TY - JOUR A1 - Solberg, S. A1 - Zimmermann, P. A1 - Wilhelmsen, Ø. A1 - Lamb, J. A1 - Bock, Robert A1 - Burheim, O. T1 - Heat to Hydrogen by Reverse Electrodialysis—Using a Non-Equilibrium Thermodynamics Model to Evaluate Hydrogen Production Concepts Utilising Waste Heat N2 - The reverse electrodialysis heat engine (REDHE) is a promising salinity gradient energy technology, capable of producing hydrogen with an input of waste heat at temperatures below 100 °C. A salinity gradient drives water electrolysis in the reverse electrodialysis (RED) cell, and spent solutions are regenerated using waste heat in a precipitation or evaporation unit. This work presents a non-equilibrium thermodynamics model for the RED cell, and the hydrogen production is investigated for KCl/water solutions. The results show that the evaporation concept requires 40 times less waste heat and produces three times more hydrogen than the precipitation concept. With commercial evaporation technology, a system efficiency of 2% is obtained, with a hydrogen production rate of 0.38 gH2 m−2h−1 and a waste heat requirement of 1.7 kWh g−1H2. The water transference coefficient and the salt diffusion coefficient are identified as membrane properties with a large negative impact on hydrogen production and system efficiency. Each unit of the water transference coefficient in the range tw=[0–10] causes a −7 mV decrease in unit cell electric potential, and a −0.3% decrease in system efficiency. Increasing the membrane salt diffusion coefficient from 10−12 to 10−11 leads to the system efficiency decreasing from 2% to 0.6% KW - Non-equilibrium thermodynamics KW - Hydrogen KW - Waste heat KW - RED PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-556677 VL - 15 IS - 16 SP - 6011 PB - MDPI AN - OPUS4-55667 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -