TY - JOUR A1 - Strobl, Dominic A1 - Unger, Jörg F. A1 - Ghnatios, C. A1 - Klawoon, Alexander A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Robens-Radermacher, Annika T1 - Efficient bead-on-plate weld model for parameter estimation towards effective wire arc additive manufacturing simulation JF - Welding in the World N2 - Despite the advances in hardware and software techniques, standard numerical methods fail in providing real-time simulations, especially for complex processes such as additive manufacturing applications. A real-time simulation enables process control through the combination of process monitoring and automated feedback, which increases the flexibility and quality of a process. Typically, before producing a whole additive manufacturing structure, a simplified experiment in the form of a beadon-plate experiment is performed to get a first insight into the process and to set parameters suitably. In this work, a reduced order model for the transient thermal problem of the bead-on-plate weld simulation is developed, allowing an efficient model calibration and control of the process. The proposed approach applies the proper generalized decomposition (PGD) method, a popular model order reduction technique, to decrease the computational effort of each model evaluation required multiple times in parameter estimation, control, and optimization. The welding torch is modeled by a moving heat source, which leads to difficulties separating space and time, a key ingredient in PGD simulations. A novel approach for separating space and time is applied and extended to 3D problems allowing the derivation of an efficient separated representation of the temperature. The results are verified against a standard finite element model showing excellent agreement. The reduced order model is also leveraged in a Bayesian model parameter estimation setup, speeding up calibrations and ultimately leading to an optimized real-time simulation approach for welding experiment using synthetic as well as real measurement data. KW - Proper generalized decomposition KW - Model order reduction KW - Hardly separable problem KW - Additive manufacturing KW - Model calibration KW - Wire arc additive manufacturing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596502 DO - https://doi.org/10.1007/s40194-024-01700-0 SN - 0043-2288 SP - 1 EP - 18 PB - Springer AN - OPUS4-59650 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hartwig, Philipp A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Scheunemann, Lisa A1 - Schröder, Jörg A1 - Rethmeier, Michael T1 - A Physically Motivated Heat Source Model for Laser Beam Welding JF - Metals N2 - In this contribution, we present a physically motivated heat source model for the numerical modeling of laser beam welding processes. Since the calibration of existing heat source models, such as the conic or Goldak model, is difficult, the representation of the heat source using so-called Lamé curves has been established, relying on prior Computational Fluid Dynamics (CFD) simulations. Lamé curves, which describe the melting isotherm, are used in a subsequent finite-element (FE) simulation to define a moving Dirichlet boundary condition, which prescribes a constant temperature in the melt pool. As an alternative to this approach, we developed a physically motivated heat source model, which prescribes the heat input as a body load directly. The new model also relies on prior CFD simulations to identify the melting isotherm. We demonstrate numerical results of the new heat source model on boundary-value problems from the field of laser beam welding and compare it with the prior CFD simulation and the results of the Lamé curve model and experimental data. KW - Welding simulation KW - Heat source models KW - Laser beam welding KW - Thermal analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600899 DO - https://doi.org/10.3390/met14040430 VL - 14 IS - 4 SP - 1 EP - 26 PB - MDPI CY - Basel AN - OPUS4-60089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Prabitz, Konstantin Manuel A1 - Antretter, Thomas A1 - Rethmeier, Michael A1 - El-Sari, Bassel A1 - Schubert, Holger A1 - Hilpert, Benjamin A1 - Gruber, Martin A1 - Sierlinger, Robert A1 - Ecker, Werner T1 - Numerical and experimental assessment of liquid metal embrittlement in externally loaded spot welds JF - Welding in the World N2 - Zinc-based surface coatings are widely applied with high-strength steels in automotive industry. Some of these base materials show an increased brittle cracking risk during loading. It is necessary to examine electrogalvanized and uncoated samples of a high strength steel susceptible to liquid metal embrittlement during spot welding with applied external load. Therefore, a newly developed tensile test method with a simultaneously applied spot weld is conducted. A fully coupled 3D electrical, thermal, metallurgical and mechanical finite element model depicting the resistant spot welding process combined with the tensile test conducted is mandatory to correct geometric influences of the sample geometry and provides insights into the sample’s time dependent local loading. With increasing external loads, the morphology of the brittle cracks formed is affected more than the crack depth. The validated finite element model applies newly developed damage indicators to predict and explain the liquid metal embrittlement cracking onset and development as well as even ductile failure. KW - Resistance spot welding KW - Finite element simulation KW - Advanced high-strength steel KW - Liquid metal embrittlement KW - Damage prediction KW - Tensile resistance spot welding experiment PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594848 DO - https://doi.org/10.1007/s40194-024-01696-7 SN - 0043-2288 SP - 1 EP - 10 PB - Springer Science and Business Media LLC AN - OPUS4-59484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -