TY - JOUR A1 - Franchin, G. A1 - Zocca, Andrea A1 - Karl, D. A1 - Yun, H. A1 - Tian, X. T1 - Editorial: Advances in additive manufacturing of ceramics N2 - Recently, additive manufacturing of ceramics has achieved the maturity to be transferred from scientific laboratories to industrial applications. At the same time, research is progressing to expand the boundaries of this field into the territory of novel materials and applications. This feature issue addresses current progress in all aspects of additive manufacturing of ceramics, from parts design to feedstock selection, from technological development to characterization of printed components. KW - Additive manufacturing KW - Ceramic PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-549361 SN - 2666-5395 VL - 10 SP - 1 EP - 2 PB - Elsevier CY - Amsterdam AN - OPUS4-54936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ehlers, Henrik A1 - Thewes, R. A1 - Pelkner, Matthias T1 - Online Process Monitoring for Additive Manufacturing Using Eddy Current Testing With Magnetoresistive Sensor Arrays N2 - The rising popularity of additive manufacturing processes leads to an increased interest in possibilities and methods for related process monitoring. Such methods ensure improved process quality and increase the understanding of the manufacturing process, which in turn is the basis for stable component quality, e.g., required in the aerospace industry or in the medical sector. For laser powder bed fusion, a handful of process monitoring tools already exist, such as optical tomography, thermography, pyrometry, imaging, or laser power monitoring. Although these tools provide helpful information about the process, more information is required for an accurate in-depth understanding. In this article, advanced approaches in eddy current testing (ET) are combined, such as single wire excitation, magnetoresistive (MR) sensor arrays, and heterodyning to build up a system that can be used for online process monitoring of laser powder bed fusion. In addition to detailed information about the developed ET system and underlying signal processing, the first results of magnetoresistance-basedonline ET during the laser powder fusion process are presented. While producing a step-shaped cuboid, each layer is tested during recoating. Test results show that not only the contours of the topmost layer are detected but also the contours of previous layers covered by powder. At an excitation frequency of 1 MHz, a penetration depth of approx. 400 μm is obtained. To highlight the possibilities of ET for online process monitoring of laser powder bed fusion, results are compared with postexposure images of the integrated layer control system (LCS). KW - Process monitoring KW - Eddy current testing KW - Giant magneto resistance (GMR) KW - Additive manufacturing KW - Laser powder bed fusion PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-560881 VL - 22 IS - 20 SP - 19293 EP - 19300 PB - IEEE CY - New York, NY AN - OPUS4-56088 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eissel, A. A1 - Engelking, Lorenz A1 - Treutler, K. A1 - Schroepfer, Dirk A1 - Wesling, V. A1 - Kannengießer, Thomas T1 - Investigations on influencing the microstructure of additively manufactured Co‑Cr alloys to improve subsequent machining conditions N2 - Co-Cr alloys are frequently used for highly stressed components, especially in turbine and plant construction, due to their high resistance to thermal and mechanical stress, as well as to corrosive and abrasive loads. Furthermore, they are classified as difficult-to-cut materials because of their high strength and toughness as well as their low thermal conductivity. However, for Co, an increased cost and supply risk can be observed in recent years. Therefore, additive manufacturing (AM) offers significant economic advantages due to higher material efficiency regarding repair, modification, and manufacturing of such components. Concerning inhomogeneity and anisotropy of the microstructure and properties as well as manufacturing-related stresses, a lot of knowledge is still necessary for the economic use of additive welding processes in SMEs. In addition, subsequent machining, particularly contour milling, is essential to generate the required complex contours and surfaces. Hence, additive and machining manufacturing processes need to be coordinated in a complementary way, especially due to additional challenges arising in milling of heterogeneous hard-to-cut microstructures. Recently, it has been shown that modern, hybrid cutting processes, such as ultrasonic-assisted milling (US), can improve the cutting situation. In this investigation, the Co-Cr initial alloy is additionally modified with Ti and Zr up to 1 wt% with the aim to enhance the homogeneity of the microstructure and, thus, the machinability. Hence the investigation includes finish milling tests of the AM components and the comparison of US and conventional machining. Both the modifications and the ultrasonic assistance exhibit a significant effect on the machining situation; for example US causes a higher surface integrity of the finish milled surfaces compared to conventional milling. T2 - International Congress on Welding, Additive Manufacturing and associated non-destructive testing CY - Online meeting DA - 08.06.2022 KW - Cobalt-chromium alloy KW - Additive manufacturing KW - Ultrasonic-assisted milling KW - Surface integrity PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-560917 SP - 1 EP - 9 PB - Springer CY - Heidelberg AN - OPUS4-56091 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dudziak, Mateusz A1 - Topolniak, Ievgeniia A1 - Silbernagl, Dorothee A1 - Altmann, Korinna A1 - Sturm, Heinz T1 - Long-time behavior of surface properties of microstructures fabricated by multiphoton lithography N2 - The multiphoton lithography (MPL) technique represents the future of 3D microprinting, enabling the production of complex microscale objects with high precision. Although the MPL fabrication parameters are widely evaluated and discussed, not much attention has been given to the microscopic properties of 3D objects with respect to their surface properties and time-dependent stability. These properties are of crucial importance when it comes to the safe and durable use of these structures in biomedical applications. In this work, we investigate the surface properties of the MPL-produced SZ2080 polymeric microstructures with regard to the physical aging processes during the post-production stage. The influence of aging on the polymeric microstructures was investigated by means of Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS). As a result, a time-dependent change in Young’s Modulus, plastic deformation, and adhesion and their correlation to the development in chemical composition of the surface of MPL-microstructures are evaluated. The results presented here are valuable for the application of MPL-fabricated 3D objects in general, but especially in medical technology as they give detailed information of the physical and chemical time-dependent dynamic behavior of MPL-printed surfaces and thus their suitability and performance in biological systems. KW - Multiphoton lithography KW - Additive manufacturing KW - Microfabrication KW - SZ2080 negative photo-resist KW - Young´s modulus KW - Aging KW - Surface properties KW - X-ray photoelectron spectroscopy KW - Atomic force microscopy KW - Force-distance-curve PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-542166 SN - 2079-4991 VL - 11 IS - 12 SP - 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-54216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Artzt, K. A1 - Haubrich, J. A1 - Sevostianov, I. A1 - Requena, G. A1 - Bruno, Giovanni T1 - Micromechanical behavior of annealed Ti-6Al-4V produced by Laser Powder Bed Fusion N2 - The micromechanical behavior of an annealed Ti-6Al-4V material produced by Laser Powder Bed Fusion was characterized by means of in-situ synchrotron X-ray diffraction during a tensile test. The lattice strain evolution was obtained parallel and transversal to the loading direction. The elastic constants were determined and compared with the conventionally manufactured alloy. In the plastic regime, a lower plastic anisotropy exhibited by the lattice planes was observed along the load axis (parallel to the building direction) than in the transverse direction. Also, the load transfer from α to β phase was observed, increasing global ductility of the material. The material seems to accumulate a significant amount of intergranular strain in the transverse direction. KW - Additive manufacturing KW - Ti-6Al-4V KW - Anisotropy KW - Intergranular strain KW - Synchrotron X-ray diffraction PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-547406 VL - 2 IS - 1 SP - 186 EP - 201 PB - Taylor & Francis AN - OPUS4-54740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sommer, Konstantin A1 - Agudo Jácome, Leonardo A1 - Hesse, René A1 - Bettge, Dirk T1 - Revealing the nature of melt pool boundaries in additively manufactured stainless steel by nano-sized modulation N2 - In the current study, the 3D nature of the melt pool boundaries (MPBs) in a 316 L austenitic steel additively manufactured by laser-based powder bed fusion (L-PBF) is investigated. The change of the cell growth direction and its relationship to the MPBs is investigated by transmission electron microscopy. A hitherto unreported modulated substructure with a periodicity of 21 nm is further discovered within the cell cores of the cellular substructure, which results from a partial transformation of the austenite, which is induced by a Ga+ focused ion beam. While the cell cores show the modulated substructure, cell boundaries do not. The diffraction pattern of the modulated substructure is exploited to show a thickness ≥200 nm for the MPB. At MPBs, the cell walls are suppressed, leading to continuously connecting cell cores across the MPB. This continuous MPB is described either as overlapping regions of cells of different growing directions when a new melt pool solidifies or as a narrow planar growth preceding the new melt pool. KW - Additive manufacturing KW - Austenitic steel 316L KW - Melt pool boundary KW - Microstructural characterization KW - Transmission electron microscopy PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-547295 SN - 1527-2648 VL - 24 IS - 6 SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Mishurova, Tatiana A1 - Madia, Mauro A1 - Pirling, T. A1 - Evans, Alexander A1 - Klaus, M. A1 - Haubrich, J. A1 - Requena, G. A1 - Bruno, Giovanni T1 - Influence of a 265 °C heat treatment on the residual stress state of a PBF-LB/M AlSi10Mg alloy N2 - Laser Powder Bed Fusion (PBF-LB/M) additive manufacturing (AM) induces high magnitude residual stress (RS) in structures due to the extremely heterogeneous cooling and heating rates. As the RS can be deleterious to the fatigue resistance of engineering components, great efforts are focused on understanding their generation and evolution after post-process heat treatments. In this study, one of the few of its kind, the RS relaxation induced in an as-built PBF-LB/M AlSi10Mg material by a low-temperature heat treatment (265 °C for 1 h) is studied by means of X-ray and neutron diffraction. Since the specimens are manufactured using a baseplate heated up to 200 °C, low RS are found in the as-built condition. After heat treatment a redistribution of the RS is observed, while their magnitude remains constant. It is proposed that the redistribution is induced by a repartition of stresses between the a-aluminium matrix and the silicon phase, as the morphology of the silicon phase is affected by the heat treatment. A considerable scatter is observed in the neutron diffraction RS profiles, which is principally correlated to the presence (or absence) of pockets of porosity developed at the borders of the chessboard pattern. KW - Neutron diffraction KW - Additive manufacturing PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-565115 SN - 1573-4803 VL - 57 SP - 22082 EP - 22098 PB - Springer Science + Business Media CY - Dordrecht AN - OPUS4-56511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauzon, C. A1 - Mishurova, Tatiana A1 - Fischer, M. A1 - Ahlström, J. A1 - Fritsch, Tobias A1 - Bruno, Giovanni A1 - Hryha, Eduard T1 - Impact of contour scanning and helium-rich process gas on performances of Alloy 718 lattices produced by laser powder bed fusion N2 - Contour scanning and process gas type are process parameters typically considered achieving second order effects compared to first order factors such as laser power and scanning speed. The present work highlights that contour scanning is crucial to ensure geometrical accuracy and thereby the high performance under uniaxial compression of complex Alloy 718 lattice structures. Studies of X-ray computed tomography visualizations of as-built and compression-strained structures reveal the continuous and smooth bending and compression of the walls, and the earlier onset of internal contact appearance in the denser lattices printed with contour. In contrast, the effect of addition of He to the Ar process gas appears to have limited influence on the mechanical response of the lattices and their microstructure as characterized by electron backscattered diffraction. However, the addition of He proved to significantly enhance the cooling rate and to reduce the amount of the generated spatters as evidenced by in situ monitoring of the process emissions, which is very promising for the process stability and powder reusability during laser powder bed fusion. KW - Additive manufacturing KW - Laser powder bed fusion KW - Gyroid lattice KW - Process atmosphere PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-546632 SN - 0264-1275 VL - 215 SP - 110501 PB - Elsevier Ltd. AN - OPUS4-54663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Kromm, Arne A1 - Madia, Mauro T1 - Investigation of residual stresses and microstructure effects on the fatigue behaviour of a L-PBF AlSi10Mg alloy N2 - Al-Si alloys produced by Laser Powder Bed Fusion (L-PBF) techniques allow the fabrication of lightweight free-shape components that find space in aerospace, automotive, biomedical and military applications. Due to the high cooling rates occurring during the building process, L-PBF AlSi10Mg alloys exhibit an ultra-fine microstructure that leads to superior mechanical properties in the as-built condition compared to conventional cast Al-Si materials. Nevertheless, L-PBF processing induces high thermal gradients, leading to deleterious residual stress levels that must be considered to avoid part distortion and unpredicted failures. In order to relax detrimental residual stress and to increase the ductility, post-processing stress relief treatments are generally performed. In as-built condition the hypoeutectic AlSi10Mg microstructure consist of fine α-Al cells containing uniformly dispersed silicon nanoparticles, which are, in addition, surrounded by a eutectic Si network. Above 260°C the silicon interconnectivity starts to breakdown into spheroidized particles and to coarsen. At the same time, the heating residual stresses are relieved. The objective of the contribution is to investigate, under different heat treatment conditions, the evolution of microstructure and residual stresses in view of optimizing the fatigue performance of the alloy. To this purpose various heat treatments in a range of temperatures between 265°C and 300°C for a duration between 15 minutes and 2 hours are performed. The microstructure modifications are analysed using a scanning electron microscope and the residual stress state is measured by laboratory X-ray diffraction. T2 - FATIGUE DESIGN 2021 CY - Online meeting DA - 17.11.2021 KW - AlSi10Mg alloy KW - Additive manufacturing KW - L-PBF KW - Residual stress KW - Heat treatment PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-544942 SN - 2452-3216 VL - 38 SP - 564 EP - 571 PB - Elsevier B.V. AN - OPUS4-54494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe T1 - Comparison of the fatigue behavior of wrought and additively manufactured AISI 316L N2 - Additive manufacturing (AM) is becoming increasingly important in engineering applications due to the possibility of producing components with a high geometrical complexity allowing for optimized forms with respect to the in-service functionality. Despite the promising potential, AM components are still far from being used in safety-relevant applications, mainly due to a lack of understanding of the feedstock-process-properties-performance relationship. This work aims at providing a full characterization of the fatigue behavior of the additively manufactured AISI 316L austenitic stainless steel and a direct comparison with the fatigue performance of the wrought steel. To this purpose, a set of specimens has been produced by laser powder bed fusion (L-PBF) and subsequently heat treated at 900 °C for 1 hour for complete stress relief, whereas a second set of specimens has been machined out of hot-rolled plates. Low cycle fatigue (LCF) and high cycle fatigue (HCF) tests have been conducted for characterizing the fatigue behavior. The L-PBF material had a higher fatigue limit and better finite life performance compared to wrought material. Both, LCF and HCF-testing revealed an extensive cyclic softening. T2 - FATIGUE DESIGN 2021 CY - Online meeting DA - 17.11.2021 KW - Additive manufacturing KW - L-PBF KW - 316L KW - Fatigue KW - LCF KW - HCF PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-544952 SN - 2452-3216 VL - 38 SP - 554 EP - 563 PB - Elsevier B.V. AN - OPUS4-54495 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -