TY - JOUR A1 - Oesch, Tyler A1 - Weise, Frank A1 - Meinel, Dietmar A1 - Gollwitzer, Christian T1 - Quantitative in-situ analysis of water transport in concrete completed using X-ray computed tomography N2 - This paper describes a novel methodology for quantitative in-situ moisture measurement without tracking agents using X-ray computed tomography (XCT). The high levels of grey-scale precision required for the measurement of moisture without tracking agents resulted in the need for an additional image calibration procedure to correct for water-related X-ray scattering and for equipment-variability related artefacts arising during in-situ testing. This calibration procedure was developed on the basis of existing principles of XCT image cor-rection. Resulting images of moisture distribution exhibit a high level of agreement with expected material behaviour. This research demonstrated that XCT can be successfully used to measure both moisture-front movement over time and changes in 3D moisture distribution within samples. This approach to moisture measurement lays the groundwork for the planned future investigation of the interaction between cracking induced by varying chemical and mechanical processes and water transport in concrete. KW - X-ray computed tomography (XCT) KW - In-situ testing KW - Water transport KW - Quantitative moisture measurement KW - Concrete PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-474395 DO - https://doi.org/10.1007/s11242-018-1197-9 SN - 1573-1634 VL - 127 IS - 2 SP - 371 EP - 389 PB - Springer Netherlands AN - OPUS4-47439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Wilbig, Janka A1 - Mohr, Gunther A1 - Villatte, T. A1 - Léonard, Fabien A1 - Nolze, Gert A1 - Sparenberg, M. A1 - Melcher, J. A1 - Hilgenberg, Kai A1 - Günster, Jens T1 - Enabling the 3D Printing of Metal Components in μ-Gravity N2 - As humanity contemplates manned missions to Mars, strategies need to be developed for the design and operation of hospitable environments to safely work in space for years. The supply of spare parts for repair and replacement of lost equipment will be one key need, but in-space manufacturing remains the only option for a timely supply. With high flexibility in design and the ability to manufacture ready-to-use components directly from a computeraided model, additive manufacturing (AM) technologies appear extremely attractive. For the manufacturing of metal parts, laser-beam melting is the most widely used AM process. However, the handling of metal powders in the absence of gravity is one prerequisite for its successful application in space. A gas flow throughout the powder bed is successfully applied to compensate for missing gravitational forces in microgravity experiments. This so-called gas-flow-assisted powder deposition is based on a porous Building platform acting as a filter for the fixation of metal particles in a gas flow driven by a pressure difference maintained by a vacuum pump. KW - Additive manufacturing KW - µ-gravity KW - Laser beam melting KW - Parabolic flight KW - 3D printing PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-492190 DO - https://doi.org/10.1002/admt.201900506 SP - 1900506 PB - WILEY-VCH Verlag GmbH AN - OPUS4-49219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -