TY - CONF A1 - Moufid, M. A1 - Tiebe, Carlo A1 - El Bari, N. A1 - Bartholmai, Matthias A1 - Bouchikhi, B. T1 - Characterization of Unpleasant Odors in Poultry Houses Using Metal Oxide Semiconductor-Based Gas Sensor Arrays and Pattern Recognition Methods T2 - The 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry) N2 - In this study, the ability of an electronic nose developed to analyze and monitor odor emissions from three poultry farms located in Meknes (Morocco) and Berlin (Germany) was evaluated. Indeed, the potentiality of the electronic nose (e-nose) to differentiate the concentration fractions of hydrogen sulfide, ammonia, and ethanol was investigated. Furthermore, the impact change of relative humidity values (from 15% to 67%) on the responses of the gas sensors was reported and revealed that the effect remained less than 0.6%. Furthermore, the relevant results confirmed that the developed e-nose system was able to perfectly classify and monitor the odorous air of poultry farms. T2 - 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry CY - Online meeting DA - 01.07.2021 KW - Pattern recognition methods KW - Gas sensors KW - Electronic nose KW - poultry odorous air monitoring PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544005 UR - https://csac2021.sciforum.net/ DO - https://doi.org/10.3390/CSAC2021-10481 VL - 5 IS - 52 SP - 1 EP - 7 PB - MDPI AN - OPUS4-54400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wosniok, Aleksander A1 - Krebber, Katerina T1 - Distributed fiber optic radiation sensors T2 - Interdisciplinary Research Symposium on the Safety of Nuclear Disposal Practices safeND N2 - In this work, we present our results achieved in several research activities for development of distributed fiber optic radiation sensors using glass and polymer optical fibers. The findings show that both the measurement of the radiation-induced attenuation (RIA) along the entire sensing fiber and the accompanying change in the refractive index of the fiber core can be used for distributed radiation monitoring. T2 - safeND CY - Online meeting DA - 10.11.2021 KW - Distributed fiber optic radiation sensors KW - Radiation-induced attenuation KW - Optical fiber sensor KW - Incoherent optical frequency domain reflectometry PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537531 DO - https://doi.org/10.5194/sand-1-15-2021 VL - 1 SP - 15 EP - 16 AN - OPUS4-53753 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krietsch, Arne A1 - Reyes Rodriguez, M. A1 - Kristen, A. A1 - Kadoke, D. A1 - Abbas, Z. A1 - Krause, U. T1 - Ignition temperatures and flame velocities of metallic nanomaterials T2 - Proceedings of the 13th Symposium International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions N2 - The production of materials with dimensions in the nanometre range has continued to increase in recent years. In order to ensure safety when handling these products, the hazard potential of such innovative materials must be known. While several studies have already investigated the effects of explosions (such as maximum explosion pressure and maximum pressure rise) of powders with primary particles in the nanometre range, little is known about the ignition temperatures and flame velocities. Therefore, the minimum ignition temperature (MIT) of metallic nano powders (aluminium, iron, copper and zinc) was determined experimentally in a so called Godbert-Greenwald (GG) oven. Furthermore, the flame velocities were determined in a vertical tube. In order to better classify the test results, the tested samples were characterised in detail and the lower explosion limits of the tested dust samples were determined. Values for the burning velocity of aluminium nano powders are higher compared to values of micrometre powders (from literature). While MIT of nanometre aluminium powders is within the range of micrometre samples, MIT of zinc and copper nano powders is lower than values reported in literature for respective micrometre samples. T2 - 13th Symposium International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions (ISHPMIE) CY - Online meeting DA - 27.07.2021 KW - Dust explosions KW - Nanomaterial KW - Flame propagation KW - Minimum ignition temperature PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540930 DO - https://doi.org/10.7795/810.20200724 SP - 591 EP - 605 PB - Physikalisch-Technische Bundesanstalt AN - OPUS4-54093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - D'Accardi, E. A1 - Ulbricht, Alexander A1 - Krankenhagen, Rainer A1 - Palumbo, D. A1 - Galietti, U. T1 - Capability of active thermography to detect and localize pores in Metal Additive Manufacturing materials T2 - IOP conference series: Materials science and engineering N2 - Active thermography is a fast, contactless and non-destructive technique that can be used to detect internal defects in different types of material. Volumetric irregularities such as the presence of pores in materials produced by the Additive Manufacturing processes can strongly affect the thermophysical and the mechanical properties of the final component. In this work, an experimental investigation aimed at detecting different pores in a sample made of stainless AISI 316L produced by Laser Powder Bed Fusion (L-PBF) was carried out using pulsed thermography in reflection mode. The capability of the technique and the adopted setups in terms of geometrical and thermal resolution, acquisition frequency and energy Density of the heating source were assessed to discern two contiguous pores as well as to detect a single pore. Moreover, a quantitative indication about the minimum resolvable pore size among the available and analysed defects was provided. A powerful tool to assess the Limits and the opportunities of the pulsed technique in terms of detectability and localizability was provided by comparing active thermography results to Computed Tomography as well as a related Finite Element Analysis (FEA) to simulate the pulsed heating transfer with Comsol. T2 - 49th Italian Association for Stress Analysis Conferencee (AIAS 2020) CY - Online meeting DA - 02.09.2020 KW - Additive manufacturing KW - Laser powderbed fusion KW - Pores KW - Thermography KW - Micro-CT PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519231 DO - https://doi.org/10.1088/1757-899X/1038/1/012018 VL - 1038 SP - 1 EP - 17 PB - Institute of Physics CY - London AN - OPUS4-51923 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Chen, Hefeng T1 - Numerical Analysis for an Electro‐Magneto‐Mechanical Phenomenon with High‐Order Accurate Methods T2 - Proceedings in Applied Mathematics & Mechanics N2 - This paper establishes an axisymmetric model for a levitation device. Therein, the Maxwell equations are combined with the balance of linear momentum. Different possible formulations to describe the MAXWELL equations are presented and compared and discussed in the example. A high order finite element discretization using GALERKIN's method in space and the generalized NEWMARK‐α method in time are developed for the electro‐magneto‐mechanical approach. Several studies on spatial and temporal discretization with respect to convergence will be investigated. In addition, the boundary influences and the domain size with respect to the levitation device are also examined. T2 - International Association for Applied Mathematics and Mechanics CY - Kassel, Germany DA - 16.03.2020 KW - High-Order Methods KW - Electro-Magneto-Mechanical KW - Levitation Device PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520720 DO - https://doi.org/10.1002/pamm.202000018 VL - 20 IS - 1 SP - e202000018 PB - Wiley‐VCH GmbH CY - Online AN - OPUS4-52072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kinne, Marko A1 - Schneider, Ronald A1 - Thöns, Sebastian T1 - Reconstructing Stress Resultants in Wind Turbine Towers Based on Strain Measurements N2 - Support structures of offshore wind turbines are subject to cyclic stresses generated by different time-variant random loadings such as wind, waves, and currents in combinationwith the excitation by the rotor. In the design phase, the cyclic demand on wind turbine support structure is calculated and forecasted with semi or fully probabilistic engineering models. In some cases, additional cyclic stresses may be induced by construction deviations, unbalanced rotor masses and structural dynamic phenomena such as, for example, the Sommerfeld effect. Both, the significant uncertainties in the design and a validation of absence of unforeseen adverse dynamic phenomena necessitate the employment of measurement Systems on the support structures. The quality of the measurements of the cyclic demand on the support structures depends on (a) the precision of the measurement System consisting of sensors, amplifier and data normalization and (b) algorithms for analyzing and converting data to structural health information. This paper presents the probabilistic modelling and analysis of uncertainties in strain measurements performed for the purposes of reconstructing stress resultants in wind turbine towers. It is shown how the uncertainties in the strain measurements affect the uncertainty in the individual components of the reconstructed forces and moments. The analysis identifies the components of the vector of stress resultants that can be reconstructed with sufficient precision. T2 - International Conference on Uncertainty in Mechanical Engineering - ICUME CY - Online meeting DA - 07.06.2021 KW - Reconstruction of stress resultants KW - Strain measurements KW - Bayesian updating of measurement uncertainties PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527987 DO - https://doi.org/10.1007/978-3-030-77256-7_18 SP - 224 EP - 235 PB - Springer AN - OPUS4-52798 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -