TY - JOUR A1 - Dackermann, U. A1 - Yu, Y. A1 - Niederleithinger, Ernst A1 - Li, J. A1 - Wiggenhauser, Herbert T1 - Condition Assessment of Foundation Piles and Utility Poles Based on Guided Wave Propagation Using a Network of Tactile Transducers and Support Vector Machines N2 - This paper presents a novel non-destructive testing and health monitoring system using a network of tactile transducers and accelerometers for the condition assessment and damage classification of foundation piles and utility poles. While in traditional pile integrity testing an impact hammer with broadband frequency excitation is typically used, the proposed testing system utilizes an innovative excitation system based on a network of tactile transducers to induce controlled narrow-band frequency stress waves. Thereby, the simultaneous excitation of multiple stress wave types and modes is avoided (or at least reduced), and targeted wave forms can be generated. The new testing system enables the testing and monitoring of foundation piles and utility poles where the top is inaccessible, making the new testing system suitable, for example, for the condition assessment of pile structures with obstructed heads and of poles with live wires. For system validation, the new system was experimentally tested on nine timber and concrete poles that were inflicted with several types of damage. The tactile transducers were excited with continuous sine wave signals of 1 kHz frequency. Support vector machines were employed together with advanced signal processing algorithms to distinguish recorded stress wave signals from pole structures with different types of damage. The results show that using fast Fourier transform signals, combined with principal component analysis as the input feature vector for support vector machine (SVM) classifiers with different kernel functions, can achieve damage classification with accuracies of 92.5% ± 7.5%. KW - Structural Health Monitoring KW - Non-Destructive Testing KW - Sensor network KW - Support vector machine KW - Utility poles PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-434868 UR - http://www.mdpi.com/1424-8220/17/12/2938 DO - https://doi.org/10.3390/s17122938 SN - 1424-8220 VL - 17 IS - 12 SP - Article 2938, 1 EP - 16 PB - MDPI CY - Basel, Schweiz AN - OPUS4-43486 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grohmann, Maria A1 - Niederleithinger, Ernst A1 - Buske, S. A1 - Büttner, C. T1 - Application of Elastic P-SV Reverse Time Migration to Synthetic Ultrasonic Echo Data from Concrete Members N2 - The ultrasonic echo technique is frequently used in non-destructive testing (NDT) of concrete structures for thickness measurements, geometry determinations as well as localization of built-in components. To improve ultrasonic imaging of complex structures in concrete, we transferred a geophysical imaging technique, the reverse time migration (RTM), to NDT in civil engineering. In contrast to the conventionally used synthetic aperture focusing technique (SAFT) algorithms, RTM is a wavefield continuation method in time and uses the full wave equation. Thus, RTM can handle complicated wave propagations in any direction without dip limitation. In this paper, we focused on the application and evaluation of a two-dimensional (2D) elastic RTM algorithm considering compressional waves, vertically polarized shear waves, and Rayleigh waves. We tested the elastic RTM routine on synthetic ultrasonic echo data generated with a 2D concrete model consisting of several steps and circular air inclusions. As these complex structures can often be found in real-world NDT use cases, their imaging is especially important. By using elastic RTM, we were able to clearly reproduce vertical reflectors and lower edges of circular air voids inside our numerical concrete model. Such structures cannot be imaged with conventional SAFT algorithms. Furthermore, the used elastic RTM approach also yielded a better reconstruction of a horizontal reflector and upper boundaries of circular air inclusions. Our encouraging results demonstrate that elastic RTM has the potential to significantly improve the imaging of complex concrete structures and, thus, is a step forward for detailed, high-quality ultrasonic NDT in civil engineering. KW - Concrete KW - Ultrasound KW - Imaging KW - Reverse time migration KW - Elastic PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580680 DO - https://doi.org/10.1007/s10921-023-00962-w SN - 0195-9298 VL - 42 IS - 3 SP - 1 EP - 18 PB - Springer Nature AN - OPUS4-58068 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Xin A1 - Chakraborty, J. A1 - Bassil, A. A1 - Niederleithinger, Ernst T1 - Detection of Multiple Cracks in Four-Point Bending Tests Using the Coda Wave Interferometry Method N2 - The enlargement of the cracks outside the permitted dimension is one of the main causes for the reduction of service life of Reinforced Concrete (RC) structures. Cracks can develop due to many causes such as dynamic or static load. When tensile stress exceeds the tensile strength of RC, cracks appear. Traditional techniques have limitations in early stage damage detection and localisation, especially on large-scale structures. The ultrasonic Coda Wave Interferometry (CWI) method using diffuse waves is one of the most promising methods to detect subtle changes in heterogeneous materials, such as concrete. In this paper, the assessment of the CWI method applied for multiple cracks opening detection on two specimens based on four-point bending test is presented. Both beams were monitored using a limited number of embedded Ultrasonic (US) transducers as well as other transducers and techniques (e.g., Digital Image Correlation (DIC), LVDT sensors, strain gauges, and Fiber Optics Sensor (FOS)). Results show that strain change and crack formation are successfully and efficiently detected by CWI method even earlier than by the other techniques. The CWI technique using embedded US transducers is undoubtedly a feasible, efficient, and promising method for long-term monitoring on real infrastructure. KW - Coda wave interferometry KW - Reinforced concrete KW - Cracks KW - SHM KW - Damage detection PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506666 DO - https://doi.org/10.3390/s20071986 VL - 20 IS - 7 SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-50666 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bühling, Benjamin A1 - Maack, Stefan A1 - Schönsee, Eric A1 - Schweitzer, Thorge A1 - Strangfeld, Christoph T1 - Acoustic and flow data of fluidic and piezoelectric ultrasonic transducers N2 - This data article presents characteristic acoustic and flow data of a fluidic ultrasonic transducer as well as acoustic data of a commercial piezoelectric ultrasonic transducer used in non-destructive testing for civil engineering. The flow data has been acquired using hot-wire anemometry and a Pitot tube. The three-dimensional acoustic data of both devices has been acquired using a calibrated microphone. The distribution of characteristic acoustic properties of both transducers are extracted and given in addition to the raw data. The data presented in the article will be a valuable source for reference and validation, both for developing fluidic and alternate ultrasound generation technologies. Furthermore, they will give additional insight into the acoustic-flow interaction phenomena of high speed switching devices. This article is accompanying the paper Experimental Analysis of the Acoustic Field of an Ultrasonic Pulse Induced by a Fluidic Switch (Bühling et al., 2021) published in The Journal of the Acoustical Society of America, where the data is interpreted in detail and the rationale for characteristic sound properties of the fluidic transducer are given. KW - Ultrasound KW - Non-destructive testing KW - Air-coupled ultrasound KW - Fluidics KW - Acoustic-flow interaction KW - Piezoelectric transducer PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531308 DO - https://doi.org/10.1016/j.dib.2021.107280 VL - 38 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-53130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bühling, Benjamin A1 - Maack, Stefan T1 - Improving onset picking in ultrasonic testing by using a spectral entropy criterion N2 - In ultrasonic testing, material and structural properties of a specimen can be derived from the time-of-flight (ToF). Using signal features, such as the first peak or envelope maximum, to calculate the ToF is error-prone in multipath arrangements or dispersive and attenuating materials, which is not the case for the signal onset. Borrowing from seismology, researchers used the Akaike information criterion (AIC) picker to automatically determine onset times. The most commonly used formulation, Maeda's AIC picker, is reassessed and found to be based on inappropriate assumptions for signals often used in ultrasonic testing and dependent on arbitrary parameters. Consequently, an onset picker for ultrasonic through-transmission measurements is proposed, based on a spectral entropy criterion (SEC) to model the signal using the AIC framework. This SEC picker takes into account the spectral properties of the ultrasonic signal and is virtually free of arbitrary parameters. Synthetic and experimental data are used to compare the performance of SEC and AIC pickers. It is shown that the accuracy of onset picking is improved for densely sampled data. KW - Akaike information criterion picker KW - Nondestructive testing KW - Ultrasound KW - Time of flight PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594284 UR - https://pubs.aip.org/asa/jasa/article/155/1/544/3061576/Improving-onset-picking-in-ultrasonic-testing-by DO - https://doi.org/10.1121/10.0024337 SN - 0001-4966 VL - 155 IS - 1 SP - 544 EP - 554 PB - AIP Publishing CY - Melville, NY, USA AN - OPUS4-59428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Timofeev, Juri A1 - Azari, H. A1 - Satyanarayana, R. T1 - Controlled Creating of Delaminations in Concrete for Nondestructive Testing N2 - Locating and sizing delaminations is a common inspection task in the maintenance and quality control of construction and rehabilitation. Their detection is an important area of application of nondestructive testing in civil engineering (NDT-CE). To improve this application, NDT test systems and test solutions must be compared, for which specimens containing well-defined delaminations are needed to serve as a reference. Currently, there are no widely accepted procedures available for creating such flaws locally and reproducibly. This study presents procedures for creating artificial delaminations repeatably and as close as possible to natural delaminations. To produce the discontinuities only substances were used which can occur in concrete components and do not affect the application of NDT-CE methods. Ultrasonic pulse-echo (UPE) was used to test the flaws in the specimens. The delaminations were created by applying expansive mortar in prepared through holes. Three specimens with two delaminations each were built and tested using UPE. KW - Concrete KW - Reference KW - Delamination KW - Test specimen KW - Non-destructive testing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595201 DO - https://doi.org/10.1007/s10921-023-01044-7 SN - 0195-9298 VL - 43 IS - 1 SP - 1 EP - 13 PB - Springer Science and Business Media LLC AN - OPUS4-59520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bühling, Benjamin A1 - Maack, Stefan A1 - Strangfeld, Christoph T1 - Fluidic Ultrasound Generation for Non‐Destructive Testing N2 - AbstractAir‐coupled ultrasonic testing (ACU) is a pioneering technique in non‐destructive testing (NDT). While contact testing and fluid immersion testing are standard methods in many applications, the adoption of ACU is progressing slowly, especially in the low ultrasonic frequency range. A main reason for this development is the difficulty of generating high amplitude ultrasonic bursts with equipment that is robust enough to be applied outside a laboratory environment. This paper presents the fluidic ultrasonic transducer as a solution to this challenge. This novel aeroacoustic source uses the flow instability of a sonic jet in a bistable fluidic switch to generate ultrasonic bursts up to 60 kHz with a mean peak pressure of 320 Pa. The robust design allows operation in adverse environments, independent of the operating fluid. Non‐contact through‐transmission experiments are conducted on four materials and compared with the results of conventional transducers. For the first time, it is shown that the novel fluidic ultrasonic transducer provides a suitable acoustic signal for NDT tasks and has potential of furthering the implementation of ACU in industrial applications.This article is protected by copyright. All rights reserved KW - Aeroacoustics KW - Air-coupled ultrasound KW - Fluidics KW - Harsh environment KW - Laser Doppler vibrometer KW - Non-destructive testing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594273 DO - https://doi.org/10.1002/adma.202311724 SN - 0935-9648 SP - 1 EP - 14 PB - Wiley AN - OPUS4-59427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grohmann, Maria A1 - Niederleithinger, Ernst A1 - Maack, Stefan A1 - Buske, Stefan T1 - Application of iterative elastic SH reverse time migration to synthetic ultrasonic echo data N2 - The ultrasonic echo technique is widely used in non-destructive testing (NDT) of concrete objects for thickness measurements, geometry determinations and localization of built-in components. To improve ultrasonic imaging of complex concrete structures, we transferred a seismic imaging technique, the Reverse Time Migration (RTM), to NDT in civil engineering. RTM, in contrast to the conventionally used synthetic aperture focusing technique (SAFT) algorithms, considers all wavefield types and thus, can handle complex wave propagations in any direction with no limit on velocity variations and reflector dip. In this paper, we focused on the development, application and evaluation of a two-dimensional elastic RTM algorithm considering horizontally polarized shear (SH) waves only. We applied the elastic SH RTM routine to synthetic ultrasonic echo SH-wave data generated with a concrete model incorporating several steps and circular cavities. As these features can often be found in real-world NDT use cases, their imaging is extremely important. By using elastic SH RTM, we were able to clearly reproduce almost all reflectors inside the concrete model including the vertical step edges and the cross sections of the cavities.We were also capable to show that more features could be mapped compared to SAFT, and that imaging of complex reflectors could be sharpened compared to elastic P-SV (compressional-vertically polarized shear) RTM. Our promising results illustrate that elastic SH RTM has the potential to significantly enhance the reconstruction of challenging concrete structures, representing an important step forward for precise, high-quality ultrasonic NDT in civil engineering. KW - Ultrasonic echo technique KW - Concrete structures KW - Elastic reverse time migration KW - Synthetic aperture focusing technique KW - Horizontally polarized shear waves PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-591716 DO - https://doi.org/10.1007/s10921-023-01010-3 SN - 1573-4862 VL - 43 SP - 1 EP - 16 PB - Springer Science and Business Media CY - Dordrecht AN - OPUS4-59171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Witte, Julien A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Stresses in repair welding of high-strength steels—part 1: restraint and cold cracking risk N2 - AbstractThe sustainable and resource-efficient production of wind energy plants requires the use of modern high-strength fine-grain structural steels. This applies to both foundation and erection structures, like mobile or ship cranes. During the assembly of steel structures, unacceptable defects can occasionally be found in the weld area. In most cases, the economical solution would be local thermal gouging of the affected areas and re-welding. Due to the high shrinkage restraint of the joint groove in the overall structure, the superposition of global and local welding-induced stresses may lead to crack formation and component failure, particularly in interaction with the degradation of the microstructure and mechanical properties of high-strength steels during the repair process. However, manufacturers hardly have any information about these issues and there is a lack of recommendations and guidelines to take these safety-relevant aspects into account in adequate repair concepts. The aim of this research is to derive recommendations for repair concepts appropriate to the stresses and materials involved providing a basis for standards and guidelines to avoid cold cracking, damage and expensive reworking especially for high-strength steels. Part 1 of this study involves systematic investigations of influences of shrinkage restraint during repair welding of two high-strength steels S500MLO for offshore application and S960QL for mobile crane structures. The quantification of the shrinkage restraint of repair weld joints was achieved by means of experimental and numerical restraint intensity analysis. In welding experiments with self-restrained slot specimens, restraint intensity and introduction of hydrogen via the welding arc using anti spatter spray were varied systematically to analyse the effect on welding result, residual stresses and cold cracking. It could be shown that increasing restraint intensities result in significantly higher transverse residual stress levels. In the case of hydrogen introduction S500MLO showed no cold cracking independent of the restraint conditions. However, S960QL was found to be considerably cold cracking sensitive if hydrogen is introduced. With increasing restraint intensity length and number of cold cracks increases significantly. Part 2 [1] of this study is focussed on microstructure and residual stresses due to gouging and stress optimization via adequate heat control parameters in repair welding. KW - Metals and Alloys KW - Mechanical Engineering KW - Mechanics of Materials PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595212 DO - https://doi.org/10.1007/s40194-024-01691-y SN - 0043-2288 SP - 1 EP - 13 PB - Springer Science and Business Media LLC AN - OPUS4-59521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Konert, Florian A1 - Wieder, Frank A1 - Nietzke, Jonathan A1 - Meinel, Dietmar A1 - Böllinghaus, Thomas A1 - Sobol, Oded T1 - Evaluation of the impact of gaseous hydrogen on pipeline steels utilizing hollow specimen technique and μCT N2 - The high potential of hydrogen as a key factor on the pathway towards a climate neutral economy, leads to rising demand in technical applications, where gaseous hydrogen is used. For several metals, hydrogen-metal interactions could cause a degradation of the material properties. This is especially valid for low carbon and highstrength structural steels, as they are commonly used in natural gas pipelines and analyzed in this work. This work provides an insight to the impact of hydrogen on the mechanical properties of an API 5L X65 pipeline steel tested in 60 bar gaseous hydrogen atmosphere. The analyses were performed using the hollow specimen technique with slow strain rate testing (SSRT). The nature of the crack was visualized thereafter utilizing μCT imaging of the sample pressurized with gaseous hydrogen in comparison to one tested in an inert atmosphere. The combination of the results from non-conventional mechanical testing procedures and nondestructive imaging techniques has shown unambiguously how the exposure to hydrogen under realistic service pressure influences the mechanical properties of the material and the appearance of failure. KW - Energy Engineering and Power Technology KW - Condensed Matter Physics KW - Fuel Technology KW - Renewable Energy, Sustainability and the Environment KW - µCT KW - Hollow Specimen Technique KW - Hydrogen Embrittlement PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595077 DO - https://doi.org/10.1016/j.ijhydene.2024.02.005 SN - 0360-3199 VL - 59 SP - 874 EP - 879 PB - Elsevier B.V. AN - OPUS4-59507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -