailed examination of the evolution of their light emission. In contrast to in situ absorbance analysis, the in situ luminescence measurements in reflection geometry are particularly advantageous once they are not hindered by the concentration increase of the colloidal suspension. The synthesized particles were additionally characterized using X-ray diffraction analysis, transition electron microscopy, UV-Vis absorption and infrared spectroscopy. The infrared spectra showed that 3-mercaptopropionic acid (MPA)-based thiols are covalently bound on the surface of QDs and microscopy revealed the formation of CdS. Setting a total of 3 h of reaction time, for instance, the QDs synthesized at 70, 80 and 90 °C exhibit emission maxima centered at 550, 600 and 655 nm. The in situ monitoring approach opens doors for a more precise achievement of the desired emission wavelength of QDs. KW - CdTe quantum dots KW - In situ synthesis KW - Real time growth control PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-603596 DO - https://doi.org/10.1038/s41598-024-57810-8 SN - 2045-2322 VL - 14 IS - 1 SP - 1 EP - 11 PB - Springer Science and Business Media LLC AN - OPUS4-60359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Tina A1 - Breese, Philipp Peter A1 - Metz, Christian A1 - Altenburg, Simon T1 - In-situ monitoring for PBF-LB/M processes: Does multispectral optical tomography add value in recognizing process deviations? N2 - Laser powder bed fusion of metallic components (PBF-LB/M) is gaining acceptance in industry. However, the high costs and lengthy qualification processes required for printed components create the need for more effective in-situ monitoring and testing methods. This article proposes multispectral Optical Tomography (OT) as a new approach for monitoring the PBF-LB/M process. Compared to other methods, OT is a low-cost process monitoring method that uses long-time exposure imaging to observe the build process. However, it lacks time resolution compared to expensive thermographic sensor systems. Monochromatic OT (1C-OT) is already commercially available and observes the building process layer-wise using a single wavelength window in the NIR range. Multispectral OT (nC-OT) utilizes a similar setup but can measure multiple wavelength ranges per location simultaneously. By comparing the classical 1C-OT and nC-OT approaches, this article examines the advantages of nC-OT (two channel OT and RGB-OT) in reducing the false positive rate for process deviations and approximating maximum temperatures for a better comparison between different build processes and materials. This could ultimately reduce costs and time for part qualification. The main goal of this contribution is to assess the advantages of nC-OT compared to 1C-OT for in-situ process monitoring of PBF-LB/M. T2 - Nolamp 2023 CY - Turku, Finland DA - 22.08.2023 KW - Thermography KW - Process Monitoring KW - Additive manufacturing KW - BPF-LB/M KW - In-situ PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-592498 DO - https://doi.org/10.1088/1757-899X/1296/1/012008 VL - 1296 SP - 1 EP - 11 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-59249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dopffel, N. A1 - An Stepec, Biwen Annie A1 - de Rezende, J. A1 - Machado de Sousa, D. A1 - Koerdt, Andrea T1 - Microbiology of Underground Hydrogen Storage N2 - Climate change is becoming one of the greatest challenges facing our society, particularly due to the continued use of fossil fuels. The steadily increasing demand for energy and the continuously growing world population will further intensify these challenges. The development of renewable energies is therefore of central importance. The 2020 EU Energy Roadmap aims to increase the share of renewable energies (gross energy consumption) to 55% by 2050. Hydrogen (H2) has the highest potential to become the primary renewable energy source. It is envisioned that by 2050 up to 24% of the total energy demand of Europe is to be ensured by H2. However, a decisive disadvantage of the climate friendly alternatives is the massive containment demand, which needs to be highly secure, cost efficient and easily extractable. Underground geological formations (UGF) represent a seemingly optimal alternative to meet the rapidly increasing storage demand. In this context, many studies are currently underway to determine the feasibility and risks of UGF. However, little or no consideration is being given to microbiology. Therefore, in this Research Topic we will focus on achieving a greater understanding of the impact microorganisms exert on UGF, with a particular emphasis on interdisciplinary studies. As many subsurface microbial communities can use H2 as an electron donor, production of seemingly undesirable metabolic byproducts, such as hydrogen sulfide, methane, and acids, are also to be expected. However, the rate of the H2 conversion by the microorganisms, how their metabolic activities impact the UGF on a short-term and long-term scale, the extent of damages microorganisms exert on the infrastructure, or potential use of microorganisms to enhance UGF are just a few questions that require urgent research to assess the role of microorganisms in this new anthropogenic use of the subsurface environment. These and many questions can be addressed in this article collection. In particular, understanding microbial community changes and activity rates will help assess operational and environmental risks, develop mitigation strategies and provide new insights on life under extreme conditions (i.e., pressure, salinity). In this Research Topic, the editorial team particularly welcomes Original Research, Hypothesis and Theory, Method, and Review manuscripts that deal with the latest advances in microbiology in formations that are planned or currently prepared for hydrogen storage, from both fundamental and practical points of view. The ultimate objective is to promote a deeper understanding into the sustainability of UGF and generate interdisciplinary research involving microbiologists, reservoir engineers, geologists, chemists, physicists. The topics of interest include, but are not limited to: • Microbial diversity in different underground hydrogen storage sites or formations currently being considered for hydrogen storage • Mechanism and impact of microbial growth under high H2 pressure • Potential role of microorganisms in the short-term and long-term storage of hydrogen • Potential influences of microorganisms on the hydrogen storage infrastructure systems, e.g., microbiologically influenced corrosion, biofilm growth • Hydrogen-solid-microorganism interactions, including the influence of microbial growth on UGF geological parameters • Mechanism and modelling of microbial impact on hydrogen storage UGF relevant for this Research Topic include porous media, salt caverns, deep aquifers, hard rock caverns and depleted oil/gas reservoirs. KW - Biodeterioration and biodegradation KW - Geology KW - Anaerobic pathways KW - Microbial simulation, KW - Hydrogen storage PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579042 DO - https://doi.org/10.3389/fenrg.2023.1242619 SN - 2296-598X VL - 11 SP - 1 EP - 3 PB - Frontiers CY - Frontiers in Energy Research AN - OPUS4-57904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abel, Andreas A1 - Rosalie, Julian M. A1 - Reinsch, Stefan A1 - Zapala, Pawel A1 - Michels, Heiner A1 - Skrotzki, Birgit T1 - Influence of Mo and B additions in intermetallic near-Fe3Al alloys on microstructure and mechanical properties N2 - Iron aluminides, already reported in the late 19th century, did not cease to attract the interest of scientists and engineers ever since. Besides good oxidation resistance, low density and resource availability, potentials for hightemperature strengths that compete with high-alloy steels were unlocked by low alloy contents. Still, research on alloy design continues, as alloying usually comes at the price of brittleness in low-temperature regimes. A potential candidate is the quinary Fe–Al–Mo–Ti–B system which is strengthened by solid solution and eutectic borides. It was shown to have good strength and outstanding creep resistance under compressive loading up to elevated temperatures. Although the individual effect of alloy additions is well understood in iron aluminides, little is known about the combined effects of alloying concentrations on microstructure, phase stability and mechanical properties. Therefore a systematic study of two Ti-doped near-Fe3Al alloys with varying contents of Mo (2–4 at.%) and B (0.5–1 at.%) was conducted. In total eight different alloys were fabricated by investment casting into ceramic shell molds. Alloys were characterized and compared by grain size, phase transitions, microstructure evolution as well as elemental compositions and volume fractions of phases. For mechanical characterization, macrohardness and microhardness tests as well as tensile tests at ambient and high tempera tures were conducted. Independent of alloy additions, alloys with 24–25 at.% Al exhibit superior proof strength due to a higher matrix hardness. Decreasing B content generally decreases strength by lower secondary phase fractions which contribute via particle hardening. Reducing Mo content decreases both the solute concentration in the matrix and secondary phase fractions. Surprisingly, strength is similar or even superior to alloys with higher Mo content. Strength relations are discussed with a focus on solid-solution hardening theory and other competing strengthening mechanisms. KW - Materials Chemistry KW - Metals and Alloys KW - Mechanical Engineering KW - Mechanics of Materials KW - General Chemistry PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-585284 DO - https://doi.org/10.1016/j.intermet.2023.108074 VL - 163 SP - 1 EP - 11 PB - Elsevier Ltd. AN - OPUS4-58528 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jovičević-Klug, Matic A1 - Souza Filho, Isnaldi R. A1 - Springer, Hauke A1 - Adam, Christian A1 - Raabe, Dierk T1 - Green steel from red mud through climate-neutral hydrogen plasma reduction N2 - AbstractRed mud is the waste of bauxite refinement into alumina, the feedstock for aluminium production1. With about 180 million tonnes produced per year1, red mud has amassed to one of the largest environmentally hazardous waste products, with the staggering amount of 4 billion tonnes accumulated on a global scale1. Here we present how this red mud can be turned into valuable and sustainable feedstock for ironmaking using fossil-free hydrogen-plasma-based reduction, thus mitigating a part of the steel-related carbon dioxide emissions by making it available for the production of several hundred million tonnes of green steel. The process proceeds through rapid liquid-state reduction, chemical partitioning, as well as density-driven and viscosity-driven separation between metal and oxides. We show the underlying chemical reactions, pH-neutralization processes and phase transformations during this surprisingly simple and fast reduction method. The approach establishes a sustainable toxic-waste treatment from aluminium production through using red mud as feedstock to mitigate greenhouse gas emissions from steelmaking. KW - Multidisciplinary PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594424 DO - https://doi.org/10.1038/s41586-023-06901-z SN - 0028-0836 VL - 625 IS - 7996 SP - 703 EP - 709 PB - Springer Science and Business Media LLC AN - OPUS4-59442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Machado Ferreira de Araujo, F. A1 - Duarte-Ruiz, D. A1 - Saßnick, H.-D. A1 - Gentzmann, Marie C. A1 - Huthwelker, T. A1 - Cocchi, C. T1 - Electronic Structure and Core Spectroscopy of Scandium Fluoride Polymorphs N2 - Microscopic knowledge of the structural, energetic, and electronic properties of scandium fluoride is still incomplete despite the relevance of this material as an intermediate for the manufacturing of Al−Sc alloys. In a work based on first-principles calculations and X-ray spectroscopy, we assess the stability and electronic structure of six computationally predicted ScF3 polymorphs, two of which correspond to experimentally resolved single-crystal phases. In the theoretical analysis based on density functional theory (DFT), we identify similarities among the polymorphs based on their formation energies, chargedensity distribution, and electronic properties (band gaps and density of states). We find striking analogies between the results obtained for the ow- and high-temperature phases of the material, indirectly confirming that the transition occurring between them mainly consists of a rigid rotation of the lattice. With this knowledge, we examine the X-ray absorption spectra from the Sc and F K-edge contrasting firstprinciples results obtained from the solution of the Bethe−Salpeter equation on top of all-electron DFT with high-energy-resolution fluorescence detection measurements. Analysis of the computational results sheds light on the electronic origin of the absorption maxima and provides information on the prominent excitonic effects that characterize all spectra. A comparison with measurements confirms that the sample is mainly composed of the high- and low-temperature polymorphs of ScF3. However, some fine details in the experimental results suggest that the probed powder sample may contain defects and/or residual traces of metastable polymorphs. KW - Scandium KW - X-ray spectroscopy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570727 DO - https://doi.org/10.1021/acs.inorgchem.2c04357 SN - 0020-1669 VL - 62 IS - 10 SP - 4238 EP - 4247 PB - ACS Publications CY - Washington DC AN - OPUS4-57072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dombinov, V. A1 - Herzel, Hannes A1 - Meiller, M. A1 - Müller, F. A1 - Willbold, S. A1 - Zang, J. W. A1 - da Fonseca-Zang, W. A. A1 - Adam, Christian A1 - Klose, H. A1 - Poorter, H. A1 - Jablonowski, N. D. A1 - Schrey, S. D. T1 - Sugarcane bagasse ash as fertilizer for soybeans: Effects of added residues on ash composition, mineralogy, phosphorus extractability and plant availability N2 - Sugarcane bagasse is commonly combusted to generate energy. Unfortunately, recycling strategies rarely consider the resulting ash as a potential fertilizer. To evaluate this recycling strategy for a sustainable circular economy, we characterized bagasse ash as a fertilizer and measured the effects of co-gasification and co-combustion of bagasse with either chicken manure or sewage sludge: on the phosphorus (P) mass fraction, P-extractability, and mineral P phases. Furthermore, we investigated the ashes as fertilizer for soybeans under greenhouse conditions. All methods in combination are reliable indicators helping to assess and predict P availability from ashes to soybeans. The fertilizer efficiency of pure bagasse ash increased with the ash amount supplied to the substrate. Nevertheless, it was not as effective as fertilization with triple-superphosphate and K2SO4, which we attributed to lower P availability. Co-gasification and co-combustion increased the P mass fraction in all bagasse-based ashes, but its extractability and availability to soybeans increased only when co-processed with chicken manure, because it enabled the formation of readily available Ca-alkali phosphates. Therefore, we recommend co-combusting biomass with alkali-rich residues to increase the availability of P from the ash to plants. KW - Combustion and gasification KW - Phosphate extractability and availability KW - X-ray diffraction (XRD) PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567632 DO - https://doi.org/10.3389/fpls.2022.1041924 SN - 1664-462X VL - 13 SP - 1 EP - 13 PB - Frontiers Media CY - Lausanne AN - OPUS4-56763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkler, Nicolas P. A1 - Kotlyar, O. A1 - Schaffernicht, E. A1 - Matsukura, H. A1 - Ishida, H. A1 - Neumann, Patrick P. A1 - Lilienthal, A. J. T1 - Super-resolution for Gas Distribution Mapping N2 - Gas Distribution Mapping (GDM) is a valuable tool for monitoring the distribution of gases in a wide range of applications, including environmental monitoring, emergency response, and industrial safety. While GDM is actively researched in the scope of gas-sensitive mobile robots (Mobile Robot Olfaction), there is a potential for broader applications utilizing sensor networks. This study aims to address the lack of deep learning approaches in GDM and explore their potential for improved mapping of gas distributions. In this paper, we introduce Gas Distribution Decoder (GDD), a learning-based GDM method. GDD is a deep neural network for spatial interpolation between sparsely distributed sensor measurements that was trained on an extensive data set of realistic-shaped synthetic gas plumes based on actual airflow measurements. As access to ground truth representations of gas distributions remains a challenge in GDM research, we make our data sets, along with our models, publicly available. We test and compare GDD with state-of-the-art models on synthetic and real-world data. Our findings demonstrate that GDD significantly outperforms existing models, demonstrating a 35% improvement in accuracy on synthetic data when measured using the Root Mean Squared Error over the entire distribution map. Notably, GDD appears to have superior capabilities in reconstructing the edges and characteristic shapes of gas plumes compared to traditional models. These potentials offer new possibilities for more accurate and efficient environmental monitoring, and we hope to inspire other researchers to explore learning-based GDM. KW - Gas distribution mapping KW - Spatial interpolation KW - Sensor networks KW - Deep learning PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607786 DO - https://doi.org/10.1016/j.snb.2024.136267 SN - 0925-4005 VL - 419 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-60778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Davison, Nathan A1 - Hemingway, Jack M. A1 - Wills, Corinne A1 - Stolar, Tomislav A1 - Waddell, Paul G. A1 - Dixon, Casey M. A1 - Barron, Luke A1 - Dawson, James A. A1 - Lu, Erli T1 - Mechanochemical Synthesis of a Sodium Anion Complex [Na+(2,2,2-cryptand)Na] and Studies of Its Reactivity: Two-Electron and One-Electron Reductions N2 - Group 1 metal molecular chemistry is dominated by a +1 oxidation state, while a 0 oxidation state is widespread in the metals. A more exotic, yet still available, oxidation state of group 1 metal is −1, i.e., alkalide. Reported as early as the 1970s, the alkalides appear in every modern inorganic chemistry textbook as an iconic chemical curiosity, yet their reactivity remains unexplored. This is due to their synthetic hurdles. In this work, we report the first facile synthesis of the archetypical alkalide complex, [Na+(2,2,2-cryptand)Na–], which allows us to unveil a versatile reactivity profile of this once exotic species. KW - Mechanochemistry PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608632 DO - https://doi.org/10.1021/acs.inorgchem.4c02914 VL - 63 IS - 32 SP - 15247 EP - 15258 PB - American Chemical Society (ACS) AN - OPUS4-60863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schilling, Markus A1 - Marschall, Niklas A1 - Niebergall, Ute A1 - Wachtendorf, Volker A1 - Böhning, Martin T1 - Characteristics of environmental stress cracking of PE-HD induced by biodiesel and diesel fuels N2 - In the context of the increasing effect of carbon dioxide emissions on the global climate biodiesel produced from renewable sources has emerged as a promising contender replacing fossil fuels, especially in long-range transport vehicles, using existing engines and infrastructure. High-density polyethylene is one of the prevailing materials for pipe and container applications for storage and transport of such fuels, both, from fossil and renewable resources. The contact with the respective fuels raises questions concerning material compatibility as biodiesel exhibits significant differences compared to conventional diesel fuel affecting its sorption and plasticization behavior in polyethylene. In this study, its behavior with respect to environmental stress cracking, considered one of the most frequent damage mechanisms leading to failure of polymer parts and packaging, was evaluated using the well-established Full Notch Creep Test. This approach allows for a detailed fracture surface analysis using imaging techniques, such as optical and laser scanning microscopy, as well as infrared spectroscopy. Comparing the environmental stress cracking behavior in standard surfactant solutions with that in biodiesel and diesel, respective crack propagation rates, showing different levels of acceleration, were determined and details of the underlying mechanisms could be revealed. Furthermore, the specific infrared absorption of the biodiesel’s ester functionality allows its semi-quantitative determination on the fracture surface of the tested specimens after failure. Thus, a preferred uptake of sorptive fluids in the fracture zone due to local morphological changes of the polyethylene could be directly evidenced by infrared spectroscopy. KW - Environmental stress cracking (ESC) KW - Full notch creep test (FNCT) KW - Confocal laser scanning microscopy (LSM) KW - Biodiesel KW - Diesel PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608591 DO - https://doi.org/10.1016/j.polymertesting.2024.108547 VL - 138 SP - 1 EP - 16 PB - Elsevier Ltd. AN - OPUS4-60859 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhuang, Y. A1 - Spahr, S. A1 - Lutze, H.V. A1 - Reith, C.J. A1 - Hagemann, N. A1 - Paul, Andrea A1 - Haderlein, S.B. T1 - Persulfate activation by biochar and iron: Effect of chloride on formation of reactive species and transformation of N,N-diethyl-m-toluamide (DEET) N2 - Fenton-like processes using persulfate for oxidative water treatment and contaminant removal can be enhanced by the addition of redox-active biochar, which accelerates the reduction of Fe(III) to Fe(II) and increases the yield of reactive species that react with organic contaminants. However, available data on the formation of non-radical or radical species in the biochar/Fe(III)/persulfate system are inconsistent, which limits the evaluation of treatment efficiency and applicability in different water matrices. Based on competition kinetics calculations, we employed different scavengers and probe compounds to systematically evaluate the effect of chloride in presence of organic matter on the formation of major reactive species in the biochar/Fe(III)/persulfate system for the transformation of the model compound N,N‑diethyl-m-toluamide (DEET) at pH 2.5. We show that the transformation of methyl phenyl sulfoxide (PMSO) to methyl phenyl sulfone (PMSO2) cannot serve as a reliable indicator for Fe(IV), as previously suggested, because sulfate radicals also induce PMSO2 formation. Although the formation of Fe(IV) cannot be completely excluded, sulfate radicals were identified as the major reactive species in the biochar/Fe(III)/persulfate system in pure water. In the presence of dissolved organic matter, low chloride concentrations (0.1 mM) shifted the major reactive species likely to hydroxyl radicals. Higher chloride concentrations (1 mM), as present in a mining-impacted acidic surface water, resulted in the formation of another reactive species, possibly Cl2•−, and efficient DEET degradation. To tailor the application of this oxidation process, the water matrix must be considered as a decisive factor for reactive species formation and contaminant removal. KW - Water treatment KW - Organic contaminants KW - Fenton-like systems KW - Radicals KW - ESR PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608677 DO - https://doi.org/10.1016/j.watres.2024.122267 SN - 0043-1354 VL - 265 SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-60867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grohmann, Maria A1 - Niederleithinger, Ernst A1 - Büttner, Christoph A1 - Buske, Stefan T1 - Application of iterative elastic reverse time migration to shear horizontal ultrasonic echo data obtained at a concrete step specimen N2 - The ultrasonic echo technique is broadly applied in non‐destructive testing (NDT) of concrete structures involving tasks such as measuring thickness, determining geometry and locating built‐in elements. To address the challenge of enhancing ultrasonic imaging for complex concrete constructions, we adapted a seismic imaging algorithm – reverse time migration (RTM) – for NDT in civil engineering. Unlike the traditionally applied synthetic aperture focusing technique (SAFT), RTM takes into account the full wavefield including primary and reflected arrivals as well as multiples. This capability enables RTM to effectively handle all wave phenomena, unlimited by changes in velocity and reflector inclinations. This paper concentrates on applying and evaluating a two‐dimensional elastic RTM algorithm that specifically addresses horizontally polarized shear (SH) waves only, as these are predominantly used in ultrasonic NDT of concrete structures. The elastic SH RTM algorithm was deployed for imaging real ultrasonic echo SH‐wave data obtained at a concrete specimen exhibiting a complex back wall geometry and containing four tendon ducts. As these features are frequently encountered in practical NDT scenarios, their precise imaging holds significant importance. By applying the elastic SH RTM algorithm, we successfully reproduced nearly all reflectors within the concrete specimen. In particular, we were capable of accurately reconstructing all vertically oriented reflectors as well as the circular cross sections of three tendon ducts, which was not achievable with traditional SAFT imaging. These findings demonstrate that elastic SH RTM holds the ability to considerably improve the imaging of complex concrete geometries, marking a crucial advancement for accurate, high‐quality ultrasonic NDT in civil engineering. KW - Engineering KW - Finite-Difference Time Domain KW - Non-Destructive KW - Seismic KW - Migration KW - Ultrasonic-Echo Technique PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608744 DO - https://doi.org/10.1002/nsg.12318 SN - 1569-4445 VL - 2024 SP - 1 EP - 22 PB - Wiley AN - OPUS4-60874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Russo, Francesco F. A1 - Nowatzky, Yannek A1 - Jaeger, Carsten A1 - Parr, Maria K. A1 - Benner, Phillipp A1 - Muth, Thilo A1 - Lisec, Jan T1 - Machine learning methods for compound annotation in non‐targeted mass spectrometry—A brief overview of fingerprinting, in silico fragmentation and de novo methods N2 - Non‐targeted screenings (NTS) are essential tools in different fields, such as forensics, health and environmental sciences. NTSs often employ mass spectrometry (MS) methods due to their high throughput and sensitivity in comparison to, for example, nuclear magnetic resonance–based methods. As the identification of mass spectral signals, called annotation, is labour intensive, it has been used for developing supporting tools based on machine learning (ML). However, both the diversity of mass spectral signals and the sheer quantity of different ML tools developed for compound annotation present a challenge for researchers in maintaining a comprehensive overview of the field.In this work, we illustrate which ML‐based methods are available for compound annotation in non‐targeted MS experiments and provide a nuanced comparison of the ML models used in MS data analysis, unravelling their unique features and performance metrics. Through this overview we support researchers to judiciously apply these tools in their daily research. This review also offers a detailed exploration of methods and datasets to show gaps in current methods, and promising target areas, offering a starting point for developers intending to improve existing methodologies. KW - Mass Spectrometry KW - Spectra annotation KW - Machine learning PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608732 DO - https://doi.org/10.1002/rcm.9876 VL - 38 IS - 20 SP - 1 EP - 15 PB - Wiley AN - OPUS4-60873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Kolmangadi, Mohamed A. A1 - Böhning, Martin A1 - Frick, B. A1 - Apple, M. A1 - Mole, R. A. A1 - De Souza, N. R. A1 - Zorn, R. A1 - Schönhals, Andreas T1 - Confined Segmental Diffusion in Nanophase Separated Janus Polynorbornenes as Investigated by Quasielastic Neutron Scattering N2 - A combination of neutron time-of-flight and neutron backscattering spectroscopy was used to investigate the molecular dynamics of Janus polynorbornenes (Janus poly(tricyclononenes)) on a microscopic level. These Janus polynorbornenes, denoted as PTCNSiOR, have a semirigid backbone with −Si(OR)3 side groups attached to it. R represents the length of the alkyl side chain. Here side chain lengths of R = 3 (propyl) and R = 8 (octyl) were considered. It is worth mentioning that these polymers have some potential as active layers in gas separation membranes, especially for the separation of higher hydrocarbons. The combination of time-of-flight and backscattering will ensure a reasonably broad time window for analysis where the incoherent intermediate scattering function SInc(q,t) is considered. Previously, it was shown by X-ray investigations that the system undergoes a nanophase separation into alkyl side chain-rich domains surrounded by a backbone-rich matrix. For PTCNSiOPr (R = 3), the alkyl side-chain-rich domains are truly isolated in the backbone-rich matrix, whereas for PTCNSiOOc (R = 8) these domains percolate through the matrix. Further, it was also previously shown that the alkyl side-chain-rich domains undergo a glass transition. The advantage of neutron scattering experiments discussed here is that besides temporal also spatial information is obtained which will allow conclusions to be drawn about the type of molecular fluctuations. At the lowest measured temperature, the decay in Sinc(q,t) is due to the methyl group rotation. The methyl group dynamics is analyzed in terms of a modified jump-diffusion in a 3-fold potential and yields to a reasonable fraction of hydrogens which contribute to the methyl group rotation. At higher temperatures, the decay in SInc(q,t) is due to both the methyl group rotation and the segmental dynamics in the alkyl side-chain-rich domains. The segmental diffusion is modeled by a sublinear diffusion. For the analysis of the scattering function SInc(q,t) of PTCNSiOPr an elastic scattering due to the immobilized backbone-rich matrix must be taken into account. The analysis reveals that the segmental dynamics is confined by the finite size of alkyl chain-rich domains and that it is intrinsically heterogeneous in nature. Both effects are more pronounced for PTCNSiOPr in comparison to those of PTCNSiOOc. KW - Polynorbornene KW - Quasielastic Neutron Scattering PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608712 DO - https://doi.org/10.1021/acs.macromol.4c01045 SP - 1 EP - 14 PB - ACS Publications AN - OPUS4-60871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Flierl, Lukas A1 - Rienitz, Olaf A1 - Vogl, Jochen A1 - Pramann, Axel T1 - An advancement of the gravimetric isotope mixture method rendering the knowledge of the spike purity superfluous N2 - The gravimetric isotope mixture method is the primary method to determine absolute isotope ratios. This method, however, depends on the existence of suitable spike materials and knowledge of their purities. Determining the purity of the spikes can be tedious and labour-intensive. In this publication, an advancement of the gravimetric isotope mixture method, rendering the determination of the purity of the spike materials unnecessary, is presented. The advancement combines mass spectrometry and ion chromatography leading to an approach being independent of the purity of the spike materials. In the manuscript the mathematical background and the basic idea of the novel approach are described using a two-isotope system like copper or lithium. KW - Isotope amount ratios KW - Metrology KW - Mass spectrometry KW - Ion chromatography PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608726 DO - https://doi.org/10.1007/s00216-024-05465-9 SP - 1 EP - 9 PB - Springer Science and Business Media LLC AN - OPUS4-60872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Dao, Radek A1 - Komarov, Pavel A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - Towards 3D determination of the surface roughness of core–shell microparticles as a routine quality control procedure by scanning electron microscopy N2 - AbstractRecently, we have developed an algorithm to quantitatively evaluate the roughness of spherical microparticles using scanning electron microscopy (SEM) images. The algorithm calculates the root-mean-squared profile roughness (RMS-RQ) of a single particle by analyzing the particle’s boundary. The information extracted from a single SEM image yields however only two-dimensional (2D) profile roughness data from the horizontal plane of a particle. The present study offers a practical procedure and the necessary software tools to gain quasi three-dimensional (3D) information from 2D particle contours recorded at different particle inclinations by tilting the sample (stage). This new approach was tested on a set of polystyrene core-iron oxide shell-silica shell particles as few micrometer-sized beads with different (tailored) surface roughness, providing the proof of principle that validates the applicability of the proposed method. SEM images of these particles were analyzed by the latest version of the developed algorithm, which allows to determine the analysis of particles in terms of roughness both within a batch and across the batches as a routine quality control procedure. A separate set of particles has been analyzed by atomic force microscopy (AFM) as a powerful complementary surface analysis technique integrated into SEM, and the roughness results have been compared. KW - Core–shell particles KW - Image analysis KW - Roughness KW - Scanning electron microscopy KW - Atomic force microscopy KW - Tilting KW - Batch analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607590 DO - https://doi.org/10.1038/s41598-024-68797-7 SN - 2045-2322 VL - 14 IS - 1 SP - 1 EP - 13 PB - Springer Science and Business Media LLC AN - OPUS4-60759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kosár, László A1 - Szabová, Zuzana A1 - Kuracina, Richard A1 - Spitzer, Stefan H. A1 - Mynarz, Miroslav A1 - Filipi, Bohdan T1 - Study of the Safety Characteristics of Different Types of Pepper Powder (Capsicum L.) N2 - This research was aimed at comparing the fire characteristics of different types of pepper in the context of explosion prevention. The following characteristics were studied: explosion pressure Pmax and Kst at selected concentrations, ignition temperature of the deposited dust layer from the hot surface, and minimum ignition energy. The comparison of the chemical properties of the used types of pepper was performed using TG/DSC. The results of the measurements suggest that different types of peppers exhibit different explosion characteristics. Each sample reached the maximum value of the explosion pressure and rate of pressure rise at different concentrations. The volume of the explosion chamber used also influenced the explosion characteristics. It is a consequence of the fact that the explosion characteristics strongly depend on the mechanism of action of a particular igniter. The minimum effect on the safety characteristics was observed when measuring the minimum ignition energy and the minimum ignition temperature of the dust layer from the hot surface. The results of the measurements suggest that different types of peppers exhibit different explosion characteristics. This information should then be considered in explosion prevention. KW - Dust explosions KW - Pepper samples KW - Explosion characteristics KW - Explosion protection PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605965 DO - https://doi.org/10.3390/fire7070229 VL - 7 IS - 7 SP - 1 EP - 14 PB - MDPI AG AN - OPUS4-60596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Eileen A. A1 - Brandhorst, Antonia K. M. A1 - Gorbushina, Anna A. A1 - Schumacher, Julia T1 - The Tet‑on system for controllable gene expression in the rock‑inhabiting black fungus Knufia petricola N2 - Knufia petricola is a black fungus that colonizes sun-exposed surfaces as extreme and oligotrophic environments. As ecologically important heterotrophs and biofilm-formers on human-made surfaces, black fungi form one of the most resistant groups of biodeteriorating organisms. Due to its moderate growth rate in axenic culture and available protocols for its transformation and CRISPR/Cas9-mediated genome editing, K. petricola is used for studying the morpho-physiological adaptations shared by extremophilic and extremotolerant black fungi. In this study, the bacteria-derived tetracycline (TET)-dependent promoter (Tet-on) system was implemented to enable controllable gene expression in K. petricola. The functionality i.e., the dose-dependent inducibility of TET-regulated constructs was investigated by using GFP fluorescence, pigment synthesis(melanin and carotenoids) and restored uracil prototrophy as reporters. The newly generated cloning vectors containing the Tet-on construct, and the validated sites in the K. petricola genome for color-selectable or neutral insertion of expression constructs complete the reverse genetics toolbox. One or multiple genes can be expressed on demand from different genomic loci or from a single construct by using 2A self-cleaving peptides, e.g., for localizing proteins and protein complexes in the K. petricola cell or for using K. petricola as host for the expression of heterologous genes. KW - Microcolonial fungi KW - Inducible promoter KW - Bimolecular fluorescence complementation KW - 2A peptide KW - CRISPR/ Cas9-mediated genome editing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607672 DO - https://doi.org/10.1007/s00792-024-01354-2 VL - 28 IS - 38 SP - 1 EP - 13 PB - Springer Nature AN - OPUS4-60767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Nina A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Influence of microalloying on precipitation behavior and notch impact toughness of welded high‑strength structural steels N2 - Microalloying elements such as Nb and Ti are essential to increase the strength of quenched and tempered high-strength low alloy (HSLA) structural steels with nominal yield strength ≥ 690 MPa and their welded joints. Standards such as EN 10025–6 only specify limits or ranges for chemical composition, which leads to variations in specific compositions between steel manufacturers. These standards do not address the mechanical properties of the material, and even small variations in alloy content can significantly affect these properties. This makes it difficult to predict the weldability and integrity of welded joints, with potential problems such as softening or excessive hardening of the heat-affected zone (HAZ). To understand these metallurgical effects, previous studies have investigated different microalloying routes with varying Ti and Nb contents using test alloys. The high-strength quenched and tempered fine-grained structural steel S690QL is the basic grade regarding chemical composition and heat treatment. To evaluate weldability, three-layer welds were made using high-performance MAG welding. HAZ formation was investigated, and critical microstructural areas were identified, focusing on phase transformations during cooling and metallurgical precipitation behavior. Isothermal thermodynamic calculations for different precipitations were also carried out. Mechanical properties, especially Charpy notch impact toughness, were evaluated to understand the influence of different microalloys on the microstructure of the HAZ and mechanical properties. KW - High-strength structural steel KW - Gas metal arc welding KW - HAZ-softening KW - Notch impact toughness KW - Microalloying influences KW - Thermodynamic simulation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608548 DO - https://doi.org/10.1007/s40194-024-01827-0 SP - 1 EP - 13 PB - Springer AN - OPUS4-60854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Haubrich, Jan A1 - Requena, Guillermo A1 - Madia, Mauro T1 - Investigation on the fatigue strength of AlSi10Mg fabricated by PBF-LB/M and subjected to low temperature heat treatments N2 - This work provides an investigation of the influence of low temperature heat treatments on the fatigue behavior of a PBF-LB AlSi10Mg alloy. Fatigue specimens are produced in form of round bars on a build platform preheated at 200 ◦C. The specimens have been tested in three different conditions: as-built, and after heat treatments at 265 ◦C for 1 h and 300 ◦C for 2 h. Prior to the fatigue testing, the defect distribution is analyzed by means of micro computed tomography. Subsequently, the peak over threshold method is successfully applied to provide a prediction of the size of killer defect. The defect population was of gas porosity type. No clear improvement of the fatigue performance is observed after the heat treatments. The fatigue strength predicted using fracture mechanics-based approaches is in good agreement with the experimental data. Among the studied approaches, short crack models provided the most conservative predictions. KW - PBF-LB/M AlSi10Mg KW - Fatigue strength KW - Defects KW - Kitagawa-Takahashi Diagram KW - Short Crack Models PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607071 DO - https://doi.org/10.1016/j.matdes.2024.113170 SN - 0264-1275 VL - 244 SP - 1 EP - 12 PB - Elsevier Ltd. AN - OPUS4-60707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ulrich, A. S. A1 - Kasatikov, S. A1 - König, T. A1 - Fantin, Andrea A1 - Margraf, J. T. A1 - Galetz, M. C. T1 - Decreased Metal Dusting Resistance of Ni-Cu Alloys by Fe and Mn Additions N2 - Ni-Cu alloys are promising for application at temperatures between 400–900 °C and reducing atmospheres with high C-contents. Typically, under such conditions, metallic materials in contact with the C-rich atmosphere are degraded by a mechanism called metal dusting (MD). Ni-Cu-alloys do not form protective oxide scales, but their resistance is attributed to Cu, which catalytically inhibits the C-deposition on the surface. Adding other alloying elements, such as Mn or Fe, was found to enhance the MD attack of Ni-Cu alloys again. In this study, the effect of the Mn and Fe is divided into two affected areas: the surface and the bulk. The MD attack on binary Ni-Cu alloys, model alloys with Fe and Mn additions, and commercial Monel Alloy 400 is experimentally demonstrated. The surface electronic structure causing the adsorption and dissociation of C-containing molecules is investigated for model alloys. Analytical methods such as scanning electron microscopy combined with energy-dispersive X-ray spectroscopy, electron probe microanalysis combined with wavelength-dispersive X-ray spectroscopy, X-ray diffraction analysis, and near-edge X-ray absorption fine structure measurements were used. The results are correlated to CALPHAD calculations and atomistic simulations combining density functional theory calculations and machine learning. It is found that the Cu content plays a significant role in the surface reaction. The effect of Mn and Fe is mainly attributed to oxide formation. A mechanism explaining the enhanced attack by adding both Fe and Mn is proposed. KW - Metal Dusting KW - XANES PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608226 DO - https://doi.org/10.1007/s11085-024-10263-w SN - 2731-8397 SP - 1 EP - 14 PB - Springer Science and Business Media LLC AN - OPUS4-60822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dobosy, Péter A1 - Nguyen, Hoang Thi Phuong A1 - Záray, Gyula A1 - Streli, Christina A1 - Ingerle, Dieter A1 - Ziegler, Philipp A1 - Radtke, Martin A1 - Buzanich, Ana Guilherme A1 - Endrédi, Anett A1 - Fodor, Ferenc T1 - Effect of iodine species on biofortification of iodine in cabbage plants cultivated in hydroponic cultures N2 - Iodine is an essential trace element in the human diet because it is involved in the synthesis of thyroid hormones. Iodine deficiency affects over 2.2 billion people worldwide, making it a significant challenge to find plant-based sources of iodine that meet the recommended daily intake of this trace element. In this study, cabbage plants were cultivated in a hydroponic system containing iodine at concentrations ranging from 0.01 to 1.0 mg/L in the form of potassium iodide or potassium iodate. During the experiments, plant physiological parameters, biomass production, and concentration changes of iodine and selected microelements in different plant parts were investigated. In addition, the oxidation state of the accumulated iodine in root samples was determined. Results showed that iodine addition had no effect on photosynthetic efficiency and chlorophyll content. Iodide treatment did not considerably stimulate biomass production but iodate treatment increased it at concentrations less than 0.5 mg/L. Increasing iodine concentrations in the nutrient solutions increased iodine content in all plant parts; however, the iodide treatment was 2–7 times more efficient than the iodate treatment. It was concluded, that iodide addition was more favourable on the target element accumulation, however, it should be highlighted that application of this chemical form in nutrient solution decreased the concetrations of selected micoelement concentration comparing with the control plants. It was established that iodate was reduced to iodide during its uptake in cabbage roots, which means that independently from the oxidation number of iodine (+ 5, − 1) applied in the nutrient solutions, the reduced form of target element was transported to the aerial and edible tissues. KW - BAMline KW - XANES KW - Synchrotron KW - Lodine PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608330 DO - https://doi.org/10.1038/s41598-024-66575-z VL - 14 IS - 1 SP - 1 EP - 12 PB - Springer Science and Business Media LLC AN - OPUS4-60833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, Junhao A1 - Klahn, Marcus A1 - Tian, Xinxin A1 - Bartling, Stephan A1 - Zimina, Anna A1 - Radtke, Martin A1 - Rockstroh, Nils A1 - Naliwajko, Pawel A1 - Steinfeldt, Norbert A1 - Peppel, Tim A1 - Grunwaldt, Jan‐Dierk A1 - Logsdail, Andrew J. A1 - Jiao, Haijun A1 - Strunk, Jennifer T1 - Fundamental Structural and Electronic Understanding of Palladium Catalysts on Nitride and Oxide Supports N2 - The nature of the support can fundamentally affect the function of a heterogeneous catalyst. For the novel type of isolated metal atom catalysts, sometimes referred to as single‐atom catalysts, systematic correlations are still rare. Here, we report a general finding that Pd on nitride supports (non‐metal and metal nitride) features a higher oxidation state compared to that on oxide supports (non‐metal and metal oxide). Through thorough oxidation state investigations by X‐ray absorption spectroscopy (XAS), X‐ray photoelectron spectroscopy (XPS), CO‐DRIFTS, and density functional theory (DFT) coupled with Bader charge analysis, it is found that Pd atoms prefer to interact with surface hydroxyl group to form a Pd(OH)x species on oxide supports, while on nitride supports, Pd atoms incorporate into the surface structure in the form of Pd−N bonds. Moreover, a correlation was built between the formal oxidation state and computational Bader charge, based on the periodic trend in electronegativity. KW - BAmline KW - XANES KW - Catalyst PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608341 DO - https://doi.org/10.1002/anie.202400174 SN - 1433-7851 VL - 63 IS - 20 SP - 1 EP - 9 PB - Wiley AN - OPUS4-60834 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Senges, Gene A1 - Buzanich, Ana Guilherme A1 - Lindič, Tilen A1 - Gully, Tyler A. A1 - Winter, Marlon A1 - Radtke, Martin A1 - Röder, Bettina A1 - Steinhauer, Simon A1 - Paulus, Beate A1 - Emmerling, Franziska A1 - Riedel, Sebastian T1 - Unravelling highly oxidized nickel centers in the anodic black film formed during the Simons process by in situ X-ray absorption near edge structure spectroscopy N2 - The electrofluorination after Simons has been used for the last century to produce everyday life materials. An in situ XANES investigation of the controversially debated black film apparent in the Simons process revealed high-valent nickel centers. KW - Synchrotron KW - BAMline KW - XANES PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608366 DO - https://doi.org/10.1039/d3sc06081k SN - 2041-6520 VL - 15 IS - 12 SP - 4504 EP - 4509 PB - Royal Society of Chemistry (RSC) AN - OPUS4-60836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Theiler, Géraldine A1 - Cano Murillo, Natalia A1 - Hausberger, Andreas T1 - Effect of hydrogen pressure on the fretting behavior of rubber materials N2 - Safety and reliability are the major challenges to face for the development and acceptance of hydrogen technology. It is therefore crucial to deeply study material compatibility, in particular for tribological components that are directly in contact with hydrogen. Some of the most critical parts are sealing materials that need increased safety requirements. In this study, the fretting behavior of several elastomer materials were evaluated against 316L stainless steel in an air and hydrogen environment up to 10 MPa. Several grades of cross-linked hydrogenated acrylonitrile butadiene (HNBR), acrylonitrile butadiene (NBR) and ethylene propylene diene monomer rubbers (EPDM) were investigated. Furthermore, aging experiments were conducted for 7 days under static contions in 100 MPa of hydrogen followed by rapid gas decompression. Fretting tests revealed that the wear of these compounds is significantly affected by the hydrogen environment compared to air, especially with NBR grades. After the aging experiment, the friction response of the HBNR grades is characterized by increased adhesion due to elastic deformation, leading to partial slip. KW - Fretting wear KW - Rubbers KW - Hydrogen KW - High-pressure PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608462 DO - https://doi.org/10.3390/lubricants12070233 VL - 12 IS - 7 SP - 1 EP - 17 PB - MDPI AN - OPUS4-60846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaeß, Carsten A1 - Müller, Ralf T1 - Viscous crack healing in soda–lime–magnesium–silicate–ZrO2 glass matrix composites N2 - AbstractThe present study investigates the influence of the crystal volume content on viscous crack healing in glass ceramic glass sealants. To ensure constant microstructure during healing, soda–lime–magnesium silicate glass matrix composites with varied volume fractions of ZrO2 filler particles were used. Crack healing was studied on radial cracks induced by Vickers indentation, which were stepwise annealed to monitor the healing progress by confocal laser scanning microscopy. Confirming previous studies, healing of radial cracks in pure glass was found delayed by global flow phenomena like crack widening and crack edge and tip rounding to minimize the sample surface. With increasing ZrO2 filler content, these global flow phenomena were progressively inhibited whereas local flow phenomena like sharp crack tip healing could still occur. As a result, crack healing was even accelerated by filler particles up to a maximum filler content of 17 vol% whereas crack healing was fully suppressed only at 33 vol% filler content. KW - Crack healing KW - Glass matrix composite KW - Solid oxide fuell cell KW - Vickers identation KW - Viscosity PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607860 DO - https://doi.org/10.1111/jace.20002 SN - 0002-7820 SP - 1 EP - 12 PB - Wiley AN - OPUS4-60786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Riechers, Birte A1 - Das, Amlan A1 - Dufresne, Eric A1 - Derlet, Peter M. A1 - Maaß, Robert T1 - Intermittent cluster dynamics and temporal fractional diffusion in a bulk metallic glass N2 - Glassy solids evolve towards lower-energy structural states by physical aging. This can be characterized by structural relaxation times, the assessment of which is essential for understanding the glass’ time-dependent property changes. Conducted over short times, a continuous increase of relaxation times with time is seen, suggesting a time-dependent dissipative transport mechanism. By focusing on micro-structural rearrangements at the atomic-scale, we demonstrate the emergence of sub-diffusive anomalous transport and therefore temporal fractional diffusion in a metallic glass, which we track via coherent x-ray scattering conducted over more than 300,000 s. At the longest probed decorrelation times, a transition from classical stretched exponential to a power-law behavior occurs, which in concert with atomistic simulations reveals collective and intermittent atomic motion. Our observations give a physical basis for classical stretched exponential relaxation behavior, uncover a new power-law governed collective transport regime for metallic glasses at long and practically relevant time-scales, and demonstrate a rich and highly non-monotonous aging response in a glassy solid, thereby challenging the common framework of homogeneous aging and atomic scale diffusion. KW - Glassy solids KW - Fractional diffusion KW - Coherent x-ray scattering PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608015 DO - https://doi.org/10.1038/s41467-024-50758-3 VL - 15 IS - 1 SP - 1 EP - 9 PB - Springer Science and Business Media LLC AN - OPUS4-60801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Preuß, Bianca A1 - Lindner, Thomas A1 - Hanisch, Niclas A1 - Giese, Marcel A1 - Schröpfer, Dirk A1 - Richter, Tim A1 - Rhode, Michael A1 - Lampke, Thomas T1 - Surface Functionalization of Novel Work‐Hardening Multi‐Principal‐Element Alloys by Ultrasonic Assisted Milling N2 - The development of multi‐principal‐element alloys (MPEAs) with unique characteristics such as high work hardening capacity similar to well‐known alloy systems like Hadfield steel X120Mn12 (ASTM A128) is a promising approach. Hence, by exploiting the core effects of MPEAs, the application range of conventional alloy systems can be extended. In the present study, work‐hardening MPEAs based on the equimolar composition CoFeNi are developed. Mn and C are alloyed in the same ratio as for X120Mn12. The production route consists of cast manufacturing by an electric arc furnace and surface functionalization via mechanical finishing using ultrasonic‐assisted milling (USAM) to initiate work hardening. The microstructure evolution, the hardness as well as the resulting oscillating wear resistance are detected. A pronounced lattice strain and grain refinement due to the plastic deformation during the USAM is recorded for the MPEA CoFeNi‐Mn12C1.2. Consequently, hardness increases by ≈380 HV0.025 in combination with a higher oscillating wear resistance compared to the X120Mn12. This shows the promising approach for developing work‐hardening alloys based on novel alloy concepts such as MPEAs. KW - Electric arc furnace KW - Finish milling KW - High manganese steels KW - Multi-principal element alloy KW - Ultrasonic-assisted milling KW - Work hardening PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608008 DO - https://doi.org/10.1002/adem.202400339 SN - 1438-1656 SP - 1 EP - 12 PB - Wiley VHC-Verlag AN - OPUS4-60800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klewe, Tim A1 - Strangfeld, Christoph A1 - Ritzer, Tobias A1 - Kruschwitz, Sabine T1 - Classification of Practical Floor Moisture Damage Using GPR - Limits and Opportunities N2 - Machine learning in non-destructive testing (NDT) offers significant potential for efficient daily data analysis and uncovering previously unknown relationships in persistent problems. However, its successful application heavily depends on the availability of a diverse and well-labeled training dataset, which is often lacking, raising questions about the transferability of trained algorithms to new datasets. To examine this issue closely, the authors applied classifiers trained with laboratory Ground Penetrating Radar (GPR) data to categorize on-site moisture damage in layered building floors. The investigations were conducted at five different locations in Germany. For reference, cores were taken at each measurement point and labeled as (i) dry, (ii) with insulation damage, or (iii) with screed damage. Compared to the accuracies of 84 % to 90 % within the laboratory training data (504 B-Scans), the classifiers achieved a lower overall accuracy of 53 % for on-site data (72 B-Scans). This discrepancy is mainly attributable to a significantly higher dynamic of all signal features extracted from on-site measurements compared to laboratory training data. Nevertheless, this study highlights the promising sensitivity of GPR for identifying individual damage cases. In particular the results showing insulation damage, which cannot be detected by any other non-destructive method, revealed characteristic patterns. The accurate interpretation of such results still depends on trained personnel, whereby fully automated approaches would require a larger and diverse on-site data set. Until then, the findings of this work contribute to a more reliable analysis of moisture damage in building floors using GPR and offer practical insights into applying machine learning to non-destructive testing for civil engineering (NDT-CE). KW - GPR KW - Material moisture KW - Building floor KW - Machine Learning PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607932 DO - https://doi.org/10.1007/s10921-024-01111-7 SN - 0195-9298 VL - 43 IS - 3 SP - 1 EP - 16 PB - Springer Science and Business Media LLC AN - OPUS4-60793 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Held, Mathias A1 - Bulling, Jannis A1 - Lugovtsova, Yevgeniya A1 - Prager, Jens T1 - Determination of isotropic elastic constants from dispersion images based on ultrasonic guided waves by using neural networks N2 - This article presents a method to use the dispersive behavior of ultrasonic guided waves and neural networks to determine the isotropic elastic constants of plate-like structures through dispersion images. Therefore, two different architectures are compared: one using convolutions and transfer learning based on the EfficientNetB7 and a Vision Transformer-like approach. To accomplish this, simulated and measured dispersion images are generated, where the first is applied to design, train, and validate and the second to test the neural networks. During the training of the neural networks, distinct data augmentation layers are employed to introduce artifacts appearing in measurement data into the simulated data. The neural networks can extrapolate from simulated to measured data using these layers. The trained neural networks are assessed using dispersion images from seven known material samples. Multiple variations of the measured dispersion images are tested to guarantee the prediction stability. The study demonstrates that neural networks can learn to predict the isotropic elastic constants from measured dispersion images using only simulated dispersion images for training and validation without needing an initial guess or manual feature extraction, independent of the measurement setup. Furthermore, the suitability of the different architectures for generating information from dispersion images in general is discussed. KW - Ultrasonic guided waves KW - Dispersion KW - Elastic constants KW - Neural networks KW - Image processing KW - Vision transformer PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607090 DO - https://doi.org/10.1016/j.ultras.2024.107403 SN - 0041-624X VL - 143 SP - 1 EP - 48 PB - Elsevier B.V. AN - OPUS4-60709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Omar, Hassan A1 - Ahamadi, Shayan A1 - Hülagü, Deniz A1 - Hidde, Gundula A1 - Hertwig, Andreas A1 - Szymoniak, Paulina A1 - Schönhals, Andreas T1 - Investigations of the adsorbed layer of polysulfone: Influence of the thickness of the adsorbed layer on the glass transition of thin films N2 - This work studies the influence of the adsorbed layer on the glass transition of thin films of polysulfone. Therefore, the growth kinetics of the irreversibly adsorbed layer of polysulfone on silicon substrates was first investigated using the solvent leaching approach, and the thickness of the remaining layer was measured with atomic force microscopy. Annealing conditions before leaching were varied in temperature and time (0–336 h). The growth kinetics showed three distinct regions: a pre-growth step where it was assumed that phenyl rings align parallel to the substrate at the shortest annealing times, a linear growth region, and a crossover from linear to logarithmic growth observed at higher temperatures for the longest annealing times. No signs of desorption were observed, pointing to the formation of a strongly adsorbed layer. Second, the glass transition of thin polysulfone films was studied in dependence on the film thickness using spectroscopic ellipsometry. Three annealing conditions were compared: two with only a tightly bound layer formed in the linear growth regime and one with both tightly bound and loosely adsorbed layers formed in the logarithmic growth regime. The onset thickness and increase in the glass transition temperature increases with annealing time and temperature. These differences were attributed to the distinct conformations of the formed adsorbed layers. KW - Glass transition KW - Adsorbed Layer PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607701 DO - https://doi.org/10.1063/5.0223415 SN - 0021-9606 VL - 161 IS - 5 SP - 1 EP - 12 PB - AIP Publishing AN - OPUS4-60770 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Kai A1 - Mirabella, Francesca A1 - Knigge, Xenia A1 - Mezera, Marek A1 - Weise, Matthias A1 - Sahre, Mario A1 - Wasmuth, Karsten A1 - Voss, Heike A1 - Hertwig, Andreas A1 - Krüger, Jörg A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Bonse, Jörn T1 - Chemical and topographical changes upon sub-100-nm laser-induced periodic surface structure formation on titanium alloy: the influence of laser pulse repetition rate and number of over-scans N2 - Titanium and its alloys are known to allow the straightforward laser-based manufacturing of ordered surface nanostructures, so-called high spatial frequency laser-induced periodic surface structures (HSFL). These structures exhibit sub-100 nm spatial periods – far below the optical diffraction limit. The resulting surface functionalities are usually enabled by both, topographic and chemical alterations of the nanostructured surfaces. For exploring these effects, multi-method characterizations were performed here for HSFL processed on Ti–6Al–4V alloy upon irradiation with near-infrared ps-laser pulses (1030 nm, ≈1 ps pulse duration, 1–400 kHz) under different laser scan processing conditions, i.e., by systematically varying the pulse repetition frequency and the number of laser irradiation passes. The sample characterization involved morphological and topographical investigations by scanning electron microscopy (SEM), atomic force microscopy (AFM), tactile stylus profilometry, as well as near-surface chemical analyses hard X-ray photoelectron spectroscopy (HAXPES) and depth-profiling time-of-flight secondary ion mass spectrometry (ToF-SIMS). This provides a quantification of the laser ablation depth, the geometrical HSFL characteristics and enables new insights into the depth extent and the nature of the non-ablative laser-induced near-surface oxidation accompanying these nanostructures. This allows to answer the questions how the processing of HSFL can be industrially scaled up, and whether the latter is limited by heat-accumulation effects. T2 - 2023 E-MRS Spring Meeting, Symposium L "Making light matter: lasers in material sciences and photonics" CY - Strasbourg, France DA - 29.05.2023 KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser pulses KW - Laser processing KW - Hard X-ray photoelectron spectroscopy (HAXPES) KW - Time-of-flight secondary ion mass spectrometry (ToF-SIMS) PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589902 UR - https://onlinelibrary.wiley.com/doi/full/10.1002/pssa.202300719 DO - https://doi.org/10.1002/pssa.202300719 SN - 1862-6319 VL - 221 IS - 15 SP - 1 EP - 12 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-58990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hupp, Vitus A1 - Schartel, Bernhard A1 - Flothmeier, K. A1 - Hartwig, A. T1 - Pyrolysis and flammability of phosphorus based flame retardant pressure sensitive adhesives and adhesive tapes N2 - Pressure-sensitive adhesive tapes are used in a variety of applications such as construction, aircrafts, railway vehicles, and ships, where flame retardancy is essential. Especially in these applications, phosphorus-based flame retardants are often chosen over halogenated ones due to their advantages in terms of toxicity. Although there are pressure-sensitive adhesives with phosphorus flame retardants available on the market, their flame-retardant modes of action and mechanisms are not entirely understood. This research article provides fundamental pyrolysis research of three phosphorus-based flame retardants that exhibit different mechanisms in a pressuresensitive adhesive matrix. The flame-retardants modes of action and mechanisms of a 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) derivate, an aryl phosphate, and a self-synthesized, covalently bonded DOPO derivate (copolymerized) are investigated. The blended DOPO derivate is volatilized at rather low temperatures while the covalently bonded DOPO derivate decomposes together with the polymer matrix at the same temperature. Both DOPO derivates release PO radicals which are known for their flame inhibition. The aryl phosphate decomposes at higher temperatures, releases small amounts of aryl phosphates into the gas phase, and acts predominantly the condensed phase. The aryl phosphate acts as precursor for phosphoric acid and improves the charring of the pressure sensitive adhesive matrix. All flame retardants enhance the flammability of the adhesives depending on their individual mode of action while the covalently bonded flame retardant additionally improves the mechanical properties at elevated temperatures making it a promising future technology for pressure-sensitive adhesives. KW - Pyrolysis of flame retardant KW - Pyrolysis gas chromatography KW - Mass spectrometry KW - Phosphorus flame retardant KW - Decomposition mechanism KW - Flame retardant pressure sensitive adhesives KW - Flame retardancy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607192 DO - https://doi.org/10.1016/j.jaap.2024.106658 SN - 0165-2370 SN - 1873-250X VL - 181 SP - 1 EP - 31 PB - Elsevier B.V. AN - OPUS4-60719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen A1 - Meyer, A. T1 - About alcohol-initiated polymerization of glycolide and separate crystallization of cyclic and linear polyglycolides N2 - Alcohol-initiated polymerizations of glycolide (GL) catalyzed by tin(II) 2-ethylhexanoate (SnOct2) were carried out in bulk with variation of GA/In ratio, temperature and time. Due to a rather strong competition of cyclization polyglycolide (PGA) free of cycles were never obtained. When the cyclic catalysts 2,2-dibutal-2-stanna − 1,3-dithiolane (DSTL) or 2-stanna 1,3-dioxo-4,5,6,7 bibenzepane (SnBiph) were used in combination with 1,4-butanediol the influence of cyclization was even stronger. Furthermore, the degrees of polymerization were higher than the GA/alcohol ratio due to rapid polycondensation in the solid state. At 160 °C or below, the matrixassisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra indicated separate crystallization of low molar mass cyclic and linear PGAs from the same reaction mixture (also observed for poly(L-lactide)s). KW - MALDI TOF MS KW - Polyglycolide KW - Ring opening polymerization KW - Cyclization KW - Crystallization PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607282 DO - https://doi.org/10.1016/j.polymer.2024.127440 SN - 0032-3861 VL - 309 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-60728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Giv, Ali Nemati A1 - Asante, Bright A1 - Yan, Libo A1 - Kasal, Bohumil T1 - Shear performance and durability of adhesively bonded spruce wood-concrete composite joints: Effects of indoor and outdoor environmental conditions, mechanical load, and their coupled effect N2 - A long-term study was conducted on double-lap spruce wood-concrete joints to investigate their shear strength and stiffness over a 12-month period. These joints were manufactured using both wet and dry processes, each incorporating two adhesive types for bonding the wood to the concrete: a brittle epoxy and a ductile polyurethane (PUR). The experimental design exposed the joints to three specific long-term environments: (1) outdoor exposure, (2) indoor conditions with applied load, and (3) outdoor conditions with applied load. The wood concrete joints exposed to outdoor conditions were subjected to destructive shear testing at intervals of 0 (serving as the reference sample), 2, 4, 6, and 12 months, respectively. For joints subjected to both indoor and outdoor conditions with shear loading, the shear deformation of joints was monitored continuously over the 12 months before performing the destructive tests. A gradual reduction in the shear stiffness and strength of dry joints (produced using the dry bond method) exposed to outdoor conditions was observed over a 12-month period, primarily due to bond failure at the concrete-adhesive interface. The wet joints exhibited no degradation in shear stiffness and strength across long-term conditions over the same period. The bond failure observed in dry joints was predominantly associated with stresses arising from dimensional changes in the wood. No degradation was found in the cross-linking density of the adhesive or in the concrete’s compressive stiffness and strength. KW - Adhesively bonded joints KW - Long-term study KW - Ductile PUR KW - Brittle epoxy KW - Outdoor condition KW - Mechanical load KW - Indoor condition PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608878 DO - https://doi.org/10.1016/j.conbuildmat.2024.136905 VL - 436 SP - 1 EP - 22 PB - Elsevier BV AN - OPUS4-60887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peter, Elisa K. A1 - Jaeger, Carsten A1 - Lisec, Jan A1 - Peters, R. Sven A1 - Mourot, Rey A1 - Rossel, Pamela E. A1 - Tranter, Martyn A1 - Anesio, Alexandre M. A1 - Benning, Liane G. T1 - Endometabolic profiling of pigmented glacier ice algae: the impact of sample processing N2 - Introduction Glacier ice algae, mainly Ancylonema alaskanum and Ancylonema nordenskiöldi, bloom on Greenland Ice Sheet bare ice surfaces. They significantly decrease surface albedo due to their purple-brown pigmentation, thus increasing melt. Little is known about their metabolic adaptation and factors controlling algal growth dynamics and pigment formation. A challenge in obtaining such data is the necessity of melting samples, which delays preservation and introduces bias to metabolomic analysis. There is a need to evaluate the physiological response of algae to melting and establish consistent sample processing strategies for metabolomics of ice microbial communities. Objectives To address the impact of sample melting procedure on metabolic characterization and establish a processing and analytical workflow for endometabolic profiling of glacier ice algae. Methods We employed untargeted, high-resolution mass spectrometry and tested the effect of sample melt temperature (10, 15, 20 °C) and processing delay (up to 49 h) on the metabolome and lipidome, and complemented this approach with cell counts (FlowCam), photophysiological analysis (PAM) and diversity characterization. Results and Conclusion We putatively identified 804 metabolites, with glycerolipids, glycerophospholipids and fatty acyls being the most prominent superclasses ( 50% of identified metabolites). Among the polar metabolome, carbohydrates and amino acid-derivatives were the most abundant. We show that 8% of the metabolome is affected by melt duration, with a pronounced decrease in betaine membrane lipids and pigment precursors, and an increase in phospholipids. Controlled fast melting at 10 °C resulted in the highest consistency, and is our recommendation for future supraglacial metabolomics studies. KW - Metabolic profiling KW - Mass Spectrometry KW - Ice algae PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607921 DO - https://doi.org/10.1007/s11306-024-02147-6 VL - 20 IS - 5 SP - 1 EP - 15 PB - Springer Science and Business Media LLC AN - OPUS4-60792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sänger, Johanna A1 - König, N.F. A1 - De Marzi, A. A1 - Zocca, Andrea A1 - Franchin, G. A1 - Bermejo, R. A1 - Colombo, P. A1 - Günster, Jens T1 - Linear volumetric additive manufacturing of zirconia from a transparent photopolymerizable ceramic slurry via Xolography N2 - Advanced ceramics printed with photon-based additive manufacturing deals with anisotropic mechanical properties from the layer-by-layer manufacturing. Motivated by the success in using highly filled transparent slurries containing nanoparticles for powder-based two-photon-polymerization (2PP) for advanced ceramic printing, this works approach is the transfer to Xolography, a volumetric additive manufacturing technology based on linear two-photon excitation and without recoating steps. This paper reports the results of a preliminary investigation optimizing the photocurable slurry to the requirements of Xolography in terms of transparency, over a significantly larger mean free path, compared to 2PP. A feedstock filled with 70 % weight fraction of ceramic particles (∼30 vol%) exhibiting an exceptionally high degree of transparency in the relevant wavelength range of 400–800 nm was prepared from 5 nm zirconia nanoparticles. The high transparency of the photocurable slurry is attributed to the near-monomodal particle size distribution of the zirconia nanoparticles used. KW - Additive manufacturing KW - Xolography KW - Ceramic PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608908 DO - https://doi.org/10.1016/j.oceram.2024.100655 VL - 19 SP - 1 EP - 9 PB - Elsevier BV AN - OPUS4-60890 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghata, Anupama A1 - Bernges, Tim A1 - Maus, Oliver A1 - Wankmiller, Björn A1 - Naik, Aakash Ashok A1 - Bustamante, Joana A1 - Gaultois, Michael W. A1 - Delaire, Olivier A1 - Hansen, Michael Ryan A1 - George, Janine A1 - Zeier, Wolfgang G. T1 - Exploring the Thermal and Ionic Transport of Cu+ Conducting Argyrodite Cu7PSe6 N2 - AbstractUnderstanding the origin of low thermal conductivities in ionic conductors is essential for improving their thermoelectric efficiency, although accompanying high ionic conduction may present challenges for maintaining thermoelectric device integrity. This study investigates the thermal and ionic transport in Cu7PSe6, aiming to elucidate their fundamental origins and correlation with the structural and dynamic properties. Through a comprehensive approach including various characterization techniques and computational analyses, it is demonstrated that the low thermal conductivity in Cu7PSe6 arises from structural complexity, variations in bond strengths, and high lattice anharmonicity, leading to pronounced diffuson transport of heat and fast ionic conduction. It is found that upon increasing the temperature, the ionic conductivity increases significantly in Cu7PSe6, whereas the thermal conductivity remains nearly constant, revealing no direct correlation between ionic and thermal transport. This absence of direct influence suggests innovative design strategies in thermoelectric applications to enhance stability by diminishing ionic conduction, while maintaining low thermal conductivity, thereby linking the domains of solid‐state ionics and thermoelectrics. Thus, this study attempts to clarify the fundamental principles governing thermal and ionic transport in Cu+‐superionic conductors, similar to recent findings in Ag+ argyrodites. KW - Thermoelectrics KW - Phonons KW - Chemically Complex Materials KW - DFT KW - Bonding Analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608866 DO - https://doi.org/10.1002/aenm.202402039 SP - 1 EP - 9 PB - Wiley AN - OPUS4-60886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Casali, Lucia A1 - Carta, Maria A1 - Michalchuk, Adam A. L. A1 - Delogu, Francesco A1 - Emmerling, Franziska T1 - Kinetics of the mechanically induced ibuprofen–nicotinamide co-crystal formation by in situ X-ray diffraction N2 - Mechanochemistry is drawing attention from the pharmaceutical industry given its potential for sustainable material synthesis and manufacture. Scaling mechanochemical processes to industrial level remains a challenge due to an incomplete understanding of their underlying mechanisms. We here show how time-resolved in situ powder X-ray diffraction data, coupled with analytical kinetic modelling, provides a powerful approach to gain mechanistic insight into mechanochemical reactions. By using the ibuprofen–nicotinamide co-crystal mechanosynthesis as a benchmark system, we investigate the behaviour of the solids involved and identify the factors that promote the reaction. As mechanochemical mechanisms become increasingly clear, it promises to become a breakthrough in the industrial preparation of advanced pharmaceuticals. KW - Mechanochemistry KW - Kinetics PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608820 DO - https://doi.org/10.1039/D4CP01457J SN - 1463-9084 VL - 26 SP - 22041 EP - 22048 PB - Royal Society of Chemistry (RSC) AN - OPUS4-60882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sänger, Johanna C. A1 - Riechers, Birte A1 - Pauw, Brian R. A1 - Maaß, Robert A1 - Günster, Jens T1 - Microplastic response of 2PP‐printed ceramics N2 - AbstractTwo‐photon polymerization (2PP) additive manufacturing (AM) utilizes feedstocks of ceramic nanoparticles of a few nanometers in diameter, enabling the fabrication of highly accurate technical ceramic design with structural details as small as 500 nm. The performance of these materials is expected to differ from conventional AM ceramics, as nanoparticles and three‐dimensional printing at high resolution introduce new microstructural aspects. This study applies 2PP‐AM of yttria‐stabilized zirconia to investigate the mechanical response behavior under compressive load, probing the influence of smallest structural units induced by the line packing during the printing process, design of sintered microblocks, and sintering temperature and thereby microstructure. We find a dissipative mechanical response enhanced by sintering at lower temperatures than conventional. The pursued 2PP‐AM approach yields a microstructured material with an increased number of grain boundaries that proposedly play a major role in facilitating energy dissipation within the here printed ceramic material. This microplastic response is further triggered by the filigree structures induced by hollow line packing at the order of the critical defect size of ceramics. Together, these unique aspects made accessible by the 2PP‐AM approach contribute to a heterogeneous nano‐ and microstructure, and hint toward opportunities for tailoring the mechanical response in future ceramic applications. KW - Additive manufacturing KW - Ceramic KW - Microplasticity PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608897 DO - https://doi.org/10.1111/jace.19849 VL - 107 IS - 10 SP - 6636 EP - 6645 PB - Wiley AN - OPUS4-60889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Schönauer-Kamin, D. A1 - Moos, R. A1 - Reimann, T. A1 - Giovannelli, F. A1 - Rabe, Torsten T1 - Influence of pressure and dwell time on pressure‐assisted sintering of calcium cobaltite N2 - Calcium cobaltite Ca3Co4O9, abbreviated Co349, is a promising thermoelectric material for high‐temperature applications in air. Its anisotropic properties can be assigned to polycrystalline parts by texturing. Tape casting and pressure‐assisted sintering (PAS) are a possible future way for a cost‐effective mass‐production of thermoelectric generators. This study examines the influence of pressure and dwell time during PAS at 900°C of tape‐cast Co349 on texture and thermoelectric properties. Tape casting aligns lentoid Co349. PAS results in a textured Co349 microstructure with the thermoelectrically favorable ab‐direction perpendicular to the pressing direction. By pressure variation during sintering, the microstructure of Co349 can be tailored either toward a maximum figure of merit as required for energy harvesting or toward a maximum power factor as required for energy harvesting. Moderate pressure of 2.5 MPa results in 25% porosity and a textured microstructure with a figure of merit of 0.13 at 700°C, two times higher than the dry‐pressed, pressureless‐sintered reference. A pressure of 7.5 MPa leads to 94% density and a high power factor of 326 µW/mK2 at 800°C, which is 11 times higher than the dry‐pressed reference (30 MPa) from the same powder. KW - Hot pressing KW - Texture KW - Thermoelectric properties PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515973 DO - https://doi.org/https://doi.org/10.1111/jace.17541 SN - 0002-7820 VL - 104 IS - 2 SP - 917 EP - 927 PB - Wiley Periodicals LLC AN - OPUS4-51597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Mrkwitschka, Paul A1 - Moos, R. A1 - Rabe, Torsten T1 - Glass-ceramic composites as insulation material for thermoelectric oxide multilayer generators N2 - Thermoelectric generators can be used as energy harvesters for sensor applications. Adapting the ceramic multilayer technology, their production can be highly automated. In such multilayer thermoelectric generators, the electrical insulation material, which separates the thermoelectric legs, is crucial for the performance of the device. The insulationmaterial should be adapted to the thermoelectric regarding its averaged coefficient of thermal expansion α and its sintering temperature while maintaining a high resistivity. In this study, starting from theoretical calculations, a glass-ceramic Composite material adapted for multilayer generators fromcalciummanganate and Calcium cobaltite is developed. The material is optimized towards an α of 11 × 10−6 K−1 (20–500◦C), a sintering temperature of 900◦C, and a high resistivity up to 800◦C. Calculated and measured α are in good agreement. The chosen glass-ceramic composite with 45 vol.% quartz has a resistivity of 1 × 107 Ωcm and an open porosity of <3%. Sintered multilayer samples from tape-cast thermoelectric oxides and screen-printed insulation show only small reaction layers. It can be concluded that glass-ceramic composites are a well-suited material class for insulation layers as their physical properties can be tuned by varying glass composition or dispersion phases. KW - Electrical insulators KW - Glass-ceramics KW - Multilayers KW - Thermal expansion PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538898 DO - https://doi.org/10.1111/jace.18235 SN - 0002-7820 SP - 1 EP - 10 PB - Wiley Online Library AN - OPUS4-53889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mieller, Björn A1 - Vogl, Jochen A1 - Noordmann, J. A1 - Kaltenbach, A. A1 - Rienitz, O. T1 - Preparation and characterization of primary magnesium mixtures for the ab initio calibration of absolute magnesium isotope ratio measurements N2 - We report an appropriate preparation of binary isotope calibration mixtures of the three stable isotopes of magnesium to be used in the ab initio calibration of multicollector mass spectrometers (ICPMS and TIMS). For each of the three possible combinations of binary mixtures ("24Mg" + "25Mg", "24Mg" + "26Mg", and "25Mg" + "26Mg"), three individual setups have been prepared under gravimetric control, each of them with an isotope ratio close to unity, and a total magnesium mass fraction close to 20 mg kg-1. The preparation was designed to occur via an intermediate dilution of a parent solution of a highly purified specimen of the isotopically enriched magnesium materials. For the application as calibration mixtures, a complete uncertainty budget was set up, and is presented and discussed in detail, including the aspects that went into the design of the dilution and mixing approach to minimize uncertainty. The principle parameters for the purpose of the later calibration of the mass spectrometers are the absolute masses of isotopically enriched magnesium materials in the primary calibration mixtures. For the first time relative expanded uncertainties U (k = 2) for these masses of ≤0.005% could be achieved for all mixtures. KW - Atomic weight KW - Magnesium KW - Isotope mixture KW - Purity PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-352564 DO - https://doi.org/10.1039/c5ja00284b SN - 0267-9477 SN - 1364-5544 N1 - Geburtsname von Mieller, Björn: Brandt, B. - Birth name of Mieller, Björn: Brandt, B. N1 - Corrigendum: Journal of analytical atomic spectrometry 34 (2019) 2340 VL - 31 IS - 1 SP - 179 EP - 196 PB - Royal Society of Chemistry CY - London AN - OPUS4-35256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mieller, Björn T1 - Influence of test procedure on dielectric breakdown strength of alumina N2 - Dielectric strength testing of ceramics can be performed with various setups and parameters. Comparisons of results from different sources are often not meaningful, because the results are strongly dependent on the actual testing procedure. The aim of this study is to quantify the influence of voltage ramp rate, electrode size, electrode conditioning, and sample thickness on the measured AC dielectric strength of a commercial alumina. Mean values, Weibull moduli, and failure probabilities determined in standardized short time tests are evaluated and related to withstand voltage tests. Dielectric strength values in the range from 21.6 to 33.2 kV/mm were obtained for the same material using different testing procedures. Short time tests resulted in small standard deviations (< 2 kV/mm) and high Weibull moduli around 30, while withstand tests at voltage levels with low and virtual zero failure probability in short time tests resulted in large scatter of withstand time and Weibull moduli < 1. The strong decrease in Weibull moduli is attributed to progressive damage from partial discharge and depolarization during AC testing. These findings emphasize the necessity of a thorough documentation of testing procedure and highlight the importance of withstand voltage tests for a comprehensive material characterization. KW - Ceramic KW - High-voltage testing KW - Dielectric breakdown KW - Alumina PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483852 DO - https://doi.org/10.1007/s40145-018-0310-4 SN - 2226-4108 SN - 2227-8508 VL - 8 IS - 2 SP - 247 EP - 255 PB - Springer AN - OPUS4-48385 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Mieller, Björn A1 - Noordmann, J. A1 - Rienitz, O. A1 - Malinovskiy, D. T1 - Characterization of a series of absolute isotope reference materials for magnesium: ab initio calibration of the mass spectrometers, and determination of isotopic compositions and relative atomic weights N2 - For the first time, an ab initio calibration for absolute Mg isotope ratios was carried out, without making any a priori assumptions. All quantities influencing the calibration such as the purity of the enriched isotopes or liquid and solid densities were carefully analysed and their associated uncertainties were considered. A second unique aspect was the preparation of three sets of calibration solutions, which were applied to calibrate three multicollector ICPMS instruments by quantifying the correction factors for instrumental mass discrimination. Those fully calibrated mass spectrometers were then used to determine the absolute Mg isotope ratios in three candidate European Reference Materials (ERM)-AE143, -AE144 and -AE145, with ERM-AE143 becoming the new primary isotopic reference material for absolute isotope ratio and delta measurements. The isotope amount ratios of ERM-AE143 are n(25Mg)/n(24Mg) = 0.126590(20) mol/mol and n(26Mg)/n(24Mg) = 0.139362(43) mol/mol, with the resulting isotope amount fractions of x(24Mg) = 0.789920(46) mol/mol, x(25Mg) = 0.099996(14) mol/ mol and x(26Mg) = 0.110085(28) mol/mol and an atomic weight of Ar(Mg) = 24.305017(73); all uncertainties were stated for k = 2. This isotopic composition is identical within uncertainties to those stated on the NIST SRM 980 certificate. The candidate materials ERM-AE144 and -AE145 are isotopically lighter than ERM-AE143 by 1.6 ‰ and 1.3 ‰, respectively, concerning their n(26Mg)/n(24Mg) ratio. The relative combined standard uncertainties are ≤0.1 ‰ for the isotope ratio n(25Mg)/n(24Mg) and ≤0.15 ‰ for the isotope ratio n(26Mg)/ n(24Mg). In addition to characterizing the new isotopic reference materials, it was demonstrated that commonly used fractionation laws are invalid for correcting Mg isotope ratios in multicollector ICPMS as they result in a bias which is not covered by its associated uncertainty. Depending on their type, fractionation laws create a bias up to several per mil, with the exponential law showing the smallest bias between 0.1 ‰ and 0.7 ‰. KW - isotope reference material KW - absolute measurements KW - mass spectrometry KW - atomic weight KW - magnesium PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-370931 DO - https://doi.org/10.1039/C6JA00013D SN - 0267-9477 N1 - Geburtsname von Mieller, Björn: Brandt, B. - Birth name of Mieller, Björn: Brandt, B. VL - 31 IS - 7 SP - 1440 EP - 1458 PB - Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-37093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Johann, Sergej A1 - Strangfeld, Christoph A1 - Müller, Maximilian A1 - Mieller, Björn A1 - Bartholmai, Matthias T1 - RFID sensor systems embedded in concrete – validation experiments for long-term monitoring N2 - Structural Health Monitoring (SHM) is an important part of buildings surveillance and maintenance to detect material failure as early as possible and to contribute in protection of structures and their users. The implementation of Radio Frequency Identification (RFID) sensor systems without cable connection and battery into building components offers innovative possibilities to enable long-term in-situ SHM of addressed structures, bridges. The objectives of the presented study are complete embedding of RFID sensors systems in concrete, full passive communication with the systems, at best for the whole life span of structures. One challenge for this task is the highly alkaline environment in concrete, which requires non-degrading and robust encapsulation. Further Requirements are passive communication and energy supply, appropriate antenna design, placement and fixation in concrete, and the selection and implementation of sensors and connections. The concept is to develop and optimize a simple and robust system, which meets the requirements, as well as comprehensive validation in concrete specimen and real world applications. Two different systems were developed (HF and UHF RFID, respectively). First tasks were the implementation of analog sensors using the superposition principle for the signal adaption. Investigation of suitable materials for robust encapsulation and sensor protection against basic environments. Four materials were investigated in pH 13 solution for 14 days - 3D-Printer-Polymer was completely resolved - PVC has no noticeable decrease in weight - (VitaPro) glass filter for the sensor protector, has weight loss 2.7 % - The epoxy resin has increased by 1.8 % due to moisture expansion Different concrete samples were prepared for the validation of the systems. RFID sensors were embedded in different integration depths. Investigate the energy- and data transfer through concrete, also with varying moisture content. Additionally, signal strength data was used to optimize and validate the antenna characteristics in concrete. Next steps are to guarantee a sufficient energy supply for UHF RFID systems embedded in different concrete mixtures and further embedding the HF and UHF RFID systems in real bridges and buildings to validate the long term monitoring. T2 - DGZfP-Jahrestagung 2017 CY - Koblenz, Germany DA - 22.05.2017 KW - Smart structures KW - RFID sensors KW - Long-term requirements KW - Structural health monitoring KW - Passive RFID KW - Sensor requirements KW - Sensors in concrete PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-403496 UR - https://www.ndt.net/?id=21499 SN - 1435-4934 VL - 22 IS - 9 SP - 1 EP - 7 PB - NDT.net CY - Kirchwald AN - OPUS4-40349 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paulus, Daniel A1 - Bresch, Sophie A1 - Moos, Ralf A1 - Schönauer-Kamin, Daniela T1 - Powder aerosol deposited calcium cobaltite as textured P-type thermoelectric material with power factors approaching single crystal values N2 - In this work, the thermoelectric material calcium cobaltite Ca3Co4O9 (CCO), a promising p-type conducting thermoelectric oxide with anisotropic properties, was processed by the powder aerosol deposition method (PAD) to form a dense ceramic CCO film with a thickness in the µm range. The prepared films were characterized regarding their microstructure and thermoelectric properties between room temperature and 900 °C. After heat treatment at 900 °C, the CCO PAD film in-plane shows excellent properties in terms of electrical conductivity (280 S/cm at 900 °C) and Seebeck coefficient (220 µV/K at 900 °C). The calculated power factor in-plane (ab) reaches with 1125 µW/(m K2) 40 % of the single crystal value, surpassing the known-properties of CCO bulk ceramics. Examination of the microstructure shows a strong fiber texture of the film as well as a strong coarsening of the grains during the first heat treatment up to 900 °C. KW - thermoelectrics KW - calcium cobaltite KW - thermoelectric oxide KW - aerosol deposition method (ADM) PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-606246 DO - https://doi.org/10.1016/j.jeurceramsoc.2024.116717 SN - 0955-2219 VL - 44 IS - 15 SP - 1 EP - 8 PB - Elsevier BV AN - OPUS4-60624 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -