TY - CONF A1 - Petrat, T. A1 - Graf, B. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael ED - Schmidt, M. ED - Vollertsen, F. ED - Arnold, C. B. T1 - Laser metal deposition as repair technology for a gas turbine burner made of Inconel 718 N2 - Maintenance, repair and overhaul of components are of increasing interest for parts of high complexity and expensive manufacturing costs. In this paper a production process for laser metal deposition is presented, and used to repair a gas turbine burner of Inconel 718. Different parameters for defined track geometries were determined to attain a near net shape deposition with consistent build-up rate for changing wall thicknesses over the manufacturing process. Spot diameter, powder feed rate, welding velocity and laser power were changed as main parameters for a different track size. An optimal overlap rate for a constant layer height was used to calculate the best track size for a fitting layer width similar to the part dimension. Deviations in width and height over the whole build-up process were detected and customized build-up strategies for the 3D sequences were designed. The results show the possibility of a near net shape repair by using different track geometries with laser metal deposition. T2 - LANE - 9 International Conference on Photonic Technologies CY - Fürth, Germany DA - 19.09.2016 KW - Laser metal deposition KW - Inconel 718 KW - Additive manufacturing KW - Maintenance KW - Repair and overhaul PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-376723 UR - http://ac.els-cdn.com/S1875389216301857/1-s2.0-S1875389216301857-main.pdf?_tid=ed1d75de-84a2-11e6-af94-00000aab0f6c&acdnat=1474974777_4917d753cb3d316c4b000ba0760778b5 DO - https://doi.org/10.1016/j.phpro.2016.08.078 SN - 1875-3892 VL - 83 SP - 761 EP - 768 PB - Elservier AN - OPUS4-37672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hernández-Nava, E. A1 - Smith, C.J. A1 - Derguti, F. A1 - Tammas-Williams, S. A1 - Léonard, Fabien A1 - Withers, P. J. A1 - Todd, I. A1 - Goodall, R. T1 - The effect of defects on the mechanical response of Ti-6Al-4V cubic lattice structures fabricated by electron beam melting N2 - Electron Beam Melting (EBM) as a means of Additive Manufacturing (AM), is of interest for the fabrication of intricate geometries for cellular materials in areas where complex architectures are needed, e.g. biomedical implants. Most studies have focused on specific geometries and so the effect of the structure on mechanical performance is not well understood. Many kinds of micro- and macro-scale defects can arise in additively manufactured components, so assessment of their influence on properties is needed. In this work, lattices of Ti-6Al-4V having a cubic structure have been manufactured by EBM, and the effect of heat treatments above and below the β-transus temperature on microstructure and compression response have been investigated. The former modifies only slightly the α + β structure and mechanical performance whereas the latter leads to coarse alternating α and β lamellae packets and α at the prior grain boundaries with a 10% loss in yield strength. The variation in the compressive yield stress with strut diameter is in good accord with simple models based on compressive deformation rather than shearing or buckling. Internal pores for struts aligned with the build direction are found around the edges of the solid form, in regions which seem to be associated with the EB scan pattern. Struts normal to the build direction show more significant defects but their redundancy means that they do not compromise the compressive performance in the build direction. Using a particle size in the range 45–100 μm minimum weld-track sizes were experimentally and numerically identified to be 176 and 148 μm in depth respectively with a depth-to-width ratio of 0.55. This produced a beam pass of the order of 300 μm oversizing small features (struts of 0.4 and 0.6 mm nominal diameter) when a contour around the strut periphery was applied. KW - Cellular solids KW - Additive manufacturing KW - Titanium alloy KW - Mechanical properties KW - X-ray computed tomography PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-390686 DO - https://doi.org/10.1016/j.actamat.2016.02.029 SN - 1359-6454 VL - 108 SP - 279 EP - 292 PB - Elsevier Ltd. CY - Amsterdam [u.a.] AN - OPUS4-39068 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dantas, A. A1 - Scalabrin, D. A1 - Farias, R. A1 - Barbosa, A. A. A1 - Ferraz, A. A1 - Wirth, Cynthia T1 - Design of highly porous hydroxyapatite scaffolds by conversion of 3D printed gypsum structures – a comparison study N2 - Hydroxyapatite (HA) is a bioceramic material with excellent biological properties. However, these properties are strongly dependent of ist crystallinity degree, with high values of crystallinity associated to poor resorption rates and bioactivity. This work evaluates the properties of HA samples produced by two different free-forming conformation methods, CNC machining and 3D printing. In both cases, porous gypsum samples were produced and subsequently converted into HA in a reaction with di-ammonium hydrogen phosphate at 100°C and pH 8. A total conversion of the samples was achieved after 36 h independently of the conformation method used. The microstructure, however, before and after the conversion is showed to be dependent on the method used. After conversion the machined samples achieved a Maximum compressive strength of 3.5 MPaforporosities of circa 80%, while 3D printed samples achieved a tensile strength of 2.0 MPa by porosities of 61%. T2 - The Second CIRP Conference on Biomanufacturing CY - Manchester Conference Centre, UK DA - July 29, 2015 KW - Additive manufacturing KW - 3D printing PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-400831 DO - https://doi.org/10.1016/j.procir.2015.07.030 SN - 2212-8271 VL - 49 SP - 55 EP - 60 PB - Elsevier AN - OPUS4-40083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -