TY - JOUR A1 - Kohlbrecher, J. A1 - Breßler, Ingo T1 - Updates in SASfit for fitting analytical expressions and numerical models to small-angle scattering patterns N2 - Small-angle scattering is an increasingly common method for characterizing particle ensembles in a wide variety of sample types and for diverse areas of application. SASfit has been one of the most comprehensive and flexible curve-fitting programs for decades, with many specialized tools for various fields. Here, a selection of enhancements and additions to the SASfit program are presented that may be of great benefit to interested and advanced users alike: (a) further development of the technical basis of the program, such as new numerical algorithms currently in use, a continuous integration practice for automated building and packaging of the software, and upgrades on the plug-in system for easier adoption by third-party developers; (b) a selection of new form factors for anisotropic scattering patterns and updates to existing form factors to account for multiple scattering effects; (c) a new type of a very flexible distribution called metalog [Keelin (2016). Decis. Anal. 13, 243–277], and regularization techniques such as the expectation-maximization method [Dempster et al. (1977). J. R. Stat. Soc. Ser. B (Methodological), 39, 1–22; Richardson (1972) J. Opt. Soc. Am. 62, 55; Lucy (1974). Astron. J. 79, 745; Lucy (1994). Astron. Astrophys. 289, 983–994], which is compared with fits of analytical size distributions via the non-linear least-squares method; and (d) new structure factors, especially for ordered nano- and meso-scaled material systems, as well as the Ornstein–Zernike solver for numerical determination of particle interactions and the resulting structure factor when no analytical solution is available, with the aim of incorporating its effects into the small-angle scattering intensity model used for fitting with SASfit. KW - Small-angle scattering KW - Numerical models KW - Structure factors KW - Regularization KW - SAXS KW - SANS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565069 DO - https://doi.org/10.1107/S1600576722009037 SN - 0021-8898 SN - 1600-5767 VL - 55 IS - 6 SP - 1677 EP - 1688 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-56506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Crouzier, L. A1 - Feltin, N. A1 - Delvallée, A. A1 - Pellegrino, Francesco A1 - Maurino, V. A1 - Cios, Grzegorz A1 - Tokarski, T. A1 - Salzmann, Christoph A1 - Deumer, J. A1 - Gollwitzer, C. A1 - Hodoroaba, Vasile-Dan T1 - Correlative analysis of the dimensional properties of bipyramidal titania nanoparticles by complementing electron microscopy with other methods N2 - In this paper, the accurate determination of the size and size distribution of bipyramidal anatase nanoparticles (NPs) after deposition as single particles on a silicon substrate by correlative Scanning Electron Microscopy (SEM) with Atomic Force Microscopy (AFM) analysis is described as a new measurement procedure for metrological purposes. The knowledge of the exact orientation of the NPs is a crucial step in extracting the real 3D dimensions of the particles. Two approaches are proposed to determine the geometrical orientation of individual nano‐bipyramides: (i) AFM profiling along the long bipyramid axis and (ii) stage tilting followed by SEM imaging. Furthermore, a recently developed method, Transmission Kikuchi Diffraction (TKD), which needs preparation of the crystalline NPs on electron‐transparent substrates such as TEM grids, has been tested with respect to its capability of identifying the geometrical orientation of the individual NPs. With the NPs prepared homogeneously on a TEM grid, the transmission mode in a SEM, i.e., STEM‐in‐SEM (or T‐SEM), can be also applied to extract accurate projection dimensions of the nanoparticles from the same sample area as that analysed by SEM, TKD and possibly AFM. Finally, Small Angle X‐ray Scattering (SAXS) can be used as an ensemble technique able to measure the NPs in liquid suspension and, with ab‐initio knowledge of the NP shape from the descriptive imaging techniques, to provide traceable NP size distribution and particle concentration. KW - Nanoparticles KW - Complex-shape KW - Bipyramid KW - Electron microscopy KW - AFM KW - Size measurements KW - TKD KW - STEM-in-SEM KW - SAXS KW - Nanoparticle concentration KW - Correlative analysis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539888 DO - https://doi.org/10.3390/nano11123359 SN - 2079-4991 VL - 11 IS - 12 SP - 1 EP - 19 PB - MDPI CY - Basel AN - OPUS4-53988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friberg, I. A1 - Clark, A. H. A1 - Ho, P. A1 - Sadokhina, N. A1 - Smales, Glen Jacob A1 - Woo, J. A1 - Auray, X. A1 - Ferri, D. A1 - Nachtegaal, M. A1 - Krocher, O. A1 - Olsson, L. T1 - Structure and performance of zeolite supported Pd for complete methane oxidation N2 - The influence of zeolite support materials and their impact on CH4 oxidation activity was studied utilizing Pd supported on H-beta and H-SSZ-13. A correlation between CH4 oxidation activity, Si/Al ratio (SAR), the type of zeolite framework, reduction-oxidation behaviour, and Pd species present was found by combining catalytic activity measurements with a variety of characterization methods (operando XAS, NH3-TPD, SAXS, STEM and NaCl titration). Operando XAS analysis indicated that catalysts with high CH4 oxidation activity experienced rapid transitions between metallic- and oxidized-Pd states when switching between rich and lean conditions. This behaviour was exhibited by catalysts with dispersed Pd particles. By contrast, the formation of ion-exchanged Pd2+ and large Pd particles appeared to have a detrimental effect on the oxidation-reduction behaviour and the conversion of CH4. The formation of ion-exchanged Pd2+ and large Pd particles was limited by using a highly siliceous beta zeolite support with a low capacity for cation exchange. The same effect was also found using a small-pore SSZ-13 zeolite due to the lower mobility of Pd species. It was found that the zeolite support material should be carefully selected so that the well-dispersed Pd particles remain, and the formation of ion-exchanged Pd2+ is minimized. KW - SAXS KW - Zeolites KW - Methane Oxidation KW - XAS KW - Catalysis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529606 DO - https://doi.org/10.1016/j.cattod.2020.11.026 VL - 382 SP - 3 EP - 12 PB - Elsevier B.V. AN - OPUS4-52960 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heilmann, Maria A1 - Kulla, Hannes A1 - Prinz, Carsten A1 - Bienert, Ralf A1 - Reinholz, Uwe A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska T1 - Advances in Nickel Nanoparticle Synthesis via Oleylamine Route N2 - Nickel nanoparticles are an active research area due to their multiple applications as catalysts in different processes. A variety of preparation techniques have been reported for the synthesis of these nanoparticles, including solvothermal, microwave-assisted, and emulsion techniques. The well-studied solvothermal oleylamine synthesis route comes with the drawback of needing standard air-free techniques and often space-consuming glassware. Here, we present a facile and straightforward synthesis method for size-controlled highly monodisperse nickel nanoparticles avoiding the use of, e.g., Schlenk techniques and space-consuming labware. The nanoparticles produced by this novel synthetic route were investigated using small-angle X-ray scattering, transmission electron microscopy, X-ray diffraction, and X-ray spectroscopy. The nanoparticles were in a size range of 4–16 nm, show high sphericity, no oxidation, and no agglomeration after synthesis. KW - Nanoparticle synthesis KW - Nickel nanoparticles KW - SAXS KW - TEM KW - XAS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507531 DO - https://doi.org/10.3390/nano10040713 VL - 10 IS - 4 SP - 713 PB - MDPI AN - OPUS4-50753 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieg, Holger A1 - Schaar, Caroline A1 - Fouquet, Nicole A1 - Böhmert, Linda A1 - Thünemann, Andreas A1 - Braeuning, Albert T1 - Particulate iron oxide food colorants (E 172) during artificial digestion and their uptake and impact on intestinal cells N2 - Iron oxide of various structures is frequently used as food colorant (E 172). The spectrum of colors ranges from yellow over orange, red, and brown to black, depending on the chemical structure of the material. E 172 is mostly sold as solid powder. Recent studies have demonstrated the presence of nanoscaled particles in E 172 samples, often to a very high extent. This makes it necessary to investigate the fate of these particles after oral uptake. In this study, 7 differently structured commercially available E 172 food colorants (2 x Yellow FeO(OH), 2 x Red Fe2O3, 1 x Orange Fe2O3 + FeO(OH) and 2 x Black Fe3O4) were investigated for particle dissolution, ion release, cellular uptake, crossing of the intestinal barrier and toxicological impact on intestinal cells. Dissolution was analyzed in water, cell culture medium and artificial digestion fluids. Small-angle X-ray scattering (SAXS) was employed for determination of the specific surface area of the colorants in the digestion fluids. Cellular uptake, transport and toxicological effects were studied using human differentiated Caco-2 cells as an in vitro model of the intestinal barrier. For all materials, a strong interaction with the intestinal cells was observed, albeit there was only a limited dissolution, and no toxic in vitro effects on human cells were recorded. KW - Toxicology KW - Nanoparticles KW - Small-angle X-ray scattering KW - SAXS PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593935 DO - https://doi.org/10.1016/j.tiv.2024.105772 VL - 96 SP - 1 EP - 12 PB - Elsevier BV AN - OPUS4-59393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chowdhary, S. A1 - Schmidt, R. F. A1 - Sahoo, A. K. A1 - tom Dieck, T. A1 - Hohmann, T. A1 - Schade, B. A1 - Brademann-Jock, Kerstin A1 - Thünemann, Andreas A1 - Netz, R. R. A1 - Gradzielski, M. A1 - Koksch, B. T1 - Rational design of amphiphilic fluorinated peptides: evaluation of self-assembly properties and hydrogel formation N2 - Advanced peptide-based nanomaterials composed of self-assembling peptides (SAPs) are of emerging interest in pharmaceutical and biomedical applications. The introduction of fluorine into peptides, in fact, offers unique opportunities to tune their biophysical properties and intermolecular interactions. In particular, the degree of fluorination plays a crucial role in peptide engineering as it can be used to control the characteristics of fluorine-specific interactions and, thus, peptide conformation and self-assembly. Here, we designed and explored a series of amphipathic peptides by incorporating the fluorinated amino acids (2S)-4-monofluoroethylglycine (MfeGly), (2S)-4,4-difluoroethylglycine (DfeGly) and (2S)-4,4,4-trifluoroethylglycine (TfeGly) as hydrophobic components. This approach enabled studying the impact of fluorination on secondary structure formation and peptide self-assembly on a systematic basis. We show that the interplay between polarity and hydrophobicity, both induced differentially by varying degrees of side chain fluorination, does affect peptide folding significantly. A greater degree of fluorination promotes peptide fibrillation and subsequent formation of physical hydrogels in physiological conditions. Molecular simulations revealed the key role played by electrostatically driven intra-chain and inter-chain contact pairs that are modulated by side chain fluorination and give insights into the different self-organization behaviour of selected peptides. Our study provides a systematic report about the distinct features of fluorinated oligomeric peptides with potential applications as peptide-based biomaterials. KW - Small-angle X-ray scattering KW - SAXS KW - Amyloid PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-553504 DO - https://doi.org/10.1039/D2NR01648F SN - 2040-3364 VL - 14 IS - 28 SP - 10176 EP - 10189 PB - Royal Society of Chemistry AN - OPUS4-55350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Navarro, L. A1 - Thünemann, Andreas A1 - Klinger, D. T1 - Solvent Annealing of Striped Ellipsoidal Block Copolymer Particles: Reversible Control over Lamellae Asymmetry, Aspect Ratio, and Particle Surface N2 - Solvent annealing is a versatile tool to adjust the shape and morphology of block copolymer (BCP) particles. During this process, polar solvents are often used for block-selective swelling. However, such water-miscible solvents can induce (partial) solubilization of one block in the surrounding aqueous medium, thus, causing complex structural variations and even particle disassembly. To reduce the complexity in morphology control, we focused on toluene as a nonpolar polystyrene-selective solvent for the annealing of striped polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) ellipsoids. The selective stretching of PS chains produces unique asymmetric lamellae structures, which translate to an increase in the particle aspect ratio after toluene evaporation. Complete reversibility is achieved by changing to chloroform as a nonselective solvent. Moreover, surfactants can be used to tune block-selective wetting of the particle surface during the annealing; for example, a PS shell can protect the internal lamellae structure from disassembly. Overall, this versatile postassembly process enables the tailoring of the structural features of striped colloidal ellipsoids by only using commercial BCPs and solvents. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle KW - Polymer PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543731 DO - https://doi.org/10.1021/acsmacrolett.1c00665 VL - 11 IS - 3 SP - 319 EP - 335 PB - American Chemical Society AN - OPUS4-54373 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wolf, J. A1 - Stawski, Tomasz A1 - Smales, Glen Jacob A1 - Thünemann, Andreas A1 - Emmerling, Franziska T1 - Towards automation of the polyol process for the synthesis of silver nanoparticles N2 - Metal nanoparticles have a substantial impact across diferent felds of science, such as photochemistry, energy conversion, and medicine. Among the commonly used nanoparticles, silver nanoparticles are of special interest due to their antibacterial properties and applications in sensing and catalysis. However, many of the methods used to synthesize silver nanoparticles often do not result in well-defned products, the main obstacles being high polydispersity or a lack of particle size tunability. We describe an automated approach to on-demand synthesis of adjustable particles with mean radii of 3 and 5 nm using the polyol route. The polyol process is a promising route for silver nanoparticles e.g., to be used as reference materials. We characterised the as-synthesized nanoparticles using small-angle X-ray scattering, dynamic light scattering and further methods, showing that automated synthesis can yield colloids with reproducible and tuneable properties. KW - Sillver KW - Nanoparticles KW - Automated synthesis KW - Chemputer KW - Scattering KW - SAXS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546803 DO - https://doi.org/10.1038/s41598-022-09774-w VL - 12 IS - 1 SP - 1 EP - 9 PB - Nature Springer AN - OPUS4-54680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Saloga, Patrick E. J. A1 - Rybak, Tina A1 - Thünemann, Andreas T1 - Microwave-Assisted Synthesis of ZnO Nanoparticles: Phase Transfer to Water N2 - Herein, a simple one-pot procedure is reported to obtain aqueous zinc oxide (ZnO) nanoparticle dispersions from ZnO nanoparticles dispersed in cyclohexane. In the process, polyoxyethylene (20) sorbitan monooleate (polysorbate 80, Tween 80) functions as a phase transfer agent and colloidal stabilizer. The particles grow in a defined manner during the transfer, presumably via coalescence. The final particle radii are tuneable in the range from 2.3 ± 0.1 nm to 5.7 ± 0.1 nm depending on the incubation time of the dispersion at 90 °C. Small-angle X-ray scattering is employed to determine the particle radius distributions before and after phase transfer. The larger ZnO particle radii are associated with a redshift of the optical bandgap and luminescence emission, as expected for semiconductor nanoparticles. The particles presented here exhibit a relative size distribution width of 20%, rendering them attractive for applications in, e.g., biology or catalysis. The latter application is demonstrated at the photocatalytic degradation of methylene blue dye. KW - SAXS KW - Small-angle X-ray scattering KW - nanoparticle PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551502 DO - https://doi.org/10.1002/adem.202101276 VL - 24 IS - 6 SP - 1 EP - 7 PB - Wiley AN - OPUS4-55150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krause, B. A1 - Meyer, T. A1 - Sieg, H. A1 - Kästner, Claudia A1 - Reichardt, P. A1 - Tentschert, J. A1 - Jungnickel, H. A1 - Estrela-Lopis, I. A1 - Burel, A. A1 - Chevance, S. A1 - Gauffre, F. A1 - Jalili, P. A1 - Meijer, J. A1 - Böhmert, L. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Emmerling, Franziska A1 - Fessard, V. A1 - Laux, P. A1 - Lampen, A. A1 - Luch, A. T1 - Characterization of aluminum, aluminum oxide and titanium dioxide nanomaterials using a combination of methods for particle surface and size analysis N2 - The application of appropriate analytical techniques is essential for nanomaterial (NM) characterization. In this study, we compared different analytical techniques for NM analysis. Regarding possible adverse health effects, ionic and particulate NM effects have to be taken into account. As NMs behave quite differently in physiological media, special attention was paid to techniques which are able to determine the biosolubility and complexation behavior of NMs. Representative NMs of similar size were selected: aluminum (Al0) and aluminum oxide (Al2O3), to compare the behavior of metal and metal oxides. In addition, titanium dioxide (TiO2) was investigated. Characterization techniques such as dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA) were evaluated with respect to their suitability for fast characterization of nanoparticle dispersions regarding a particle's hydrodynamic diameter and size distribution. By application of inductively coupled plasma mass spectrometry in the single particle mode (SP-ICP-MS), individual nanoparticles were quantified and characterized regarding their size. SP-ICP-MS measurements were correlated with the information gained using other characterization techniques, i.e. transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). The particle surface as an important descriptor of NMs was analyzed by X-ray diffraction (XRD). NM impurities and their co-localization with biomolecules were determined by ion beam microscopy (IBM) and confocal Raman microscopy (CRM). We conclude advantages and disadvantages of the different techniques applied and suggest options for their complementation. Thus, this paper may serve as a practical guide to particle characterization techniques. KW - Small-angle X-ray scattering KW - SAXS PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-447057 DO - https://doi.org/10.1039/C8RA00205C SN - 2046-2069 VL - 8 IS - 26 SP - 14377 EP - 14388 PB - The Royal Society of Chemistry AN - OPUS4-44705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bender, P A1 - Balceris, C. A1 - Ludwig, F A1 - Posth, O A1 - Bogart, L. K. A1 - Szczerba, Wojciech A1 - Castro, A A1 - Nilsson, L A1 - Costo, R A1 - Gavilan, H A1 - Gonzalez-Alonso, D A1 - de Pedro, I A1 - Barquin, L. F. A1 - Johansson, C T1 - Distribution functions of magnetic nanoparticles determined by a numerical inversion method N2 - In the present study, we applied a regularized inversion method to extract the particle size, magnetic moment and relaxation-time distribution of magnetic nanoparticles from small-angle x-ray scattering (SAXS), DC magnetization (DCM) and AC susceptibility (ACS) measurements. For the measurements the particles were colloidally dispersed in water. At first approximation the particles could be assumed to be spherically shaped and homogeneously magnetized single-domain particles. As model functions for the inversion, we used the particle form factor of a sphere (SAXS), the Langevin function (DCM) and the Debye model (ACS). The extracted distributions exhibited features/peaks that could be distinctly attributed to the individually dispersed and non-interacting nanoparticles. Further analysis of these peaks enabled, in combination with a prior characterization of the particle ensemble by electron microscopy and dynamic light scattering, a detailed structural and magnetic characterization of the particles. Additionally, all three extracted distributions featured peaks, which indicated deviations of the scattering (SAXS), magnetization (DCM) or relaxation (ACS) behavior from the one expected for individually dispersed, homogeneously magnetized nanoparticles. These deviations could be mainly attributed to partial agglomeration (SAXS, DCM, ACS), uncorrelated surface spins (DCM) and/or intra-well relaxation processes (ACS). The main advantage of the numerical inversion method is that no ad hoc assumptions regarding the line shape of the extracted distribution functions are required, which enabled the detection of these contributions. We highlighted this by comparing the results with the results obtained by standard model fits, where the functional form of the distributions was a priori assumed to be log-normal shaped. KW - SAXS KW - Small-angle X-ray scattering KW - Nanoparticle PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-429373 DO - https://doi.org/10.1088/1367-2630/aa73b4 SN - 1367-2630 VL - 19 SP - 073012, 1 EP - 073012, 19 PB - IOP Publ. Ltd. AN - OPUS4-42937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kästner, Claudia A1 - Böhmert, Linda A1 - Braeuning, Albert A1 - Lampen, Alfonso A1 - Thünemann, Andreas T1 - Fate of fluorescence labels - Their adsorption and desorption kinetics to silver nanoparticles N2 - Silver nanoparticles are among the most widely used and produced nanoparticles. Because of their frequent application in consumer products, the assessment of their toxicological potential has seen a renewed importance. A Major difficulty is the traceability of nanoparticles in in vitro and in vivo experiments. Even if the particles are labeled, for example, by a fluorescent marker, the dynamic exchange of ligands often prohibits their spatial localization. Our study provides an insight into the adsorption and desorption kinetics of two different fluorescent labels on silver nanoparticles with a core radius of 3 nm by dynamic light scattering, small-angle X-ray scattering, and fluorescence spectroscopy. We used BSA-FITC and tyrosine as examples for common fluorescent ligands. It is shown that the adsorption of BSA-FITC takes at least 3 days, whereas tyrosine adsorbs immediately. The quantitative amount of stabilizer on the particle surface was determined by fluorescence spectroscopy and revealed that the particles are stabilized by a monolayer of BSA-FITC (corresponding to 20 ± 9 molecules), whereas tyrosine forms a multilayered structure consisting of 15900 ± 200 molecules. Desorption experiments show that the BSA-FITC-stabilized particles are ideally suited for application in in vitro and in vivo experiments because the ligand desorption takes several days. Depending on the BSA concentration in the particles surroundings, the rate constant is k = 0.2 per day or lower when applying first order kinetics, that is, 50% of the BSAFITC molecules are released from the particle’s surface within 3.4 days. For illustration, we provide a first application of the fluorescence-labeled particles in an uptake study with two different commonly used cell lines, the human liver cell model HepG2 and the human intestinal cell model of differentiated Caco-2 cells. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle KW - Silver nanoparticles PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-452166 DO - https://doi.org/10.1021/acs.langmuir.8b01305 SN - 1520-5827 SN - 0743-7463 VL - 34 IS - 24 SP - 7153 EP - 7160 PB - American Chemical Society AN - OPUS4-45216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szczerba, Wojciech A1 - Costo, R. A1 - Veintemillas-Verdaguer, S. A1 - del Puerto Morales, M. A1 - Thünemann, Andreas T1 - SAXS analysis of single- and multi-core iron oxide magnetic nanoparticles N2 - This article reports on the characterization of four superparamagnetic iron oxide nanoparticles stabilized with dimercaptosuccinic acid, which are suitable candidates for reference materials for magnetic properties. Particles p1 and p2 are single-core particles, while p3 and p4 are multi-core particles. Small-angle X-ray scattering analysis reveals a lognormal type of size distribution for the iron oxide cores of the particles. Their mean radii are 6.9 nm (p1), 10.6 nm (p2), 5.5 nm (p3) and 4.1 nm (p4), with narrow relative distribution widths of 0.08, 0.13, 0.08 and 0.12. The cores are arranged as a clustered network in the form of dense mass fractals with a fractal dimension of 2.9 in the multi-core particles p3 and p4, but the cores are well separated from each other by a protecting organic shell. The radii of gyration of the mass fractals are 48 and 44 nm, and each network contains 117 and 186 primary particles, respectively. The radius distributions of the primary particle were confirmed with transmission electron microscopy. All particles contain purely maghemite, as shown by X-ray absorption fine structure spectroscopy KW - Superparamagnetic nanoparticles KW - Iron oxide KW - Reference materials KW - SAXS KW - Small-angle x-ray scattering KW - XANES KW - X-ray absorption near-edge structure KW - X-ray absorption fine structure PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-395948 DO - https://doi.org/10.1107/S1600576717002370 SN - 1600-5767 VL - 50 IS - Part 2 SP - 481 EP - 488 PB - (IUCr) International Union of Crystallography AN - OPUS4-39594 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kästner, Claudia A1 - Lichtenstein, Dajana A1 - Lampen, Alfonso A1 - Thünemann, Andreas T1 - Monitoring the fate of small silver nanoparticles during artificial digestion N2 - The report on the results of an in vitro digestion study of silver nanoparticles in presence and absenceof food. The particles were poly(acrylic acid) stabilized ultra-small silver nanoparticles with a radius of 3.1 nm and a relative size distribution width of 0.2. As food components oil, starch, skimmed milk powderand a mixture thereof were chosen. Aggregation of the particles was quantified with small-angle X-rayscattering in terms of log-normal radii distributions. Complete aggregation of the primary particles wasdetermined in the absence of food. In contrast, the presence of oil and starch initiates a disaggregationin the intestine. Only small aggregates of 6 nm radii and aggregation numbers of 7 were found in thepresence of milk powder. It prevents primary particles from etching in the gastric and intestinal juice.Our results indicate that the silver nanoparticles can pass the digestion process in a nanoscale form butundergo a strong and food-dependent transformation in their state of aggregation. KW - Small-angle X-ray scattering KW - SAXS PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-404099 DO - https://doi.org/10.1016/j.colsurfa.2016.08.013 SN - 0927-7757 SN - 1873-4359 VL - 526 SP - 76 EP - 81 PB - Elsevier B.V. AN - OPUS4-40409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Saloga, Patrick E. J. A1 - Kästner, Claudia A1 - Thünemann, Andreas T1 - High-speed but not magic: Microwave-assisted synthesis of ultra-small silver nanoparticles N2 - Reaction procedures have been improved to achieve higher yields and shorter reaction times: one possibility is the usage of microwave reactors. In the literature, this is under discussion, for example, nonthermal effects resulting from the microwave radiation are claimed. Especially for the synthesis of nanomaterials, it is of crucial importance to be aware of influences on the reaction pathway. Therefore, we compare the syntheses of ultra-small silver nanoparticles via conventional and microwave heating. We employed a versatile one-pot polyol synthesis of poly(acrylic acid)-stabilized silver nanoparticles, which display superior catalytic properties. No microwave-specific effects in terms of particle size distribution characteristics, as derived by small-angle X-ray scattering and dynamic light scattering, are revealed. Because of the characteristics of a closed system, microwave reactors give access to elevated temperatures and pressures. Therefore, the speed of particle formation can be increased by a factor of 30 when the reaction temperature is increased from 200 to 250 °C. The particle growth process follows a cluster coalescence mechanism. A postsynthetic incubation step at 250 °C induces a further growth of the particles while the size distribution broadens. Thus, utilization of microwave reactors enables an enormous decrease of the reaction time as well as the opportunity of tuning the particle size. Possibly, decomposition of the stabilizing ligand at elevated temperatures results in reduced yields. A compromise between short reaction times and high yields can be found at a temperature of 250 °C and a corresponding reaction time of 30 s. KW - Silver nanoparticles KW - SAXS KW - Small-angle X-ray scattering KW - Microwave synthesis PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-437028 DO - https://doi.org/10.1021/acs.langmuir.7b01541 SN - 0743-7463 SN - 1520-5827 VL - 34 IS - 1 SP - 147 EP - 153 PB - American Chemical Society CY - Washington, D.C. AN - OPUS4-43702 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kästner, Claudia A1 - Saloga, Patrick E. J. A1 - Thünemann, Andreas T1 - Kinetic monitoring of glutathione-induced silver nanoparticle disintegration N2 - We report on etching of polyacrylic acid-stabilised silver nanoparticles in the presence of glutathione (GSH). The initial particles with a radius of 3.2 nm and consisting of ∼8100 silver atoms dissolve in a two-step reaction mechanism while in parallel smaller silver particles with a radius of 0.65 nm and consisting of 60 to 70 silver atoms were formed. The kinetics of the etching of the initial particles, accompanied by formation of smaller silver particles was interpreted based on in situ, time-resolved small-angle X-ray scattering (SAXS) experiments. KW - Small-angle X-ray scattering KW - SAXS KW - Silver nanoparticles PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-452464 DO - https://doi.org/10.1039/c8nr02369g SN - 2040-3372 VL - 10 IS - 24 SP - 11485 EP - 11490 PB - The Royal Society of Chemistry AN - OPUS4-45246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Navarro, L. A1 - Thünemann, Andreas A1 - Yokosawa, T. A1 - Spiecker, E. A1 - Klinger, D. T1 - Regioselective Seeded Polymerization in Block Copolymer Nanoparticles: Post-Assembly Control of Colloidal Features N2 - Post-assembly modifications are efficient tools to adjust colloidal features of block copolymer (BCP) particles. However, existing methods often address particle shape, morphology, and chemical functionality individually. For simultaneous control, we transferred the concept of seeded polymerization to phase separated BCP particles. Key to our approach is the regioselective polymerization of (functional) monomers inside specific BCP domains. This was demonstrated in striped PS-b-P2VP ellipsoids. Here, polymerization of styrene preferably occurs in PS domains and increases PS lamellar thickness up to 5-fold. The resulting asymmetric lamellar morphology also changes the particle shape, i.e., increases the aspect ratio. Using 4-vinylbenzyl azide as co-monomer, azides as chemical functionalities can be added selectively to the PS domains. Overall, our simple and versatile method gives access to various multifunctional BCP colloids from a single batch of pre-formed particles. KW - Small-angle X-ray scattering KW - SAXS KW - Nanostructure KW - Polymer KW - Nanoparticle PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557246 DO - https://doi.org/10.1002/anie.202208084 SN - 1433-7851 VL - 61 IS - 35 SP - 1 EP - 11 PB - Wiley CY - Weinheim AN - OPUS4-55724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hildebrandt, Jana A1 - Taubert, Andreas A1 - Thünemann, Andreas T1 - Synthesis and Characterization of Ultra‐Small Gold Nanoparticles in the Ionic Liquid 1‐Ethyl‐3‐methylimidazolium Dicyanamide, [Emim][DCA] N2 - AbstractWe report on gold clusters with around 62 gold atoms and a diameter of 1.15±0.10 nm. Dispersions of the clusters are long‐term stable for two years at ambient conditions. The synthesis was performed by mixing tetrachloroauric acid (HAuCl4 ⋅ 3 H2O) with the ionic liquid 1‐ethyl‐3‐methylimidazolium dicyanamide ([Emim][DCA]) at temperatures of 20 to 80 °C. Characterization was performed with small‐angle X‐ray scattering (SAXS), UV‐Vis spectroscopy, and MALDI‐TOF mass spectrometry. A three‐stage model is proposed for the formation of the clusters, in which cluster growth from gold nuclei takes place according to the Lifshitz‐Slyozov‐Wagner (LSW) model followed by oriented attachment to form colloidal stable clusters. KW - Reference materials KW - SAXS KW - Gold KW - Nanoparticle KW - Small-angle X-ray scattering KW - Ionic liquid PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588203 DO - https://doi.org/10.1002/open.202300106 SN - 2191-1363 VL - 44 SP - 1 EP - 19 PB - Wiley AN - OPUS4-58820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, M. B. A1 - Fahrenson, C. A1 - Givelet, L. A1 - Herrmann, T. A1 - Loescher, K. A1 - Böhmert, L. A1 - Thünemann, Andreas A1 - Braeuning, A. A1 - Sieg, H. T1 - Beyond microplastics ‑ investigation on health impacts of submicron and nanoplastic particles after oral uptake in vitro N2 - The continuously increasing use of plastics is supposed to result in a rising exposure of MNPs to humans. Available data on human health risks of microplastics after oral uptake increased immensely in the past years and indicates very likely only low risks after oral consumption. Concerning nanoplastics, uptake, transport and potential adverse effects after oral uptake are less well understood. This study aims to investigate differences between microplastic particles and particles in the submicron- and nanoscaled size derived from food-relevant polymers with a particle size range consistent with higher potential for cellular uptake, fate, and effects when applied to human intestinal and liver cells. This work includes the development of cellular and subcellular detection methods for synthetic polymeric particles in the micro- and nanometer-range, using Scanning Electron Microscopy, Small-Angle X-ray and Dynamic Light Scattering methods, Asymmetric Flow Field Flow Fractionation, octanol-water fractionation, fluorescence microscopy and flow cytometry. Polylactic acid (250 nm and 2 μm (polydisperse)), melamine formaldehyde (366 nm) and polymethylmethacrylate (25 nm) were thoroughly characterized. The submicro- and nanoplastic test particles showed an increased uptake and transport quantity through intestinal cells. Both types of particles resulted in observed differences of uptake behavior, most likely influenced by different lipophilicity, which varied between the polymeric test materials. Toxic effects were detected after 24 h only in overload situations for the particles in the submicrometer range. This study provides further evidence for gastrointestinal uptake of submicro- and nanoplastics and points towards differences regarding bioavailability between microplastics and smaller plastic particles that may result following the ingestion of contaminated food and beverages. Furthermore, the results reinforce the importance for studying nanoplastics of different materials of varying size, surface properties, polymer composition and hydrophobicity. KW - Small-angle X-ray scattering KW - SAXS KW - nanoparticle PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550741 DO - https://doi.org/10.1186/s43591-022-00036-0 VL - 2 SP - 1 EP - 19 PB - Springer Nature AN - OPUS4-55074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Breßler, Ingo A1 - Kohlbrecher, J. A1 - Thünemann, Andreas T1 - SASfit: a tool for small-angle scattering data analysis using a library of analytical expressions N2 - SASfit is one of the mature programs for small-angle scattering data analysis and has been available for many years. This article describes the basic data processing and analysis workflow along with recent developments in the SASfit program package (version 0.94.6). They include (i) advanced algorithms for reduction of oversampled data sets, (ii) improved confidence assessment in the optimized model parameters and (iii) a flexible plug-in system for custom user-provided models. A scattering function of a mass fractal model of branched polymers in solution is provided as an example for implementing a plug-in. The new SASfit release is available for major platforms such as Windows, Linux and MacOS. To facilitate usage, it includes comprehensive indexed documentation as well as a web-based wiki for peer collaboration and online videos demonstrating basic usage. The use of SASfit is illustrated by interpretation of the small-angle X-ray scattering curves of monomodal gold nanoparticles (NIST reference material 8011) and bimodal silica nanoparticles (EU reference material ERM-FD-102). KW - Small-angle X-ray scattering KW - Small-angle neutron scattering KW - Curve fitting KW - Nanotechnology KW - Nanoparticles KW - Polymers KW - SAXS PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-343348 DO - https://doi.org/10.1107/S1600576715016544 SN - 0021-8898 SN - 1600-5767 VL - 48 SP - 1587 EP - 1598 PB - Blackwell CY - Oxford AN - OPUS4-34334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -