TY - CONF A1 - Ehrig, Karsten A1 - Goebbels, Jürgen A1 - Meinel, Dietmar A1 - Paetsch, O. A1 - Prohaska, S. A1 - Zobel, Valentin T1 - Comparison of crack detection methods for analyzing damage processes in concrete with computed tomography N2 - Analyzing damages at concrete structures due to physical, chemical, and mechanical exposures need the application of innovative non-destructive testing methods that are able to trace spatial changes of microstructures. Here, the utility of three different crack detection methods for the analysis of computed tomograms of various cementitious building materials is evaluated. Due to the lack of reference samples and standardized image quality evaluation procedures, the results are compared with manually segmented reference data sets. A specific question is how automatic crack detection can be used for the quantitative characterization of damage processes, such as crack length and volume. The crack detection methods have been integrated into a scientific visualization system that allows displaying the tomography images as well as presenting the results. T2 - DIR 2011 - International symposium on digital industrial raidology and computed tomography CY - Berlin, Germany DA - 20.06.2011 KW - Crack detection KW - Computed tomography KW - Data visualization PY - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-243569 SN - 978-3-940283-34-4 IS - DGZfP-BB 128 (Poster 2) SP - 1 EP - 8 PB - Deutsche Gesellscahft für Zerstörungsfreie Prüfung e.V. (DGZfP) AN - OPUS4-24356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Färber, C. A1 - Titschack, J. A1 - Schönberg, Chr. H. L. A1 - Ehrig, Karsten A1 - Boos, K. A1 - Illerhaus, Bernhard A1 - Asgaard, U. A1 - Bromley, R. G. A1 - Freiwald, A. A1 - Wisshak, M. ED - Bahn, M. ED - Fennel, K. ED - Kesselmeier, J. ED - Naqvi, S. W. A. T1 - Long-term macrobioerosion in the Mediterranean Sea assessed by micro-computed tomography N2 - Biological erosion is a key process for the recycling of carbonate and the formation of calcareous sediments in the oceans. Experimental studies showed that bioerosion is subject to distinct temporal variability, but previous long-term studies were restricted to tropical waters. Here, we present results from a 14-year bioerosion experiment that was carried out along the rocky limestone coast of the island of Rhodes, Greece, in the Eastern Mediterranean Sea, in order to monitor the pace at which bioerosion affects carbonate substrate and the sequence of colonisation by bioeroding organisms. Internal macrobioerosion was visualised and quantified by micro-computed tomography and computer-algorithm-based segmentation procedures. Analysis of internal macrobioerosion traces revealed a dominance of bioeroding sponges producing eight types of characteristic Entobia cavity networks, which were matched to five different clionaid sponges by spicule identification in extracted tissue. The morphology of the entobians strongly varied depending on the species of the producing sponge, its ontogenetic stage, available space, and competition by other bioeroders. An early community developed during the first 5 years of exposure with initially very low macrobioerosion rates and was followed by an intermediate stage when sponges formed large and more diverse entobians and bioerosion rates in-creased. After 14 years, 30 % of the block volumes were occupied by boring sponges, yielding maximum bioerosion rates of 900 g m. KW - Bioerosion KW - Computed tomography KW - Carbonate substrate PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-372709 UR - http://www.biogeosciences.net/13/3461/2016/bg-13-3461-2016.pdf VL - 13 IS - 11 SP - 3461 EP - 3474 PB - Copernicus Publications CY - Göttingen AN - OPUS4-37270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -