TY - CONF A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Rupprecht, C. A1 - Ziegler, Mathias ED - Maldague, X. T1 - Detection of internal defects applying photothermal super resolution reconstruction utilizing two-dimensional high-power random pixel patterns T2 - Proceedings of the Conference QIRT 2022 N2 - In this work, we report on our progress for investigating a new experimental approach for thermographic detection of internal defects by performing 2D photothermal super resolution reconstruction. We use modern high-power laser projector technology to repeatedly excite the sample surface photothermally with varying spatially structured 2D pixel patterns. In the subsequent (blind) numerical reconstruction, multiple measurements are combined by exploiting the joint-sparse nature of the defects within the specimen using nonlinear convex optimization methods. As a result, a 2D-sparse defect/inhomogeneity map can be obtained. Using such spatially structured heating combined with compressed sensing and computational imaging methods allows to significantly reduce the experimental complexity and to study larger test surfaces as compared to the one-dimensional approach reported earlier. T2 - Quantitative Infrared Thermography 2022 CY - Paris, France DA - 04.07.2022 KW - Thermography KW - Super resolution KW - NDT KW - inspection KW - Internal defects KW - DMD KW - DLP PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-577795 DO - https://doi.org/10.21611/qirt.2022.1005 SN - 2371-4085 SP - 1 EP - 7 PB - QIRT Council AN - OPUS4-57779 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Rupprecht, C. A1 - Ziegler, Mathias T1 - Hochaufgelöste thermografische Detektion eingeschlossener Defekte mit Hilfe von 2Dstrukturierten Beleuchtungsmustern T2 - DGZfP-Berichtsband N2 - Für die aktive Thermografie als zerstörungsfreie Prüfmethode galt lange Zeit die Faustformel, dass die Auflösung interner Defekte/Inhomogenitäten auf ein Verhältnis von Defekttiefe/Defektgröße ≤ 1 beschränkt ist. Die Ursache hierfür liegt in der diffusiven Natur der Wärmeleitung in Festkörpern. Sogenannte Super-Resolution-Ansätze erlauben seit Kurzem die Überwindung dieser physikalischen Grenze um ein Vielfaches. Damit ergibt sich die attraktive Möglichkeit die Thermografie von einem rein oberflächensensitiven Prüfverfahren hin zu einem Verfahren mit verbesserter Tiefenreichweite zu entwickeln. Wie weit diese Entwicklung getrieben werden kann, ist Gegenstand aktueller Forschung. Wir konnten bereits zeigen, dass diese klassische Grenze für 1D- und 2D Defektgeometrien mit Hilfe des Abscannens des Prüfkörpers mittels einzelner Laserspots und der anschließenden Anwendung von photothermischer Super-Resolution-Rekonstruktion überwunden werden kann. Bei dieser Methode wird eine Kombination aus sequenzieller räumlich strukturierter Beleuchtung und numerischen Optimierungsmethoden eingesetzt. Dies geschieht allerdings auf Kosten der experimentellen Komplexität, die zu einer langen Messdauer, großen Datensätzen und langwieriger numerischer Auswertung führt. In dieser Arbeit berichten wir über einen neuen experimentellen Ansatz, bei dem räumlich strukturierte 2D-Beleuchtungsmuster in Verbindung mit Compressed-Sensing und Computational-Imaging-Methoden verwendet werden, um die experimentelle Komplexität deutlich zu verringern und die Methode für die Untersuchung größerer Prüfflächen nutzbar zu machen. Der experimentelle Ansatz basiert dabei auf der wiederholten (blinden) photothermischen Anregung mit räumlich strukturierten 2D-Mustern unter Verwendung moderner Projektortechnik und eines Hochleistungslasers. In der anschließenden numerischen Rekonstruktion werden mehrere Messungen unter Ausnutzung der Joint-Sparsity der Defekte innerhalb des Prüfkörpers mittels nichtlinearer konvexer Optimierungsmethoden kombiniert. Als Ergebnis kann eine 2D-sparse Defekt-/Inhomogenitätskarte erstellt werden. T2 - DGZfP-Jahrestagung 2022 CY - Kassel, Germany DA - 23.05.2022 KW - Thermografie KW - Super resolution KW - NDT KW - ZfP KW - Eingeschlossene Defekte KW - Projektor PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548945 SN - 978-3-947971-25-1 VL - 177 SP - 1 EP - 16 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung AN - OPUS4-54894 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -