TY - JOUR A1 - Kruschwitz, Sabine T1 - NDT for microstructure and moisture investigation of porous building material JF - The e-journal of nondestructive testing & ultrasonics N2 - Non-destructive testing methods are mostly applied and established for the detection of embedded mounting parts or structural defects in building elements. The assessment of the concrete microstructure or microstructural changes like chemical alterations or the formation of microcracks, e.g. due to material aging, freeze-thaw cycles, alkali-silica reaction and ettringite, is not in the focus of ndt research though. Concrete moisture and enhanced salt contents, which usually trigger all chemical microstructural changes, are other material properties, lacking reliable ways of measuring. But, the assessment of such material properties, on the long term also in a depth resolved manner, is definitely important, when the sustainability of our concrete infrastructure buildings shall be evaluated. New consideration like the potential use of ndt, in particular the combination of different methods and alternate ways of data analysis are subject of research currently undertaken at BAM. These approaches involve for example working towards (i) a deeper understanding of how to measure moisture distributions reliably and follow transport phenomena, (ii) the use of stray phenomena in radar and ultrasound to locate material inhomogeneities or (iii) the application of LIBS for the delineation of diffusion and migration processes but also (iv) the use of new tools for data analysis like data fusion. First results are presented and new ideas discussed. T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering CY - Berlin, Germany DA - 15.09.2015 KW - Screed KW - Moisture KW - Non-destructive testing KW - Radar KW - Microstructure KW - Monitoring KW - Concrete deterioration KW - Cracking PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-347593 UR - http://www.ndt.net/?id=18354 SN - 1435-4934 VL - 20 IS - 11 SP - 1 EP - 5 PB - NDT.net CY - Kirchwald AN - OPUS4-34759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kruschwitz, Sabine A1 - Feldmann, Rüdiger T1 - Comparison of non-destructive moisture measurement methods on cement and calcium sulphate based screed samples JF - The e-journal of nondestructive testing & ultrasonics N2 - Measuring the moisture content of floor screeds is usually done with minor destructive testing methods like Darr drying or the Calcium Carbid (CM) method. These require small samples, deliver only punctual information and still have proven not to be very reliable. Hence, a study has been made using the standard destructive tests as well as a suite of non-destructive testing methods working out their use for moisture determination. In this study five partners from research institutes and industry worked together and intensively researched different technologies. The main focus was put on the varying sensitivity of the measuring techniques in different moisture ranges. Especially for low moisture contents ( or ‘critical’ moisture contents when the screed is dry enough to be covered with the final floor finish), several commercial devices including the most commonly used CM-method failed to determine the correct moisture content for cementitious samples. Hence the need for more accurate, if possible non-destructive methods is high, taking also into account that the chemistry (and physical properties) of screeds may vary strongly depending on their origin and purpose. T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering CY - Berlin, Germany DA - 15.09.2015 KW - Screed KW - Moisture KW - Non-destructive testing KW - Radar KW - Capacitive methods KW - Resistivity KW - Multi-sensor KW - Electrics KW - Monitoring PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-347602 UR - http://www.ndt.net/?id=18368 SN - 1435-4934 VL - 20 IS - 11 SP - 1 EP - 4 PB - NDT.net CY - Kirchwald AN - OPUS4-34760 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kruschwitz, Sabine A1 - Bischof, Eik A1 - Taffe, A. T1 - Multi-sensor investigation of concrete moisture using ultrasound, radar and microwave JF - The e-journal of nondestructive testing & ultrasonics N2 - Moisture and salt loads of concrete can significantly change its microstructure and consequently lead to chemical and mechanical degradation. However, the non-destructive investigation of moisture and salt present in concrete is still difficult. In order to address and compare the sensitivity of different methods concrete samples with different pore systems realized by varying the w/z ratios have been fabricated. The focus of this study was put on the analysis of ultrasonic long and trans waves measured on the surface and in transmission mode. The results show clear dependencies of all applied methods. With the radar and microwave methods predominantly changes in the concrete moisture could be detected, whereas the different pore systems were not observed to alter the signals. In contrast for the ultrasound method also the ongoing hydration as well as the nature of the pore system strongly influenced the signals. As a consequence in a subsequent drying experiment it was also tried to delineate the effects of moisture and hydration. All specimens have been re-saturated under pressure and the drying experiment was repeated using the same multi-sensor approach. T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering CY - Berlin, Germany DA - 15.09.2015 KW - Concrete KW - Moisture KW - Non-destructive testing KW - Ultrasound KW - Radar KW - Velocities KW - Microwave KW - Multi-sensor approach PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-347612 UR - http://www.ndt.net/?id=18322 SN - 1435-4934 VL - 20 IS - 11 SP - 1 EP - 4 PB - NDT.net CY - Kirchwald AN - OPUS4-34761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -