TY - JOUR A1 - Stroh, Julia A1 - Ali, Naveed Zafar A1 - Maierhofer, Christiane A1 - Emmerling, Franziska T1 - Ettringite via Mechanochemistry: A Green and Rapid Approach for Industrial Application N2 - Here, we report on a first mechanochemical synthesis of ettringite, an important cement hydrate phase. The mineral compound ettringite ([Ca3Al(OH)6]2·(SO4)3·26H2O) occurs rarely in nature, but is common for cement-based materials. Ettringite has wide technical application in the ceramic and paper industry. However, its typical wet-chemical synthesis is cumbersome and produces waste water and CO2 emissions. Here, we investigate the first mechanochemical synthesis of ettringite for developing an easy and sustainable alternative for industrial application. The mechanosynthesis was monitored in situ by coupled synchrotron X-ray diffraction (XRD) and infrared thermography (IRT). The consumption of the reactants and the formation of the reaction product were monitored with time-resolved XRD. IRT showed the temperature increase based on the exothermic reaction. The reaction conversion was significantly improved changing the strategy of the mechanosynthesis from a one- to a two-step process. The latter included neat pregrinding of solid reactants followed by a delayed addition of the stoichiometric amount of water. Thus, an increase of reaction conversion from 34 to 94% of ettringite could be achieved. KW - XRD KW - Mechanochemistry KW - Ettringite KW - In situ PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479016 DO - https://doi.org/10.1021/acsomega.9b00560 SN - 2470-1343 VL - 4 IS - 4 SP - 7734 EP - 7737 PB - ACS Publications CY - Washington, DC AN - OPUS4-47901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martins, Inês C.B. A1 - Al-Sabbagh, Dominik A1 - Meyer, Klas A1 - Maiwald, Michael A1 - Scholz, G. A1 - Emmerling, Franziska T1 - Insight into the Structure and Properties of Novel Imidazole-Based Salts of Salicylic Acid N2 - The preparation of new active pharmaceutical ingredient (API) multicomponent Crystal forms, especially co-crystals and salts, is being considered as a reliable strategy to improve API solubility and bioavailability. In this study, three novel imidazole-based salts of the poorly water-soluble salicylic acid (SA) are reported exhibiting a remarkable improvement in solubility and dissolution rate properties. All structures were solved by powder X-ray diffraction. Multiple complementary techniques were used to solve co-crystal/salt ambiguities: density functional Theory calculations, Raman and 1H/13C solid-state NMR spectroscopies. In all molecular salts, the Crystal packing interactions are based on a common charged assisted +N-H SA)...O-(co-former) hydrogen bond interaction. The presence of an extra methyl group in different positions of the co-former, induced different supramolecular arrangements, yielding salts with different physicochemical properties. All salts present much higher solubility and dissolution rate than pure SA. The most promising results were obtained for the salts with imidazole and 1-methylimidazole co-formers. KW - Salicylic acid KW - Imidazole KW - Salts KW - Powder X-ray diffraction KW - SsNMR KW - DFT PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502825 DO - https://doi.org/10.3390/molecules24224144 VL - 24 IS - 22 SP - 4144 PB - MDPI AN - OPUS4-50282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Topolniak, Ievgeniia A1 - Hodoroaba, Vasile-Dan A1 - Pfeifer, Dietmar A1 - Braun, Ulrike A1 - Sturm, Heinz T1 - Boehmite Nanofillers in Epoxy Oligosiloxane Resins: Influencing the Curing Process by Complex Physical and Chemical Interactions N2 - In this work, a novel boehmite (BA)-embedded organic/inorganic nanocomposite coating based on cycloaliphatic epoxy oligosiloxane (CEOS) resin was fabricated applying UV-induced cationic polymerization. The main changes of the material behavior caused by the nanofiller were investigated with regard to its photocuring kinetics, thermal stability, and glass transition. The role of the particle surface was of particular interest, thus, unmodified nanoparticles (HP14) and particles modified with p-toluenesulfonic acid (OS1) were incorporated into a CEOS matrix in the concentration range of 1–10 wt.%. Resulting nanocomposites exhibited improved thermal properties, with the glass transition temperature (Tg) being shifted from 30 °C for unfilled CEOS to 54 °C (2 wt.% HP14) and 73 °C (2 wt.% OS1) for filled CEOS. Additionally, TGA analysis showed increased thermal stability of samples filled with nanoparticles. An attractive interaction between boehmite and CEOS matrix influenced the curing. Real-time infrared spectroscopy (RT-IR) experiments demonstrated that the epoxide conversion rate of nanocomposites was slightly increased compared to neat resin. The beneficial role of the BA can be explained by the participation of hydroxyl groups at the particle surface in photopolymerization processes and by the complementary contribution of p-toluenesulfonic acid surface modifier and water molecules introduced into the system with nanoparticles. KW - Real-time infrared spectroscopy KW - Boehmite KW - Nanocomposite KW - Cationic photocuring KW - Cycloaliphatic epoxy oligosiloxane KW - Epoxy conversion degree PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479628 DO - https://doi.org/10.3390/ma12091513 VL - 12 IS - 9 SP - 1513 PB - MDPI AN - OPUS4-47962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -