TY - CONF A1 - Kupsch, Andreas A1 - Hentschel, Manfred P. A1 - Lange, Axel A1 - Grothausmann, R. A1 - Manke, I. T1 - Application of the DIRECTT algorithm to sub-nanometer electron tomography N2 - Tomography data obtained from transmission electron microscopes are especially attractive due to their unrivaled spatial resolution in the nanometer range or even less, but they require enormous efforts in sample preparation and suffer from a diverse accumulation of experimental restrictions, which unavoidably result in fundamental reconstruction artifacts. These restrictions refer to: partial opacity, a limited view (limited angle or missing wedge), very few angles (with respect to the detector size), limited to a region of interest (ROI; due to the sample size), variable angular increments as well as sample degradation due the interactions with the electron beam. An advanced version of the DIRECTT (Direct Iterative Reconstruction of Computed Tomography Trajectories) algorithm proves to cope with most of these severe deviations from ideal CT measuring conditions. However, careful data preprocessing is required in order to exploit the capabilities of the algorithm. Nanometer sized Ruthenium catalyst particles for fuel cell applications are 3D imaged at a few Ångström resolution in order to estimate their partial free surface on carbon black supports, which rule the efficiency of the catalytic activity. Comparisons of DIRECTT reconstructions to the conventional filtered back projection, prove the significant improvements. T2 - DIR 2011 - International symposium on digital industrial raidology and computed tomography CY - Berlin, Germany DA - 20.06.2011 KW - Electron tomography KW - Computed tomography KW - Reconstruction algorithms PY - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-243577 SN - 978-3-940283-34-4 IS - DGZfP-BB 128 (Tu.3.3) SP - 1 EP - 6 PB - Deutsche Gesellscahft für Zerstörungsfreie Prüfung e.V. (DGZfP) AN - OPUS4-24357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lange, Axel A1 - Hentschel, Manfred P. A1 - Kupsch, Andreas A1 - Müller, Bernd R. T1 - Correction of diffuse X-ray detector based background N2 - A novel approach to strongly suppress artifacts in radiography and computed tomography caused by the effect of diffuse background Signals (“backlight”) of 2D X-ray detectors is suggested. Depending on the detector geometry the mechanism may be different, either based on the optical scattering of the fluorescent screen materials into optical detection devices or Compton or X-ray fluorescence scattering by the detector components. Consequently, these erroneous intensity portions result in locally different violations of Lambert Beer’s law in single projections (radiographs). When used as input data for computed tomography these violations are directly observed via modulation of the projected mass as a function of the rotation Phase and the sample’s aspect ratio (dynamics). The magnitude of the diffuse Background signal depends on the detector area covered by the projected sample. They are more pronounced the smaller the shaded area and the stronger the total attenuation. Moreover, the local intensity mismatch depends on the attenuation of the sample. We present very basic reference data measured with multiple metal foils at a synchrotron radiation source. Beam hardening artifacts can be excluded due to the monochromatic radiation. The proposed correction procedure assumes a constant (non-local) scattering mechanism. T2 - DIR 2011 - International symposium on digital industrial raidology and computed tomography CY - Berlin, Germany DA - 20.06.2011 KW - Backlight KW - X-ray detector KW - Fluorescence screen KW - Synchrotron radiography KW - Computed tomography PY - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-243589 SN - 978-3-940283-34-4 IS - DGZfP-BB 128 (Poster 24) SP - 1 EP - 7 PB - Deutsche Gesellscahft für Zerstörungsfreie Prüfung e.V. (DGZfP) AN - OPUS4-24358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -