TY - CONF A1 - Ehrig, Karsten A1 - Goebbels, Jürgen A1 - Meinel, Dietmar A1 - Paetsch, O. A1 - Prohaska, S. A1 - Zobel, Valentin T1 - Comparison of crack detection methods for analyzing damage processes in concrete with computed tomography N2 - Analyzing damages at concrete structures due to physical, chemical, and mechanical exposures need the application of innovative non-destructive testing methods that are able to trace spatial changes of microstructures. Here, the utility of three different crack detection methods for the analysis of computed tomograms of various cementitious building materials is evaluated. Due to the lack of reference samples and standardized image quality evaluation procedures, the results are compared with manually segmented reference data sets. A specific question is how automatic crack detection can be used for the quantitative characterization of damage processes, such as crack length and volume. The crack detection methods have been integrated into a scientific visualization system that allows displaying the tomography images as well as presenting the results. T2 - DIR 2011 - International symposium on digital industrial raidology and computed tomography CY - Berlin, Germany DA - 20.06.2011 KW - Crack detection KW - Computed tomography KW - Data visualization PY - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-243569 SN - 978-3-940283-34-4 IS - DGZfP-BB 128 (Poster 2) SP - 1 EP - 8 PB - Deutsche Gesellscahft für Zerstörungsfreie Prüfung e.V. (DGZfP) AN - OPUS4-24356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kupsch, Andreas A1 - Hentschel, Manfred P. A1 - Lange, Axel A1 - Grothausmann, R. A1 - Manke, I. T1 - Application of the DIRECTT algorithm to sub-nanometer electron tomography N2 - Tomography data obtained from transmission electron microscopes are especially attractive due to their unrivaled spatial resolution in the nanometer range or even less, but they require enormous efforts in sample preparation and suffer from a diverse accumulation of experimental restrictions, which unavoidably result in fundamental reconstruction artifacts. These restrictions refer to: partial opacity, a limited view (limited angle or missing wedge), very few angles (with respect to the detector size), limited to a region of interest (ROI; due to the sample size), variable angular increments as well as sample degradation due the interactions with the electron beam. An advanced version of the DIRECTT (Direct Iterative Reconstruction of Computed Tomography Trajectories) algorithm proves to cope with most of these severe deviations from ideal CT measuring conditions. However, careful data preprocessing is required in order to exploit the capabilities of the algorithm. Nanometer sized Ruthenium catalyst particles for fuel cell applications are 3D imaged at a few Ångström resolution in order to estimate their partial free surface on carbon black supports, which rule the efficiency of the catalytic activity. Comparisons of DIRECTT reconstructions to the conventional filtered back projection, prove the significant improvements. T2 - DIR 2011 - International symposium on digital industrial raidology and computed tomography CY - Berlin, Germany DA - 20.06.2011 KW - Electron tomography KW - Computed tomography KW - Reconstruction algorithms PY - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-243577 SN - 978-3-940283-34-4 IS - DGZfP-BB 128 (Tu.3.3) SP - 1 EP - 6 PB - Deutsche Gesellscahft für Zerstörungsfreie Prüfung e.V. (DGZfP) AN - OPUS4-24357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Osterloh, Kurt A1 - Fratzscher, Daniel A1 - Jechow, Mirko A1 - Bücherl, T. A1 - Schillinger, B. A1 - Hasenstab, A. A1 - Zscherpel, Uwe A1 - Ewert, Uwe T1 - Limited view tomography of wood with fast and thermal neutrons N2 - Neutrons are absorbed particularly by hydrogen containing materials so they can be used as a tool for visualising heterogeneous density distributions of organic materials. Penetration limits are set by the layer thicknesses and the neutron energies applied. In case of specimens with a flat shape the situation may be encountered that the object only could be penetrated in selected directions. In addition, the overall size may exceed the beam diameter and thus the viewing window if a certain region of interest should be studied by tomography without destroying the integrity of the specimen. This study shows the capabilities and limits of thermal and fast neutrons to investigate flat wooden specimens such as boards and girders by neutron tomography under such circumstances. Taking projections was impaired either by the limits of penetrability or by the total size of the object. As a consequence, projections were included for reconstruction only from a limited angular range of 90°. It could be shown that an approach based on the slice theorem was capable to visualise structural features along the beam directions while simply omitting the perpendicular ones without causing additional artefacts. Small samples with a thickness of up to 2 cm but several times broader could be studied with the ANTARES facility of the FRM II neutron source in Garching providing thermal neutrons while larger objects required a beam of higher energy as available in the NECTAR facility of the same institution. The fast (fission) neutrons (1.5 – 2 MeV) of this site allowed investigating an area of interest inside a girder with a cross section of 23.5 x 49 cm². Internal features such as inclusions could be detected as well as a heterogeneous density distribution in glue layers. T2 - International symposium on digital industrial radiology and computed tomography CY - Berlin, Germany DA - 20.06.2011 KW - Computed tomography KW - Slice theoreme KW - Limited angle tomography PY - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-250663 SN - 978-3-940283-34-4 VL - 128 SP - 1 EP - 5 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) CY - Berlin AN - OPUS4-25066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lange, Axel A1 - Hentschel, Manfred P. A1 - Kupsch, Andreas A1 - Müller, Bernd R. T1 - Correction of diffuse X-ray detector based background N2 - A novel approach to strongly suppress artifacts in radiography and computed tomography caused by the effect of diffuse background Signals (“backlight”) of 2D X-ray detectors is suggested. Depending on the detector geometry the mechanism may be different, either based on the optical scattering of the fluorescent screen materials into optical detection devices or Compton or X-ray fluorescence scattering by the detector components. Consequently, these erroneous intensity portions result in locally different violations of Lambert Beer’s law in single projections (radiographs). When used as input data for computed tomography these violations are directly observed via modulation of the projected mass as a function of the rotation Phase and the sample’s aspect ratio (dynamics). The magnitude of the diffuse Background signal depends on the detector area covered by the projected sample. They are more pronounced the smaller the shaded area and the stronger the total attenuation. Moreover, the local intensity mismatch depends on the attenuation of the sample. We present very basic reference data measured with multiple metal foils at a synchrotron radiation source. Beam hardening artifacts can be excluded due to the monochromatic radiation. The proposed correction procedure assumes a constant (non-local) scattering mechanism. T2 - DIR 2011 - International symposium on digital industrial raidology and computed tomography CY - Berlin, Germany DA - 20.06.2011 KW - Backlight KW - X-ray detector KW - Fluorescence screen KW - Synchrotron radiography KW - Computed tomography PY - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-243589 SN - 978-3-940283-34-4 IS - DGZfP-BB 128 (Poster 24) SP - 1 EP - 7 PB - Deutsche Gesellscahft für Zerstörungsfreie Prüfung e.V. (DGZfP) AN - OPUS4-24358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lück, S. A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Hentschel, Manfred P. A1 - Schmidt, V. T1 - Statistical analysis of tomographic reconstruction algorithms by morphological image characteristics N2 - We suggest a procedure for quantitative quality control of tomographic reconstruction algorithms. Our task-oriented evaluation focuses on the correct reproduction of phase boundary length and has thus a clear implication for morphological image analysis of tomographic data. Indirectly the method monitors accurate reproduction of a variety of locally defined critical image features within tomograms such as interface positions and microstructures, debonding, cracks and pores. Tomographic errors of such local nature are neglected if only global integral characteristics such as mean squared deviation are considered for the evaluation of an algorithm. The significance of differences in reconstruction quality between algorithms is assessed using a sample of independent random scenes to be reconstructed. These are generated by a Boolean model and thus exhibit a substantial stochastic variability with respect to image morphology. It is demonstrated that phase boundaries in standard reconstructions by filtered backprojection exhibit substantial errors. In the setting of our simulations, these could be significantly reduced by the use of the innovative reconstruction algorithm DIRECTT. KW - Tomography KW - Computed tomography KW - Reconstruction algorithm KW - Morphological image analysis KW - Phase boundary KW - Metrology KW - Non-destructive testing PY - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-210710 SN - 1580-3139 SN - 1854-5165 VL - 29 SP - 61 EP - 77 CY - Ljubljana, Slovenia AN - OPUS4-21071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bellon, Carsten A1 - Jaenisch, Gerd-Rüdiger A1 - Deresch, Andreas T1 - Combining analytical and Monte Carlo modelling for industrial radiology N2 - Modelling becomes more and more important in modern NDE. It is increasingly used to optimize techniques for complex applications, to support the preparation of written procedures, and for education purposes. To describe the complete chain of RT, the model includes simulating all necessary properties of X- or Gamma-ray sources, the interaction of photons with material with special attention to scattered radiation, the detection process, and the complete geometrical RT setup handling arbitrary parts or constructions. Depending on the given inspection problem and the influencing factors that should be addressed by the simulation, an appropriate physical model has to be chosen to describe the underlying interaction mechanisms. The simulator aRTist combines analytical and Monte Carlo methods to efficiently model the radiation transport such that transmission as well as scatter techniques can be modelled. In this contribution we Focus on Monte Carlo Simulation of scatter contribution within aRTist. Examples for RT/tomographic applications and back-scatter techniques are presented to demonstrate the usability of the presented simulation tool for a broad range of radiological applications. T2 - 19th Wolrd Conference on Nondestructive Testing CY - Munich, Germany DA - 13.06.2016 KW - Radiography KW - Computed tomography KW - Simulation KW - Monte Carlo methods PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-365856 SN - 978-3-940283-78-8 VL - 158 SP - 1 EP - 9 PB - Deutsche Gesellschaft für zerstörungsfreie Prüfung (DGZfP) CY - Berlin, Germany AN - OPUS4-36585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Illerhaus, Bernhard A1 - Maenz, S. A1 - Bischoff, S. A1 - Bungartz, M. A1 - Bossert, J. A1 - Kunisch, E. A1 - Kinne, R. ED - Maenz, S. T1 - Micro computer tomography (μCT) set-up for long-term serial measurements, image evaluation, and subsequent compressive strength tests on frozen sheep vertebrae for osteoporosis research N2 - Injection of poly(methyl methacrylate) cements, one standard Treatment for osteoporotic vertebral body fractures, may lead to critical loads and subsequent fractures in adjacent vertebral bodies. Biodegradable calcium phosphate cements (CPC) with bioinductive growth factors may be an alternative, since they have a Young’s modulus comparable to that of cancellous bone. Non-destructive tests with μCT and quantitative Image evaluation are used to assess new bone growth and material resorption following intravertebral injection of CPC. Immediate deep-freezing of excised bone prevents shrinkage or tissue disintegration and the samples have to be kept frozen for all following steps, including transport, μCT measurements, and subsequent biomechanical tests. Here we will report on a set-up to preserve the frozen state of the material and allow stable long-term serial μCT measurements. In addition, the image processing technique for the evaluation of bone growth and selected results on subsequently carried out compressive strength tests will be presented. T2 - WCNDT2016 CY - München, Germany DA - 13.6.2016 KW - Computed tomography KW - Osteoporosis KW - CT PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-366410 UR - https://www.ndt.net/?id=19382 VL - BB 158 SP - 1 EP - 7 PB - DGZfP CY - Berlin AN - OPUS4-36641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Laquai, René A1 - Schaupp, Thomas A1 - Müller, Bernd R. A1 - Griesche, Axel A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - 3D Crack analysis in hydrogen charged lean duplex stainless steel with synchrotron refraction CT N2 - Hydrogen in metals can cause a degradation of the mechanical properties, the so-called hydrogen embrittlement. In combination with internal stresses, hydrogen assisted cracking (HAC) can occur. This phenomenon is not completely understood yet. To better characterise the cracking behaviour, it is important to gain information about the evolution of the 3D crack network. For this purpose samples of lean duplex stainless steel were loaded with hydrogen by means of electrochemical charging and investigated by means of synchrotron refraction CT and SEM fractography after uniaxial tensile loading. Synchrotron refraction CT is an analyser-based imaging (ABI) technique. It uses a Si (111) single crystal as analyser, which is placed into the beam path between sample and detector. According to Bragg’s law only incident x-rays within a narrow range around the Bragg-angle are diffracted from the analyser into the detector. Hence, the analyser acts as an angular filter for the transmitted beam. This filtering allows to turn the refraction and scattering of x-rays into image contrast. Refraction occurs at all interfaces, where the density of the material changes and is more sensitive to density changes than the attenuation. Therefore, it is possible to detect smaller cracks than with classical x-ray imaging techniques, like CT, with comparable spacial resolution. It also visualises the 3D structure of the cracks and gains quantitative information about their morphology and distribution. Since cracks introduced by HAC are usually very small and have a small opening displacement, synchrotron refraction CT is expected to be well suited for imaging this cracking mechanism and can be a valuable tool to characterise the formation and the evolution of a 3D crack network. T2 - WCNDT 2016 CY - München, Germany DA - 13.06.2016 KW - X-ray refraction KW - Computed tomography KW - Hydrogen assisted cracking KW - Duplex stainless steel PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-366481 SN - 978-3-940283-78-8 VL - BB 158 SP - Tu.4.B.3, 1 EP - 9 AN - OPUS4-36648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Illerhaus, Bernhard A1 - Kunisch, E. A1 - Kinne, R. W. T1 - Serial in situ compression of spongiosa cylinder observed by μCT, compared to simulated stress, strain, and movement N2 - Minimally invasive injection of calcium phosphate cement into bone defects in aged sheep vertebrae has been used as a model for the treatment of osteoporotic vertebral fractures. One of the therapeutic criteria is a compression test of non-treated or treated vertebral bodies. In the present study, an in situ compression test with a stepwise load increase was performed with small spongiosa cylinders from the vertebrae under continuous monitoring by μCT. This allows localization of bone cracks and the visualization of correct placement and form of the bone cylinder. In addition, the effects of an uneven load distribution on the sample due to an irregular shape and a subsequent underperformance of the test sample can be excluded by controlling its shape under increasing load. There was a good agreement between the measured data and those obtained by simulated load-dependent transformation on the basis of a digital volume correlation between consecutive compression tests on the bone surface under the assumption of homogeneous bone material. Mechanic simulation was executed by directly using structural voxel data, resulting in maps of Von Mise stresses and predicted displacements. T2 - 12th ECNDT CY - Gothenburg, Sweden DA - 11.6.2018 KW - Computed tomography KW - In-situ compression KW - Simulation PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-453317 SN - 978-91-639-6217-2 SP - 0162, 1 EP - 7 AN - OPUS4-45331 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khrapov, D. A1 - Surmeneva, M. A1 - Koptioug, A. A1 - Evsevleev, Sergei A1 - Léonard, Fabien A1 - Bruno, Giovanni A1 - Surmenev, R. T1 - X-ray computed tomography of multiple-layered scaffolds with controlled gradient cell lattice structures fabricated via additive manufacturing N2 - In this paper we report on the characterization by X-ray computed tomography of calcium phosphate (CaP) and polycaprolactone (PCL) coatings on Ti-6Al-4V alloy scaffolds used as a material for medical implants. The cylindrical scaffold has greater porosity of the inner part than the external part, thus, mimicking trabecular and cortical bone, respectively. The prismatic scaffolds have uniform porosity. Surface of the scaffolds was modified with calcium phosphate (CaP) and polycaprolactone (PCL) by dip-coating to improve biocompatibility and mechanical properties. Computed tomography performed with X-ray and synchrotron radiation revealed the defects of structure and morphology of CaP and PCL coatings showing small platelet-like and spider-web-like structures, respectively. KW - Additive manufacturing KW - Lattice structure KW - Multiple-layered scaffold KW - Coating KW - Medical implants KW - Computed tomography KW - Polycaprolactone KW - Calcium phosphate PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-471931 UR - http://stacks.iop.org/1742-6596/1145/i=1/a=012044 SN - 1742-6596 VL - 1145 SP - 012044, 1 EP - 7 PB - IOP AN - OPUS4-47193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -