TY - RPRT A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Maiwald, Michael ED - Maiwald, Michael T1 - Validation report on NMR N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug and play integration, even though they may appear to be more complex at first sight. Smart sensors enable concepts like self-diagnostics, self-calibration, and self-configuration/ parameterization whenever our current automation landscape allows it. Here we summarize the currently discussed general requirements for process sensors 4.0 and introduce a smart online NMR sensor module as example, which was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme (www.consensspire.eu). KW - Process Monitoring KW - Online NMR Spectroscopy KW - Indirect Hard Modeling KW - Process Control KW - Process Analytical Technology KW - CONSENS PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-435521 SP - 1 EP - 31 AN - OPUS4-43552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kern, Simon A1 - Wander, Lukas A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Gottu Mukkula, A. R. A1 - Holtkamp, M. A1 - Salge, M. A1 - Fleischer, C. A1 - Weber, N. A1 - Engell, S. A1 - Paul, Andrea A1 - Pereira Remelhe, M. A1 - Maiwald, Michael T1 - Flexible automation with compact NMR spectroscopy for continuous production of pharmaceuticals JF - Analytical and Bioanalytical Chemistry N2 - Modular plants using intensified continuous processes represent an appealing concept for the production of pharmaceuticals. It can improve quality, safety, sustainability, and profitability compared to batch processes; besides, it enables plug-and-produce reconfiguration for fast product changes. To facilitate this flexibility by real-time quality control, we developed a solution that can be adapted quickly to new processes and is based on a compact nuclear magnetic resonance (NMR) spectrometer. The NMR sensor is a benchtop device enhanced to the requirements of automated chemical production including robust evaluation of sensor data. Beyond monitoring the product quality, online NMR data was used in a new iterative optimization approach to maximize the plant profit and served as a reliable reference for the calibration of a near-infrared (NIR) spectrometer. The overall approach was demonstrated on a commercial-scale pilot plant using a metal-organic reaction with pharmaceutical relevance. KW - NMR Spectroscopy KW - NIR Spectroscopy KW - Real-time process monitoring KW - Real-time quality control KW - Continuous processes KW - CONSENS KW - Data Fusion PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-480623 DO - https://doi.org/10.1007/s00216-019-01752-y SN - 1618-2642 SN - 1618-2650 VL - 411 IS - 14 SP - 3037 EP - 3046 PB - Springer Nature CY - Heidelberg AN - OPUS4-48062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gottu Mukkula, A. R. A1 - Kern, Simon A1 - Salge, M. A1 - Holtkamp, M. A1 - Guhl, Svetlana A1 - Fleischer, C. A1 - Meyer, Klas A1 - Remelhe, M. A1 - Maiwald, Michael A1 - Engell, S. T1 - An Application of Modifier Adaptation with Quadratic Approximation on a Pilot Scale Plant in Industrial Environment JF - IFAC-PapersOnLine N2 - The goal of this work is to identify the optimal operating input for a lithiation reaction that is performed in a highly innovative pilot scale continuous flow chemical plant in an industrial environment, taking into account the process and safety constraints. The main challenge is to identify the optimum operation in the absence of information about the reaction mechanism and the reaction kinetics. We employ an iterative real-time optimization scheme called modifier adaptation with quadratic approximation (MAWQA) to identify the plant optimum in the presence of plant-model mismatch and measurement noise. A novel NMR PAT-sensor is used to measure the concentration of the reactants and of the product at the reactor outlet. The experiment results demonstrate the capabilities of the iterative optimization using the MAWQA algorithm in driving a complex real plant to an economically optimal operating point in the presence of plant-model mismatch and of process and measurement uncertainties. KW - Process Analytical Technology KW - Online NMR Spectroscopy KW - Process Industry KW - Iterative real-time optimization KW - Modifier adaptation KW - Plant-model mismatch KW - Reactor control KW - CONSENS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524531 DO - https://doi.org/10.1016/j.ifacol.2020.12.685 SN - 1522-2640 VL - 53 IS - 2 SP - 11773 EP - 11779 PB - Elsevier CY - Amsterdam AN - OPUS4-52453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Michalik-Onichimowska, Aleksandra A1 - Riedel, Jens A1 - Panne, Ulrich A1 - King, R. A1 - Maiwald, Michael ED - Herwig, Christoph T1 - “Click” analytics for “click” chemistry – a simple method for calibration-free evaluation of online NMR spectra T2 - Tagungsband 11. Interdisziplinäres Doktorandenseminar N2 - Currently, research in chemical manufacturing moves towards flexible plug-and-play approaches focusing on modular plants, capable of producing small scales on-demand with short down-times between individual campaigns. This approach allows for efficient use of hardware, a faster optimization of the process conditions, and thus, an accelerated introduction of new products to the market. Driven mostly by the search for chemical syntheses under biocompatible conditions, so-called “click” chemistry rapidly became a growing field of research. The resulting simple one-pot reactions are so far only scarcely accompanied by an adequate optimization via comparably straightforward and robust analysis techniques. Here we report on a fast and reliable calibration-free online high field NMR monitoring approach for technical mixtures. It combines a versatile fluidic system, continuous-flow measurement with a time interval of 20 s per spectrum, and a robust, automated algorithm to interpret the obtained data. All spectra were acquired using a 500 MHz NMR spectrometer (Varian) with a dual band flow probe having a 1/16-inch polymer tubing working as a flow cell. Single scan 1H NMR spectra were recorded with an acquisition time of 5 s, relaxation delay of 15 s. As a proof-of-concept, the thiol-ene coupling between N-boc cysteine methyl ester and allyl alcohol was conducted in non-deuterated solvents while its time-resolved behaviour was characterised with step tracer experiments. Through the application of spectral modeling the signal area for each reactant can be deconvoluted in the online spectra and thus converted to the respective concentrations or molar ratios. The signals which were suitable for direct integration were used herein for comparison purposes of both methods. T2 - 11. Interdisziplinäres Doktorandenseminar CY - Berlin, Germany DA - 12.03.2017 KW - Process Monitoring KW - Online NMR Spectroscopy KW - Indirect Hard Modeling KW - Process Control KW - Process Analytical Technology KW - CONSENS KW - Click Chemistry PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-435531 SP - 33 EP - 35 PB - Gesellschaft Deutscher Chemiker (GDCh) CY - Frankfurt a. M. AN - OPUS4-43553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Zientek, Nicolai A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Kern, Simon T1 - Strangers in the Night—Smart Process Sensors in Our Current Automation Landscape T2 - Proceedings N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Smart sensors enable concepts like self-diagnostics, self-calibration, and self-configuration/parameterization whenever our current automation landscape allows it. Here we summarize the currently discussed general requirements for process sensors 4.0 and introduce a smart online NMR sensor module as example, which was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme (www.consens-spire.eu). T2 - Eurosensors 2017 Conference CY - Paris, France DA - 03.09.2017 KW - Process Monitoring KW - Smart Sensors KW - CONSENS KW - Online NMR Spectroscopy KW - Mini-plant PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-415772 UR - http://www.mdpi.com/2504-3900/1/4/628 DO - https://doi.org/10.3390/proceedings1040628 VL - 1 SP - 628 EP - 631 PB - MDPI CY - Basel AN - OPUS4-41577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -