TY - JOUR A1 - An, Biwen Annie A1 - Deland, Eric A1 - Sobol, Oded A1 - Yao, Jizheng A1 - Skovhus, T. L. A1 - Koerdt, Andrea T1 - The differences in the corrosion product compositions of Methanogen-induced microbiologically influenced corrosion (Mi-MIC) between static and dynamic growth conditions JF - Corrosion Science N2 - Currently, corrosion rates (CR) and/or corrosion products (CP) obtained for methanogen-induced microbiologically influenced corrosion (Mi-MIC) on carbon steel are mainly analyzed from static-incubations. By using a multiport-flow-column, much higher CRs (0.72 mm/yr) were observed, indicating static-incubations are not suitable for determining the corrosive potential of Mi-MIC. With the combination of various analytical methods (ToF-SIMS/SEM-EDS/SEM-FIB) and contrary to previously published data, we observed that CPs contained phosphorus, oxygen, magnesium, calcium and iron but lacked carbon-related species (e.g. siderite). Overall, siderite nucleation is disrupted by methanogens, as they convert aqueous bicarbonate into carbon dioxide for methanogenesis resulting in increased localized corrosion. KW - Carbon steel KW - Modelling studies KW - SIMS KW - SEM KW - Reactor conditions KW - Microbiologically influenced corrosion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517632 DO - https://doi.org/10.1016/j.corsci.2020.109179 SN - 0010-938X VL - 180 SP - 9179 PB - Elsevier AN - OPUS4-51763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - An, Biwen Annie A1 - Kleinbub, Sherin A1 - Özcan Sandikcioglu, Özlem A1 - Koerdt, Andrea T1 - Iron to Gas: Versatile Multiport Flow-Column Revealed Extremely High Corrosion Potential by Methanogen-Induced Microbiologically Influenced Corrosion (Mi-MIC) JF - Bioleaching and Biocorrosion: Advances in Interfacial Processes N2 - Currently, sulfate-reducing bacteria (SRB) is regarded as the main culprit of microbiologically influenced corrosion (MIC), mainly due to the low reported corrosion rates of other microorganisms. For example, the highest reported corrosion rate for methanogens is 0.065 mm/yr. However, by investigating methanogen-induced microbiologically influenced corrosion (Mi-MIC) using an in-house developed versatile multiport flow test column, extremely high corrosion rates were observed. We analyzed a large set of carbon steel beads, which were sectionally embedded into the test columns as substrates for iron-utilizing methanogen Methanobacterium IM1. After 14 days of operation using glass beads as fillers for section separation, the highest average corrosion rate of Methanobacterium IM1 was 0.2 mm/yr, which doubled that of Desulfovibrio ferrophilus IS5 and Desulfovibrio alaskensis 16109 investigated at the same conditions. At the most corroded region, nearly 80% of the beads lost 1% of their initial weight (fast-corrosion), resulting in an average corrosion rate of 0.2 mm/yr for Methanobacterium IM1-treated columns. When sand was used as filler material to mimic sediment conditions, average corrosion rates for Methanobacterium IM1 increased to 0.3 mm/yr (maximum 0.52 mm/yr) with over 83% of the beads having corrosion rates above 0.3 mm/yr. Scanning electron images of metal coupons extracted from the column showed methanogenic cells were clustered close to the metal surface. Methanobacterium IM1 is a hydrogenotrophic methanogen with higher affinity to metal than H2. Unlike SRB, Methanobacterium IM1 is not restricted to the availability of sulfate concentration in the environment. Thus, the use of the multiport flow column provided a new insight on the corrosion potential of methanogens, particularly in dynamic conditions, that offers new opportunities for monitoring and development of mitigation strategies. Overall, this study shows under certain conditions methanogenic archaea can cause higher corrosion than SRB, specific quantifications, i.e., maximum, average, and minimum corrosion rates can be determined, and that spatial statistical evaluations of MIC can be carried out. KW - Microbiologically influenced corrosion KW - Methanogen KW - Methane KW - Biocorrosion KW - Flow system KW - Modeling KW - Multiport PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506084 DO - https://doi.org/10.3389/fmicb.2020.00527 VL - 11 SP - Article 527 PB - Frontiers in microbiology AN - OPUS4-50608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dopffel, N. A1 - An-Stepec, B. A. A1 - de Rezende, J. A1 - Machado de Sousa, D. A1 - Koerdt, Andrea T1 - Microbiology of Underground Hydrogen Storage JF - Frontiers in Energy Research N2 - Climate change is becoming one of the greatest challenges facing our society, particularly due to the continued use of fossil fuels. The steadily increasing demand for energy and the continuously growing world population will further intensify these challenges. The development of renewable energies is therefore of central importance. The 2020 EU Energy Roadmap aims to increase the share of renewable energies (gross energy consumption) to 55% by 2050. Hydrogen (H2) has the highest potential to become the primary renewable energy source. It is envisioned that by 2050 up to 24% of the total energy demand of Europe is to be ensured by H2. However, a decisive disadvantage of the climate friendly alternatives is the massive containment demand, which needs to be highly secure, cost efficient and easily extractable. Underground geological formations (UGF) represent a seemingly optimal alternative to meet the rapidly increasing storage demand. In this context, many studies are currently underway to determine the feasibility and risks of UGF. However, little or no consideration is being given to microbiology. Therefore, in this Research Topic we will focus on achieving a greater understanding of the impact microorganisms exert on UGF, with a particular emphasis on interdisciplinary studies. As many subsurface microbial communities can use H2 as an electron donor, production of seemingly undesirable metabolic byproducts, such as hydrogen sulfide, methane, and acids, are also to be expected. However, the rate of the H2 conversion by the microorganisms, how their metabolic activities impact the UGF on a short-term and long-term scale, the extent of damages microorganisms exert on the infrastructure, or potential use of microorganisms to enhance UGF are just a few questions that require urgent research to assess the role of microorganisms in this new anthropogenic use of the subsurface environment. These and many questions can be addressed in this article collection. In particular, understanding microbial community changes and activity rates will help assess operational and environmental risks, develop mitigation strategies and provide new insights on life under extreme conditions (i.e., pressure, salinity). In this Research Topic, the editorial team particularly welcomes Original Research, Hypothesis and Theory, Method, and Review manuscripts that deal with the latest advances in microbiology in formations that are planned or currently prepared for hydrogen storage, from both fundamental and practical points of view. The ultimate objective is to promote a deeper understanding into the sustainability of UGF and generate interdisciplinary research involving microbiologists, reservoir engineers, geologists, chemists, physicists. The topics of interest include, but are not limited to: • Microbial diversity in different underground hydrogen storage sites or formations currently being considered for hydrogen storage • Mechanism and impact of microbial growth under high H2 pressure • Potential role of microorganisms in the short-term and long-term storage of hydrogen • Potential influences of microorganisms on the hydrogen storage infrastructure systems, e.g., microbiologically influenced corrosion, biofilm growth • Hydrogen-solid-microorganism interactions, including the influence of microbial growth on UGF geological parameters • Mechanism and modelling of microbial impact on hydrogen storage UGF relevant for this Research Topic include porous media, salt caverns, deep aquifers, hard rock caverns and depleted oil/gas reservoirs. KW - Biodeterioration and biodegradation KW - Geology KW - Anaerobic pathways KW - Microbial simulation, KW - Hydrogen storage PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579042 DO - https://doi.org/10.3389/fenrg.2023.1242619 SN - 2296-598X VL - 11 SP - 1 EP - 3 PB - Frontiers CY - Frontiers in Energy Research AN - OPUS4-57904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Maren A1 - Kleinbub, Sherin A1 - Wachtendorf, Volker A1 - Schütter, Jan David A1 - Niebergall, Ute A1 - Böhning, Martin A1 - Koerdt, Andrea T1 - Photo-oxidation of PE-HD affecting polymer/fuel interaction and bacterial attachment JF - Materials Degradation N2 - In the present study, a simple approach was used to investigate the effect of UV-exposure on two high density Polyethylene materials (PE-HD), commonly used for storage tanks, on fuel sorption behavior and colonization by microorganisms. The aim was to investigate whether the sorption behavior of the fuels (diesel/biodiesel) and the colonization by microorganisms, frequently occurring in the fuel, is affected and may lead to undesirable or safety-relevant material changes. We showed that the UV-irradiation leads to significant changes of the sorption behavior due to chemi-crystallization and crosslinking. The fuel Sorption is affected by the UV-induced formation of polar carbonyl and hydroxyl groups predominantly occurring at the surface. With respect to microbial colonization behavior for Bacillus subtilis and Pseudomonas aeruginosa, isolated from a contaminated diesel sample, differences of the initial adhesion could be shown depending on the initial type of polyethylene as well as on the degree of UV-induced degradation. KW - High density polyethylene KW - Bacterial attachment KW - UV-irradiation KW - Fuel sorption PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510001 DO - https://doi.org/10.1038/s41529-020-0122-1 VL - 4 IS - 1 SP - Article number: 18 PB - Nature Partner Journals AN - OPUS4-51000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Koerdt, Andrea T1 - Mikrobiell beeinflusste Korrosion – die Testungsart entscheidet JF - Karriere, Köpfe & Konzepte N2 - In diesem kurzem Artikel wird die neue Testungsart druch Hi-Tension vorgestellt. Der Hauptfokus liegt dabei auf die Umweltsimulations-Säule, mit deren Hilfe die bisher bekannten Korrosionsraten von methanogenen Archaea signifikant erhöht wurden. KW - Hi-Tension KW - MIC KW - Methanogene KW - Umweltsimulation PY - 2021 DO - https://doi.org/10.1007/s12268-021-1507-7 VL - 27 SP - 100 EP - 100 PB - BIOspektrum Springer AN - OPUS4-52193 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Taghavi Kalajahi, Sara A1 - Misra, Archismita A1 - Koerdt, Andrea T1 - Nanotechnology to mitigate microbiologically influenced corrosion (MIC) N2 - Microbiologically influenced corrosion (MIC) is a crucial issue for industry and infrastructure. Biofilms are known to form on different kinds of surfaces such as metal, concrete, and medical equipment. However, in some cases the effect of microorganisms on the material can be negative for the consistency and integrity of the material. Thus, to overcome the issues raised by MIC on a system, different physical, chemical, and biological strategies have been considered; all having their own advantages, limitations, and sometimes even unwanted disadvantages. Among all the methods, biocide treatments and antifouling coatings are more common for controlling MIC, though they face some challenges. They lack specificity for MIC microorganisms, leading to cross-resistance and requiring higher concentrations. Moreover, they pose environmental risks and harm non-target organisms. Hence, the demand for eco-friendly, long-term solutions is increasing as regulations tighten. Recently, attentions have been directed to the application of nanomaterials to mitigate or control MIC due to their significant antimicrobial efficiency and their potential for lower environmental risk compared to the conventional biocides or coatings. Use of nanomaterials to inhibit MIC is very new and there is a lack of literature review on this topic. To address this issue, we present a review of the nanomaterials examined as a biocide or in a form of a coating on a surface to mitigate MIC. This review will help consolidate the existing knowledge and research on the use of nanomaterials for MIC mitigation. It will further contribute to a better understanding of the potential applications and challenges associated with using nanomaterials for MIC prevention and control. KW - Microbiologically influenced corrosion (MIC) KW - Biofilm KW - Biofouling KW - Nanobiocide KW - Nanocoating PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599335 DO - https://doi.org/10.3389/fnano.2024.1340352 VL - 6 SP - 1 EP - 25 AN - OPUS4-59933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yao, J. A1 - Jiang, T. A1 - Ji, Y. A1 - An-Stepec, Biwen Annie A1 - Koerdt, Andrea A1 - Cai, Z. A1 - Dong, C. A1 - Ge, Y. A1 - Qi, Z. T1 - Water-Fueled Autocatalytic Bactericidal Pathway based on e-Fenton-Like Reactions Triggered by Galvanic Corrosion and Extracellular Electron Transfer JF - Journal of Hazardous Materials N2 - Water is generally considered to be an undesirable substance in fuel system, which may lead to microbial contamination. The antibacterial strategies that can turn water into things of value with high disinfection efficacy have been urgently needed for fuel system. Here, we reveal a water-fueled autocatalytic bactericidal pathway comprised by bi-metal micro-electrode system, which can spontaneously produce reactive oxygen species (mainly H2O2 and O2•–) by the electron Fenton-like reaction in water medium without external energy., The respiratory chain component of bacteria and the galvanic corrosion on the coated metals were two electron sources in the system. The specific model of Ag-Ru water-fueled autocatalytic (WFA) microelectrode particles presents extremely high disinfection efficiency (>99.9999%) in less than one hour for three aerobic bacteria (Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis) in LB media and high disinfection efficiency for the anaerobic bacteria (Desulfovibrio alaskensis) in Postgate E media without natural light irradiation. Overall, the novel WFA Ag-Ru antibacterial material explored in this study has a high potential for sterilizing applications in fuel system and this work provides the potential for the development of non-chemical and water-based antibacterial materials, such as WFA Ag-Ru antibacterial coating on stainless steel. KW - Fenton-like reaction KW - Reactive oxygen species KW - Disinfection Fuel KW - Silver KW - Ruthenium KW - MIC PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555186 DO - https://doi.org/10.1016/j.jhazmat.2022.129730 SN - 0304-3894 VL - 440 SP - 1 EP - 11 PB - Elsevier CY - Amsterdam AN - OPUS4-55518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -