TY - JOUR A1 - Stein, L. A1 - Wang, Cui A1 - Förster, C. A1 - Resch-Genger, Ute A1 - Heinze, K. T1 - Bulky ligands protect molecular ruby from oxygen quenching JF - Dalton Transactions N2 - Chromium(III) complexes can show phosphorescence from the spin-flip excited doublet states 2E/2T1 in the near-infrared with high photoluminescence quantum yields and extremely long lifetimes in the absence of dioxygen. The prototype molecular ruby, [Cr(ddpd)2]3+ (ddpd = N,N’-dimethyl-N,N’-dipyridine-2-ylpyridine-2,6-diamine), has a photoluminescence quantum yield and a luminescence lifetime of 13.7% and 1.1 ms in deaerated acetonitrile, respectively. However, its luminescence is strongly quenched by 3O2 via an efficient Dexter-type energy transfer process. To enable luminescence applications of molecular rubies in solution under aerobic conditions, we explored the potential of sterically demanding ddpd ligands to shield the chromium(III) center from O2 using steady state and time-resolved photoluminescence spectroscopy. The structures of the novel complexes with sterically demanding ligands were investigated by single crystal X-ray diffraction and quantum chemically by density functional theory calculations. The O2 sensitivity of the photoluminescence was derived from absolutely measured photoluminescence quantum yields and excited state lifetimes under inert and aerobic conditions and by Stern–Volmer analyses of these data. Optimal sterically shielded chromium(III) complexes revealed photoluminescence quantum yields of up to 5.1% and excited state lifetimes of 518 μs in air-saturated acetonitrile, underlining the large potential of this ligand design approach to broaden the applicability of highly emissive chromium(III) complexes. KW - Fluorescence KW - Synthesis KW - Production KW - Optical spectroscopy KW - Ligand KW - Photophysics KW - Cr(III) KW - Mechanism KW - NIR KW - Sensor KW - Oxygen PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570807 DO - https://doi.org/10.1039/d2dt02950b VL - 51 IS - 46 SP - 17664 EP - 17670 PB - The Royal Society of Chemistry CY - Berlin AN - OPUS4-57080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reichenauer, F. A1 - Wang, Cui A1 - Förster, C. A1 - Boden, P. A1 - Ugur, N. A1 - Báez-Cruz, R. A1 - Kalmbach, J. A1 - Carrella, L. M. A1 - Rentschler, E. A1 - Ramanan, C. A1 - Niedner-Schatteburg, G. A1 - Gerhards, M. A1 - Seitz, M. A1 - Resch-Genger, Ute A1 - Heinze, K. T1 - Strongly Red-Emissive Molecular Ruby [Cr(bpmp)2]3+ Surpasses [Ru(bpy)3]2+ JF - Journal of th American Chemical Society N2 - Gaining chemical control over the thermodynamics and kinetics of photoexcited states is paramount to an efficient and sustainable utilization of photoactive transition metal complexes in a plethora of technologies. In contrast to energies of charge Transfer states described by spatially separated orbitals, the energies of spinflip states cannot straightforwardly be predicted as Pauli Repulsion and the nephelauxetic effect play key roles. Guided by multireference quantum chemical calculations, we report a novel highly luminescent spin-flip emitter with a quantum chemically predicted blue-shifted luminescence. The spin-flip emission band of the chromium complex [Cr(bpmp)2]3+ (bpmp = 2,6-bis(2-pyridylmethyl) pyridine) shifted to higher energy from ca. 780 nm observed for known highly emissive chromium(III) complexes to 709 nm. The photoluminescence quantum yields climb to 20%, and very long excited state lifetimes in the millisecond range are achieved at room temperature in acidic D2O solution. Partial ligand deuteration increases the quantum yield to 25%. The high excited state energy of [Cr(bpmp)2]3+ and its facile reduction to [Cr(bpmp)2]2+ result in a high excited state redox potential. The ligand’s methylene bridge acts as a Brønsted acid quenching the luminescence at high pH. Combined with a pH-insensitive chromium(III) emitter, ratiometric optical pH sensing is achieved with single wavelength excitation. The photophysical and Ground state properties (quantum yield, lifetime, redox potential, and acid/base) of this spin-flip complex incorporating an earth-abundant metal surpass those of the classical precious metal [Ru(α-diimine)3]2+ charge transfer complexes, which are commonly employed in optical sensing and photo(redox) catalysis, underlining the bright future of these molecular ruby analogues. KW - Fluorescence KW - Optical probe KW - Sensor KW - PH KW - Quantum yield KW - Quality assurance KW - Complex KW - Cr(III) KW - Lifetime KW - Ligand KW - Theory PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530548 DO - https://doi.org/10.1021/jacs.1c05971 VL - 143 IS - 30 SP - 11843 EP - 11855 PB - ACS Publications AN - OPUS4-53054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kalmbach, J. A1 - Wang, Cui A1 - You, Yi A1 - Förster, C. A1 - Schubert, H. A1 - Heinze, K. A1 - Resch-Genger, Ute A1 - Seitz, M. T1 - Near-IR to near-IR upconversion luminescence in molecular chromium ytterbium salts JF - Angewandte Chemie - International Edition N2 - Upconversion photoluminescence in hetero-oligonuclear metal complex architectures featuring organic ligands is an interesting but still rarely observed phenomenon, despite its great potential from a basic research and application perspective. In this context, a new photonic material consisting of molecular chromium(III) and ytterbium(III) complex Ions was developed that exhibits excitation-power density-dependent cooperative sensitization of the chromium-centered 2E/2T1 phosphorescence at approximately 775 nm after excitation of the ytterbium band 2F7/2!2F5/2 at approximately 980 nm in the solid state at ambient temperature. The upconversion process is insensitive to atmospheric oxygen and can be observed in the presence of water molecules in the crystal lattice. KW - Upconversion KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - NIR KW - Cr(III) KW - Yb(III) complex KW - Crystal KW - Triplet-triplet annihilation KW - Sensitization KW - Light harvesting PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512619 DO - https://doi.org/10.1002/anie.202007200 SN - 1433-7851 SN - 1521-3773 VL - 59 IS - 42 SP - 18804 EP - 18808 PB - Wiley CY - Weinheim AN - OPUS4-51261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moll, J. A1 - Wang, Cui A1 - Päpcke, A. A1 - Förster, C. A1 - Resch-Genger, Ute A1 - Lochbrunner, S. A1 - Heinze, K. T1 - Green Light Activation of Push-Pull Ruthenium(II) Complexes JF - Chemistry - A European Journal N2 - Synthesis, characterization, electrochemistry, and photophysics of novel homo- and heteroleptic ruthenium(II) complexes [Ru(cpmp)2] 2+ (22+) and [Ru(cpmp)(ddpd)]2+ (32+) bearing the tridentate ligands 6,2’’-carboxypyridyl-2,2’-methylamine-pyridylpyridine (cpmp) and N,N’-dimethyl-N,N’-dipyridin-2-ylpyridine-2,6-diamine (ddpd) are reported. The complexes possess one (32+) or two (22+) electron-deficient dipyridyl ketone fragments as electron accepting sites enabling intraligand charge transfer (ILCT), ligand-toligand charge transfer (LL’CT) and low-energy metal-to-ligand charge transfer (MLCT) absorptions. The latter peak around 544 nm (green light). 22+ shows 3MLCT phosphorescence in the red to near-infrared spectral region at room temperature in deaerated acetonitrile solution with an emission quantum yield of 1.3 % and a 3MLCT lifetime of 477 ns, while 3 2+ is much less luminescent. This different behaviour is ascribed to the energy gap law and the shape of the parasitic excited 3MC state potential energy surface. This study highlights the importance of the excited state energies and geometries for the actual excited state dynamics. Aromatic and aliphatic amines reductively quench the excited state of 22+ paving the way to photocatalytic applications using low-energy green light as exemplified with the green-light sensitized thiol-ene click reaction. KW - Green light excitation KW - Ruthenium(II) complexes KW - Phosphorescence KW - MLCT KW - Photoinduced electron transfer PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506759 DO - https://doi.org/10.1002/chem.202000871 SP - 1 EP - 13 PB - Wiley-VCH Verlag AN - OPUS4-50675 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gharaati, S. A1 - Wang, Cui A1 - Förster, C. A1 - Weigert, Florian A1 - Resch-Genger, Ute A1 - Heinze, K. T1 - Triplet–Triplet Annihilation Upconversion in a MOF with AcceptorFilled Channels JF - Chemistry - A European Journal N2 - In summary, we report a highly modular solid TTA-UC system comprising of a crystalline, thermally stable PCN222(Pd) MOF with CA-coated MOF channels and with a DPA annihilator embedded in a solution-like environment in the MOF channels. This solid material displays blue upconverted delayed emission with a luminescence lifetime of 373 us, a threshold value of 329 mW*cm-2 and a triplet–triplet energy transfer efficiency of 82%. This optical application adds another facet to the versatile chemistry of PCN-222 MOFs. The design concept is also applicable to other TTA-UC pairs and enables tuning of the UCL color, for example, by replacing DPA with other dyes as exemplarily shown for 2,5,8,11-tetra-tert-butyl-perylene, that yields UCL at 450 nm. Current work aims to reduce the oxygen sensitivity and to increase the retention of the trapped annihilators in organic environments, for example, by tuning the chain length of the carboxylic acid and by coating the MOF surface. In addition, the TTA-UC efficiency will be further enhanced by reducing the reabsorption of the UC emission caused by Pd(TCPP) and by optimizing the sensitizer/annihilator interface. KW - Porphyrin KW - Method KW - MOF KW - Fluorescence KW - Dye KW - Sensor KW - Oxygen sensitive KW - Single molecule KW - DPA KW - Lifetime KW - Upconverstion KW - Quantum yield KW - Triplet-triplet annihilation KW - Sensitization KW - Energy transfer KW - NMR PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-500580 DO - https://doi.org/10.1002/chem.201904945 VL - 26 IS - 5 SP - 1003 EP - 1007 PB - Wiley-VCH Verlag CY - Weinheim AN - OPUS4-50058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Treiling, S. A1 - Wang, Cui A1 - Förster, C. A1 - Reichenauer, F. A1 - Kalmbach, J. A1 - Boden, P. A1 - Harris, J. P. A1 - Carrella, L. M. A1 - Rentschler, E. A1 - Resch-Genger, Ute A1 - Reber, C. A1 - Seitz, M. A1 - Gerhards, M. A1 - Heinze, K. T1 - Luminescence and Light-Driven Energy and Electron Transfer from an Exceptionally Long-Lived Excited State of a Non-Innocent Chromium(III) Complex JF - Angewandte Chemie International Edition N2 - Photoactive metal complexes employing Earth‐abundant metal ions are a key to sustainable photophysical and photochemical applications. We exploit the effects of an inversion center and ligand non‐innocence to tune the luminescence and photochemistry of the excited state of the [CrN6] chromophore [Cr(tpe)2]3+ with close to octahedral symmetry (tpe=1,1,1‐tris(pyrid‐2‐yl)ethane). [Cr(tpe)2]3+ exhibits the longest luminescence lifetime (τ=4500 μs) reported up to date for a molecular polypyridyl chromium(III) complex together with a very high luminescence quantum yield of Φ=8.2 % at room temperature in fluid solution. Furthermore, the tpe ligands in [Cr(tpe)2]3+ are redox non‐innocent, leading to reversible reductive chemistry. The excited state redox potential and lifetime of [Cr(tpe)2]3+ surpass those of the classical photosensitizer [Ru(bpy)3]2+ (bpy=2,2′‐bipyridine) enabling energy transfer (to oxygen) and photoredox processes (with azulene and tri(n‐butyl)amine). KW - Quantum yield KW - Cr(III) complex KW - Longst luminescence lifetime KW - Electron transfer PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-494870 DO - https://doi.org/10.1002/anie.201909325 VL - 58 SP - 2 EP - 13 PB - Wiley-VCH AN - OPUS4-49487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -