TY - JOUR A1 - Batzdorf, Lisa A1 - Emmerling, Franziska T1 - Mechanochemical synthesis and characterisation of cocrystals and metal-organic compounds N2 - The mechanochemical synthesis of two model compounds, a metal organic framework ([Bi(1,4-bdc)2]*(Im) (bdc = benzene dicarboxylate, Im = imidazole cation)) and a cocrystal (Carbamazepine:Indometacin 1:1) were followed ex situ by combined analytical methods. Powder X-ray diffraction (XRD) and Raman spectroscopy data were evaluated for the synthesis of the metal organic framework. XRD measurements and REM images were analysed for the synthesis of the cocrystal. The measurements revealed that both model compounds were synthesised within minutes. The metal organic framework [Bi(1,4-bdc)2]*(Im) is synthesised via an intermediate structure. The cocrystal Carbamazepine:Indometacin 1:1 is formed within few seconds and afterwards the crystallite size decreases extremely. KW - Powder X-ray diffraction (XRD) KW - Raman spectroscopy KW - mechanochemical synthesis PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-306305 UR - http://pubs.rsc.org/en/content/articlepdf/2014/fd/c3fd00163f DO - https://doi.org/10.1039/C3FD00163F SN - 1359-6640 SN - 1364-5498 N1 - Geburtsname von Batzdorf, Lisa: Tröbs, L. - Birth name of Batzdorf, Lisa: Tröbs, L. SP - 109 EP - 119 PB - RSC CY - Cambridge [u.a.] AN - OPUS4-30630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stoch, P. A1 - Szczerba, Wojciech A1 - Bodnar, W. A1 - Ciecinska, M. A1 - Stoch, A. A1 - Burkel, E. T1 - Structural properties of iron-phosphate glasses: spectroscopic studies and ab initio simulations N2 - Vitrification is the most effective method for the immobilization of hazardous waste by incorporating toxic elements into a glass structure. Iron phosphate glasses are presently being considered as matrices for the storage of radioactive waste, even of those which cannot be vitrified using conventional borosilicate waste glass. In this study, a structural model of 60P2O5–40Fe2O3 glass is proposed. The model is based on the crystal structure of FePO4 which is composed of [FeO4][PO4] tetrahedral rings. The rings are optimized using the DFT method and the obtained theoretical FTIR and Raman spectra are being compared with their experimental counterparts. Moreover, the proposed model is in very good agreement with X-ray absorption fine structure spectroscopy (XANES/EXAFS) and Mössbauer spectroscopy measurements. According to the calculations the Fe3+ is in tetrahedral and five-fold coordination. The maximal predicted load of waste constituents into the glass without rebuilding of the structure is 30 mol%. Below this content, waste constituents balance the charge of [FeO4]- tetrahedra which leads to their strong bonding to the glass resulting in an increase of the chemical durability, transformation and melting temperatures and density. KW - Glass KW - Iron KW - DFT simulations KW - Mössbauer spectroscopy KW - XANES/EXAFS KW - FTIR spectroscopy KW - Raman spectroscopy KW - Coordination PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-317351 DO - https://doi.org/10.1039/c4cp03113j SN - 1463-9076 SN - 1463-9084 VL - 16 IS - 37 SP - 19917 EP - 19927 PB - The Royal Soc. of Chemistry CY - Cambridge AN - OPUS4-31735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -