TY - JOUR A1 - Wohlleben, W. A1 - Mielke, Johannes A1 - Bianchin, A. A1 - Ghanem, A. A1 - Freiberger, H. A1 - Rauscher, H. A1 - Gemeinert, Marion A1 - Hodoroaba, Vasile-Dan T1 - Reliable nanomaterial classification of powders using the volume-specific surface area method N2 - The volume-specific surface area (VSSA) of a particulate material is one of two apparently very different metrics recommended by the European Commission for a definition of "nanomaterial" for regulatory purposes: specifically, the VSSA metric may classify nanomaterials and non-nanomaterials differently than the median size in number metrics, depending on the chemical composition, size, polydispersity, shape, porosity, and aggregation of the particles in the powder. Here we evaluate the extent of agreement between classification by electron microscopy (EM) and classification by VSSA on a large set of diverse particulate substances that represent all the anticipated challenges except mixtures of different substances. EM and VSSA are determined in multiple labs to assess also the level of reproducibility. Based on the results obtained on highly characterized benchmark materials from the NanoDefine EU FP7 project, we derive a tiered screening strategy for the purpose of implementing the definition of nanomaterials. We finally apply the Screening strategy to further industrial materials, which were classified correctly and left only borderline cases for EM. On platelet-shaped nanomaterials, VSSA is essential to prevent false-negative classification by EM. On porous materials, approaches involving extended Adsorption isotherms prevent false positive classification by VSSA. We find no false negatives by VSSA, neither in Tier 1 nor in Tier 2, despite real-world industrial polydispersity and diverse composition, shape, and coatings. The VSSA screening strategy is recommended for inclusion in a technical guidance for the implementation of the definition. KW - Nanomaterial KW - Nanomaterial classification KW - Regulation KW - VSSA KW - Size measurement KW - Particle size PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-391450 DO - https://doi.org/10.1007/s11051-017-3741-x SN - 1388-0764 SN - 1572-896X VL - 19 IS - 2 SP - Article 61, 1 EP - 16 PB - Springer Nature AN - OPUS4-39145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Rauscher, H. A1 - Mech, A. A1 - Gaillard, C. A1 - Stintz, M. A1 - Wohlleben, W. A1 - Weigel, St. A1 - Ghanem, A. A1 - Hodoroaba, Vasile-Dan A1 - Babick, F. A1 - Mielke, Johannes T1 - Recommendations on a Revision of the EC Definition of Nanomaterial Based on Analytical Possibilities N2 - In October 2011 the European Commission (EC) published a "Recommendation on the definition of nanomaterial" (2011/696/EU), to promote consistency in the interpretation of the term "nanomaterial" for legislative and policy purposes in the EU. The EC NM Definition includes a commitment to its review in the light of experience and of scientific and technological developments. This review is ongoing in 2015 and as a contribution to the review the Joint Research Centre of the European Commission (JRC) has already developed a series of three scientific-technical reports with the title: “Towards a review of the EC Recommendation for a definition of the term nanomaterial” which provides to the EC policy services science-based options on how the definition could be revised or supported with additional guidance. The overarching nature and wide scope of the EC NM Definition, as it does not exclude a priori any particulate material regardless the state, form and size, creates many analytical challenges in its imple-mentation for all stakeholders, including enterprises and regulators. The NanoDefine project has as core objective to support the implementation of the EC NM Definition. In this report key aspects of the EC NM Definition are addressed, with the goal to improve the implement-ability of the EC NM Definition. These aspects are presented and discussed based on the results of two years of research performed within the framework of the project. As a result this report assesses how well the requirements of the EC NM Definition can be fulfilled with currently available analytical possi-bilities. It presents recommendations and options on a revision of the EC NM Definition to improve the implementability of the definition based on currently available analytical possibilities, according to the state of the art of mid-2015. Of the technical issues considered in this report, the following seem to deserve the most attention in terms of clarification of the definition and/or provision of additional implementation guidance:  The term ‘external dimension’. A clear definition of 'External dimension' should be included in the text of the EC NM definition and more precise guidance on what is considered as an external dimension and how to properly character-ise it should be provided.  The ‘number based particle size distribution‘. The EC NM Definition uses a threshold related to the number based size distribution of particles. Yet most of the easily available techniques provide a mass-, volume- or scattered light intensity-based size distribution which needs to be converted into a number based distribution to be used for regulatory pur-poses. A specific guidance on the conditions under which these methods can be used to identify a na-nomaterial by employing appropriate quantity or metrics conversion should be provided.  The ‘polydispersity‘ and ‘upper size limit‘ Polydispersity is a challenge for the measurement of particle size distribution for the EC NM definition, specifically for materials with high polydispersity index and broad size distribution especially when the volume or mass of the fraction containing particles below 100 nm is very small. Therefore a dedicated guidance should be provided that allows applying an upper size limit in measurements and particle statistics. KW - Nanomaterial KW - EU Definition of nanomaterial KW - Nanoparticles PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-432339 UR - http://www.nanodefine.eu/publications/reports/NanoDefine_TechnicalReport_D7.10.pdf SP - 1 EP - 68 PB - The NanoDefine Consortium CY - Wageningen, The Netherlands AN - OPUS4-43233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Wohlleben, W. A1 - Mielke, Johannes A1 - Hodoroaba, Vasile-Dan A1 - Zimathies, Annett A1 - Bianchin, A. A1 - Lecloux, A. A1 - Roebben, G. A1 - Rauscher, H. A1 - Gibson, N. T1 - Development of an integrated approach based on validated and standardized methods to support the implementation of the EC recommendation for a definition of nanomaterial N2 - The VSSA approach has the important advantage over classifying, imaging and counting techniques that it does not involve dispersion protocols. Further, the BET technique as the basis for VSSA determination it is in widespread use, generates low costs and is specified for many commercial materials. Finally, the same equipment allows for a deeper analysis by full isotherm evaluation. The present deliverable assesses all NanoDefine powders, supplemented by further real-world materials (in total 26 powders), and quantitatively compares the relationship between the median size (by Electron Microscopy – considered as benchmark for the EC nanomaterial definition) vs. the size derived from VSSA. The VSSA method mitigates the challenges of EM to assess the thickness of platelets, but worked as well on fibbers and particles of irregular shapes. A screening strategy is proposed. If applied to the further data from real-world materials as validation set, this screening does achieve a correct classification, leaving only borderline materials for tier 2 assessment. KW - Nanomaterial KW - Classification KW - Regulation KW - VSSA KW - Size measurement KW - Particle size PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-398938 DO - https://doi.org/10.1007/s11051-017-3741-x SP - 1 EP - 26 PB - The NanoDefine Consortium CY - Wageningen, The Netherlands AN - OPUS4-39893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Hodoroaba, Vasile-Dan A1 - Mielke, Johannes T1 - Techniques evaluation report for selection of characterisation methods N2 - This report is the result of a comprehensive study on the available CMs which come potentially in question for the reliable analysis of the number based size distribution of a nanomaterial according to the EC recommendation for a definition of nanomaterial. Based on the performance criteria already established in NanoDefine the potential CMs are evaluated according to studies available in the literature as well as following the expertise of the NanoDefine consortium partners. The specific advantages and disadvantages of each method with respect to its applicability to the scope of NanoDefine are particularly highlighted. An CM evaluation table is produced so that the mostly suited CMs with respect to the EC definition can be grouped and recommended to the corresponding NanoDefine work packages for further specific development (improvement and adaption), or for direct validation and standardisation, respectively. The actual evaluation report including the recommended CMs will be revised and, if necessary, eventually updated at the mid time of the project. The update will be jointly discussed in the NanoDefine consortium on the basis of the results of testing the methods on the NanoDefine real world materials. KW - Nanomaterial KW - Characterization method KW - EC definition PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-389473 UR - http://www.nanodefine.eu/publications/reports/NanoDefine_TechnicalReport_D3.1.pdf SP - D3.1, 1 EP - 57 CY - Wageningen, The Netherlands AN - OPUS4-38947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Hodoroaba, Vasile-Dan A1 - Mielke, Johannes T1 - Templates for nanomaterial characterisation of tier 1 and tier 2 measurement methods N2 - The EU FP7 NanoDefine project was launched in November 2013 and will run until October 2017. The Project is dedicated to support the implementation of the EU Recommendation on the Definition of Nanomaterial by the provision of the required analytical tools and respective guidance. Main goal is to develop a novel tiered approach consisting of (i) rapid and cost-efficient screening methods and (ii) confirmatory measurement methods. The "NanoDefiner" eTool will guide potential end-users, such as concerned industries and regulatory bodies as well as enforcement and contract laboratories, to reliably classify if a material is nano or not. To achieve this objective, a comprehensive inter-laboratory evaluation of the performance of current characterisation techniques, instruments and software is performed. Instruments, software and methods are further developed. Their capacity to reliably measure the size of particulates in the size range 1-100 nm and above (according to the EU definition) is validated. Technical reports on project results are published to reach out to relevant stakeholders, such as policy makers, regulators, industries and the wider scientific community, to present and discuss our goals and results, to ensure a continuous exchange of views, needs and experiences obtained from different fields of expertise and application, and to finally integrate the resulting feedback into our ongoing work on the size-related classification of nanomaterials. KW - Nanomaterial KW - Measurement method KW - Screening methods KW - Confirmatory methods PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-389827 UR - http://www.nanodefine.eu/index.php/downloads/nanodefine-technical-reports SP - 1 EP - 74 PB - The NanoDefine Consortium CY - Wageningen, The Netherlands AN - OPUS4-38982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Thünemann, Andreas A1 - Emmerling, Franziska A1 - Hodoroaba, Vasile-Dan T1 - Review of existing calibration or reference N2 - We report on calibration standards of nanoparticles meeting the definition of a nanomaterial given by the European Commission (EU 2011) which are relevant for the characterisation methods applied in the NanoDefine project. We found that the Impact of nanoparticles is outstanding in the scientific literature. A number of 270.000 paper titles on nanoparticles are listed in the Web of Science data base. But surprisingly, the availability of suitable certified standard reference materials is scarce. Only a few sources were found. For example, BAM provides the database Nanoscaled Reference Materials at http://www.nano-refmat.bam.de/en/ in cooperation with the ISO/TC 229 Nanotechnologies. In addition, two publications from 2013 on nanoscale reference materials are available. Candidates of nano-(certified) reference materials from other ongoing or just finished FP6 and FP7 nano-metrology projects have been extracted from the Compendium of Projects in the European NanoSafety Cluster (Compendium NSC, 2013). Recommendations for selection of representative test materials and calibration standards for NanoDefine internal tasks, respectively, are also given. KW - Nanomaterial KW - Reference materials KW - Certified reference materials PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-389836 UR - http://www.nanodefine.eu/index.php/downloads/nanodefine-technical-reports SP - 1 EP - 18 CY - Wageningen, The Netherlands AN - OPUS4-38983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Babick, F. A1 - Mielke, Johannes A1 - Hodoroaba, Vasile-Dan A1 - Weigel, St. A1 - Wohlleben, W. T1 - Critical review manuscript with real-world performance data for counting, ensemble and separating methods including in-build mathematical conversion to number distributions submitted for publication N2 - The content of the paper is the assessment of the performance of (conventional) measurement techniques (MTs)with respect to the classification of disperse materials according to the EC recommendation for a definition of nanomaterial. This performance essentially refers to the accurate assessment of the number weighted median of (the constituent) particles. All data and conclusions are based on the analytical study conducted as real-world performance testing. It comprised different types of MTs (imaging, counting, fractionating, spectroscopic and integral) as well as different types of materials. Beside reference materials with well-defined size distribution the study also included several commercial powders (variation of particle composition, morphology, coating, size range and polydispersity). In order to ensure comparability of measurement results, the participants were guided to use uniform protocols in sample preparation, conducting measurements, data analysis and in reporting results. Corresponding documents have been made public, in order to support the reviewing process of the paper, respectively to ensure the reproducibility of data by other users under the same conditions. The scientific paper relies on a comprehensive set of revised measurement data reported in uniform templates, completely describes the experimental procedures and discusses the MTs’ performance for selected materials in detail. Even more, the study is summarised and evaluated, which leads to recommendations for the use of MTs within a tiered approach of NM characterisation. In addition, the paper critically examines the factors that may affect the outcome of such a comparison among different MTs. KW - Nanomaterial KW - Measurement techniques KW - EC definition of nanomaterial KW - Nanoparticles PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-389646 UR - http://www.nanodefine.eu/index.php/downloads/nanodefine-technical-reports UR - http://www.nanodefine.eu/publications/reports/NanoDefine_TechnicalReport_D3.3.pdf SP - D3.3, 1 EP - 72 PB - The NanoDefine Consortium CY - Wageningen, The Netherlands AN - OPUS4-38964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brüngel, R. A1 - Rückert, J. A1 - Wohlleben, W. A1 - Babick, F. A1 - Ghanem, A. A1 - Gaillard, C. A1 - Mech, A. A1 - Rauscher, H. A1 - Hodoroaba, Vasile-Dan A1 - Weigel, S. A1 - Friedrich, C. M. T1 - NanoDefiner e-Tool: An Implemented Decision Support Framework for Nanomaterial Identification N2 - The European Commission’s recommendation on the definition of nanomaterial (2011/696/EU) established an applicable standard for material categorization. However, manufacturers face regulatory challenges during registration of their products. Reliable categorization is difficult and requires considerable expertise in existing measurement techniques (MTs). Additionally, organizational complexity is increased as different authorities’ registration processes require distinct reporting. The NanoDefine project tackled these obstacles by providing the NanoDefiner e-tool: A decision support expert system for nanomaterial identification in a regulatory context. It providesMT recommendations for categorization of specific materials using a tiered approach (screening/confirmatory), and was constructed with experts from academia and industry to be extensible, interoperable, and adaptable for forthcoming revisions of the nanomaterial definition. An implemented MT-driven material categorization scheme allows detailed description. Its guided workflow is suitable for a variety of user groups. Direct feedback and explanation enable transparent decisions. Expert knowledge is Held in a knowledge base for representation of MT performance criteria and physicochemical particle type properties. Continuous revision ensured data quality and validity. Recommendations were validated by independent case studies on industry-relevant particulate materials. Besides supporting material identification and registration, the free and open-source e-tool may serve as template for other expert systems within the nanoscience domain. KW - EC nanomaterial definition KW - Decision support KW - Expert system KW - Nanomaterial KW - Nanoparticles PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-492449 DO - https://doi.org/10.3390/ma12193247 VL - 12 IS - 19 SP - 3247 PB - MDPI CY - Basel, CH AN - OPUS4-49244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geißler, Daniel A1 - Wegmann, Marc A1 - Jochum, T. A1 - Somma, V. A1 - Sowa, M. A1 - Scholz, J. A1 - Fröhlich, E. A1 - Hoffmann, Katrin A1 - Niehaus, J. A1 - Roggenbuck, D. A1 - Resch-Genger, Ute T1 - An automatable platform for genotoxicity testing of nanomaterials based on the fluorometric γ-H2AX assay reveals no genotoxicity of properly surface-shielded cadmium-based quantum dots N2 - The large number of nanomaterial-based applications emerging in the materials and life sciences and the foreseeable increasing use of these materials require methods that evaluate and characterize the toxic potential of these nanomaterials to keep safety risks to people and environment as low as possible. As nanomaterial toxicity is influenced by a variety of parameters like size, shape, chemical composition, and surface chemistry, high throughput screening (HTS) platforms are recommended for assessing cytotoxicity. Such platforms are not yet available for genotoxicity testing. Here, we present first results obtained for application-relevant nanomaterials using an automatable genotoxicity platform that relies on the quantification of the phosphorylated histone H2AX (γ-H2AX) for detecting DNA double strand breaks (DSBs) and the automated microscope system AKLIDES® for measuring integral fluorescence intensities at different excitation wavelengths. This platform is used to test the genotoxic potential of 30 nm-sized citrate-stabilized gold nanoparticles (Au-NPs) as well as micellar encapsulated iron oxide nanoparticles (FeOx-NPs) and different cadmium (Cd)-based semiconductor quantum dots (QDs), thereby also searching for positive and negative controls as reference materials. In addition, the influence of the QD shell composition on the genotoxic potential of these Cd-based QDs was studied, using CdSe cores as well as CdSe/CdS core/shell and CdSe/CdS/ZnS core/shell/shell QDs. Our results clearly revealed the genotoxicity of the Au-NPs and its absence in the FeOx-NPs. The genotoxicity of the Cd-QDs correlates with the shielding of their Cd-containing core, with the core/shell/shell architecture preventing genotoxicity risks. The fact that none of these nanomaterials showed cytotoxicity at the chosen particle concentrations in a conventional cell viability assay underlines the importance of genotoxicity studies to assess the hazardous potential of nanomaterials. KW - Nanomaterial KW - Genotoxicity testing KW - γ-H2AX assay KW - Quantum dot PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486318 DO - https://doi.org/10.1039/C9NR01021A SN - 2040-3372 SN - 2040-3364 VL - 11 IS - 28 SP - 13458 EP - 13468 PB - The Royal Society of Chemistry AN - OPUS4-48631 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bastos, V. A1 - Oskoei, P. A1 - Andresen, Elina A1 - Saleh, Maysoon I. A1 - Rühle, Bastian A1 - Resch-Genger, Ute A1 - Oliveira, H. T1 - Stability, dissolution, and cytotoxicity of NaYF4‑upconversion nanoparticles with different coatings N2 - Upconversion nanoparticles (UCNPs) have attracted considerable attention owing to their unique photophysical properties. Their utilization in biomedical applications depends on the understanding of their transformations under physiological conditions and their potential toxicity. In this study, NaYF4: Yb,Er UCNPs, widely used for luminescence and photophysical studies, were modified with a set of four different coordinatively bound surface ligands, i.e., citrate, alendronate (AA), ethylendiamine tetra(methylene phosphonate) (EDTMP), and poly(maleic anhydride-alt-1-octadecene) (PMAO), as well as silica coatings with two different thicknesses. Subsequently, the aging-induced release of fluoride ions in water and cell culture media and their cytotoxic profile to human keratinocytes were assessed in parallel to the cytotoxic evaluation of the ligands, sodium fluoride and the lanthanide ions. The cytotoxicity studies of UCNPs with different surface modifications demonstrated the good biocompatibility of EDTMP-UCNPs and PMAO-UCNPs, which is in line with the low amount of fluoride ions released from these samples. An efficient prevention of UCNP dissolution and release of cytotoxic ions, as well as low cytotoxicity was also observed for UCNPs with a sufficiently thick silica shell. Overall, our results provide new insights into the understanding of the contribution of surface chemistry to the stability, dissolution behavior, and cytotoxicity of UCNPs. Altogether, the results obtained are highly important for future applications of UCNPs in the life sciences and bioimaging studies. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Excitation power density KW - Surface chemistry KW - Coating PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544681 DO - https://doi.org/10.1038/s41598-022-07630-5 SN - 2045-2322 VL - 12 SP - 1 EP - 13 PB - Springer Nature CY - London AN - OPUS4-54468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -