TY - JOUR A1 - Nordholt, Niclas A1 - O'Hara, Kate A1 - Resch-Genger, Ute A1 - Blaskovich, M. A1 - Rühle, Bastian A1 - Schreiber, Frank T1 - A fluorescently labelled quaternary ammonium compound (NBD-DDA) to study resistance mechanisms in bacteria N2 - Quaternary ammonium compounds (QACs) are widely used as active agents in disinfectants, antiseptics, and preservatives. Despite being in use since the 1940s, there remain multiple open questions regarding their detailed mode-of-action and the mechanisms, including phenotypic heterogeneity, that can make bacteria less susceptible to QACs. To facilitate studies on resistance mechanisms towards QACs, we synthesized a fluorescent quaternary ammonium compound, namely N-dodecyl-N,N-dimethyl-[2-[(4-nitro-2,1,3-benzoxadiazol-7-yl)amino]ethyl]azanium-iodide (NBD-DDA). NBD-DDA is readily detected by flow cytometry and fluorescence microscopy with standard GFP/FITC-settings, making it suitable for molecular and single-cell studies. As a proof-of-concept, NBD-DDA was then used to investigate resistance mechanisms which can be heterogeneous among individual bacterial cells. Our results reveal that the antimicrobial activity of NBD-DDA against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa is comparable to that of benzalkonium chloride (BAC), a widely used QAC, and benzyl-dimethyl-dodecylammonium chloride (BAC12), a mono-constituent BAC with alkyl-chain length of 12 and high structural similarity to NBD-DDA. Characteristic time-kill kinetics and increased tolerance of a BAC tolerant E. coli strain against NBD-DDA suggest that the mode of action of NBD-DDA is similar to that of BAC. As revealed by confocal laser scanning microscopy (CLSM), NBD-DDA is preferentially localized to the cell envelope of E. coli, which is a primary target of BAC and other QACs. Leveraging these findings and NBD-DDA‘s fluorescent properties, we show that reduced cellular accumulation is responsible for the evolved BAC tolerance in the BAC tolerant E. coli strain and that NBD-DDA is subject to efflux mediated by TolC. Overall, NBD-DDA’s antimicrobial activity, its fluorescent properties, and its ease of detection render it a powerful tool to study resistance mechanisms of QACs in bacteria and highlight its potential to gain detailed insights into its mode-of-action. KW - Antimicrobial resistance KW - Bacteria KW - Disinfection KW - Biocides PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-563811 SN - 1664-302X IS - 13 SP - 1 EP - 13 PB - Frontiers Media CY - Lausanne AN - OPUS4-56381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rühle, Bastian A1 - Krumrey, Julian Frederic A1 - Hodoroaba, Vasile-Dan T1 - Workflow towards automated segmentation of agglomerated, non‑spherical particles from electron microscopy images using artificial neural networks N2 - We present a workflow for obtaining fully trained artificial neural networks that can perform automatic particle segmentations of agglomerated, non-spherical nanoparticles from scanning electron microscopy images “from scratch”, without the need for large training data sets of manually annotated images. The whole process only requires about 15 minutes of hands-on time by a user and can typically be finished within less than 12 hours when training on a single graphics card (GPU). After training, SEM image analysis can be carried out by the artificial neural network within seconds. This is achieved by using unsupervised learning for most of the training dataset generation, making heavy use of generative adversarial networks and especially unpaired image-to-image translation via cycle-consistent adversarial networks. We compare the segmentation masks obtained with our suggested workflow qualitatively and quantitatively to state-of-the-art methods using various metrics. Finally, we used the segmentation masks for automatically extracting particle size distributions from the SEM images of TiO2 particles, which were in excellent agreement with particle size distributions obtained manually but could be obtained in a fraction of the time. KW - Electron microscopy KW - Neural networks KW - Artificial intelligence KW - Image segmentation KW - Automated image analysis PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-522454 VL - 11 IS - 1 SP - 4942 PB - Springer Nature AN - OPUS4-52245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kimani, Martha Wamaitha A1 - Kislenko, Evgeniia A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Fluorescent molecularly imprinted polymer particles for glyphosate detection using phase transfer agents N2 - In this work, molecular imprinting was combined with direct fluorescence detection of the pesticide Glyphosate (GPS). Firstly, the solubility of highly polar GPS in organic solvents was improved by using lipophilic tetrabutylammonium (TBA+) and tetrahexylammonium (THA+) counterions. Secondly, to achieve fluorescence detection, a fluorescent crosslinker containing urea-binding motifs was used as a probe for GPS-TBA and GPS-THA salts in chloroform, generating stable complexes through hydrogen bond formation. The GPS/fluorescent dye complexes were imprinted into 2–3 nm fluorescent molecularly imprinted polymer (MIP) shells on the surface of sub-micron silica particles using chloroform as porogen. Thus, the MIP binding behavior could be easily evaluated by fluorescence titrations in suspension to monitor the spectral changes upon addition of the GPS analytes. While MIPs prepared with GPS-TBA and GPS-THA both displayed satisfactory imprinting following titration with the corresponding analytes in chloroform, GPS-THA MIPs displayed better selectivity against competing molecules. Moreover, the THA+ counterion was found to be a more powerful phase transfer agent than TBA+ in a biphasic assay, enabling the direct fluorescence detection and quantification of GPS in water. A limit of detection of 1.45 μM and a linear range of 5–55 μM were obtained, which match well with WHO guidelines for the acceptable daily intake of GPS in water (5.32 μM). KW - Glyphosate KW - Molecular imprinting KW - Core-shell particles KW - Fluorescent sensors PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-555281 SN - 2045-2322 VL - 12 IS - 1 SP - 1 EP - 15 PB - Macmillan Publishers Limited CY - London AN - OPUS4-55528 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Burnage, Samual A1 - Bell, Jérémy A1 - Wan, Wei A1 - Kislenko, Evgeniia A1 - Rurack, Knut T1 - Combining a hybrid chip and tube microfluidic system with fluorescent molecularly imprinted polymer (MIP) core–shell particles for the derivatisation, extraction, and detection of peptides with N-terminating phosphorylated tyrosine N2 - The reliable identification and quantitation of phosphorylated amino acids, peptides and proteins is one of the key challenges in contemporary bioanalytical research, an area of particular interest when attempting to diagnose and treat diseases at an early stage. We have developed a synthetic probe for targeting phosphorylated amino acids, based on core–shell submicron-sized particles consisting of a silica core, coated with a molecularly imprinted polymer (MIP) shell. The MIP layer contains a fluorescent probe crosslinker which binds selectively to phosphorylated tyrosine (pY) moieties with a significant imprinting factor (IF) and responds with a "light-up” fluorescence signal. The bead-based ratiometric detection scheme has been successfully transferred to a microfluidic chip format and its applicability to rapid assays has been exemplarily shown by discriminating a pY-terminating oligopeptide against its nonphosphorylated counterpart. Such miniaturised devices could lead to an automated pY or pY N-terminated peptide measurement system in the future. The setup combines a modular microfluidic system for amino acid derivatisation, extraction (by micropillar co-flow) and selective adsorption and detection with the fluorescent MIP core–shell particle probes. A miniaturised optical assembly for low-light fluorescence measurements was also developed, based on miniaturised opto-electronic parts and optical fibres. The emission from the MIP particles upon binding of pY or pY N-terminated peptides could be monitored in real-time. KW - Microfluidics KW - Molecularly imprinted polymers KW - Phosphorylated peptides KW - Fluorescence KW - Core-shell particles PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-569204 SN - 1473-0197 VL - 23 IS - 3 SP - 466 EP - 474 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-56920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Menero-Valdés, P. A1 - Chronakis, Michail Ioannis A1 - Fernández, B. A1 - Quarles Jr., C. D. A1 - González-Iglesias, H. A1 - Meermann, Björn A1 - Pereiro, R. T1 - Single Cell–ICP–ToF-MS for the Multiplexed Determination of Proteins: Evaluation of the Cellular Stress Response N2 - An automated and straightforward detection and data treatment strategy for the determination of the protein relative concentration in individual human cells by single cell–inductively coupled plasma–time-of-flight mass spectrometry (sc-ICP-ToF-MS) is proposed. Metal nanocluster (NC)-labeled specific antibodies for the target proteins were employed, and ruthenium red (RR) staining, which binds to the cells surface, was used to determine the number of cell events as well as to evaluate the relative volume of the cells. As a proof of concept, the expression of hepcidin, metallothionein-2, and ferroportin employing specific antibodies labeled with IrNCs, PtNCs, and AuNCs, respectively, was investigated by sc-ICP-ToF-MS in human ARPE-19 cells. Taking into account that ARPE-19 cells are spherical in suspension and RR binds to the surface of the cells, the Ru intensity was related to the cell volume (i.e., the cell volume is directly proportional to (Ru intensity)3/2), making it possible to determine not only the mass of the target proteins in each individual cell but also the relative concentration. The proposed approach is of particular interest in comparing cell cultures subjected to different supplementations. ARPE-19 cell cultures under two stress conditions were compared: a hyperglycemic model and an oxidative stress model. The comparison of the control with treated cells shows not only the mass of analyzed species but also the relative changes in the cell volume and concentration of target proteins, clearly allowing the identification of subpopulations under the respective treatment. KW - Peptides and Proteins KW - Immunology KW - Metals PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-581630 VL - 95 IS - 35 SP - 13322 EP - 13329 PB - ACS Publications AN - OPUS4-58163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Zengchao A1 - Akkus, Asli A1 - Weisheit, W. A1 - Giray, Thorsten A1 - Penk, Sibylle A1 - Buttler, Sabine A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique T1 - Multielement analysis in soils using nitrogen microwave inductively coupled atmospheric pressure plasma mass spectrometry N2 - In this study, we employed nitrogen microwave inductively coupled atmospheric-pressure plasma (MICAP) combined with quadrupole mass spectrometry (MS) and a liquid sample introduction system to analyze heavy metals in soils. The vanadium, cobalt, nickel, zinc, copper, chromium, arsenic, lead, and cadmium contents in seven reference and three environmental soil samples determined using MICAP-MS were within the uncertainty of the reference values, indicating that MICAP-MS is promising for soil analysis similar to the conventional inductively coupled plasma mass spectrometry (ICP-MS) technique. In addition, the limits of detection (LODs) and sensitivity of both techniques using N2 and Ar plasma were of the same order of magnitude. Furthermore, the performance of MICAP-MS under different N2 purity was investigated, and we found that the plasma formation and ionization efficiency were not influenced by the impurities in the gas. A prominent advantage of MICAP-MS is the low operating cost associated with gas consumption. In this work, MICAP-MS used nitrogen, which is cheaper than argon, and consumed 25% less gas than ICP-MS. Using low-purity N2 can further reduce the gas cost, making MICAP-MS more cost effective than ICP-MS. These results suggest that MICAP-MS is a promising alternative to ICP-MS for the analysis of heavy metals in the soil. KW - Soil KW - Microwave inductively coupled atmospheric pressure mass spectrometry (MICAP-MS) KW - Nitrogen plasma KW - Multi-element analysis PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-561048 SN - 0267-9477 VL - 37 IS - 12 SP - 2556 EP - 2562 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-56104 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schutter, Jan David A1 - Eberhardt, Karl A1 - Elert, Anna Maria A1 - Radnik, Jörg A1 - Geißler, Daniel A1 - Özcan Sandikcioglu, Özlem T1 - Synthesis and characterization of lipopolysaccharide (LPS) anchored polystyrene microparticles as a synthetic model system for attachment studies N2 - Outer membrane lipopolysaccharides (LPS) play a crucial role in determining attachment behavior and pathogenicity of bacteria. The aim of this study was to develop a simple procedure for anchoring bacterial lipopolysaccharides to polystyrene (PS) microparticles as a model system for in situ attachment studies. By using a swellcapture methodology, commercially available LPS of Pseudomonas aeruginosa (strain ATCC 27316 serotype 10.22) was anchored onto PS microparticles in a proof-of-concept study. A detailed chemical and morphological characterization has proven the success of LPS incorporation. It was shown that the coverage and structure of the LPS film was concentration dependent. The procedure can easily be adapted to LPS of other bacterial strains to generate a synthetic model toolkit for attachment studies. KW - Bacterial lipopolysaccharides KW - Pseudomonas aeruginosa KW - Polystyrene microparticles KW - Swell-capture KW - Biomimicry PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-579818 SN - 0927-7765 VL - 226 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-57981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Srivastava, Priyanka A1 - Tavernaro, Isabella A1 - Scholtz, Lena A1 - Genger, C. A1 - Welker, P. A1 - Schreiber, Frank A1 - Meyer, Klas A1 - Resch-Genger, Ute T1 - Dual color pH probes made from silica and polystyrene nanoparticles and their performance in cell studies N2 - Ratiometric green–red fluorescent nanosensors for fluorometrically monitoring pH in the acidic range were designed from 80 nm-sized polystyrene (PS) and silica (SiO2) nanoparticles (NPs), red emissive reference dyes, and a green emissive naphthalimide pH probe, analytically and spectroscopically characterized, and compared regarding their sensing performance in aqueous dispersion and in cellular uptake studies. Preparation of these optical probes, which are excitable by 405 nm laser or LED light sources, involved the encapsulation of the pH-inert red-fuorescent dye Nile Red (NR) in the core of self-made carboxylated PSNPs by a simple swelling procedure and the fabrication of rhodamine B (RhB)-stained SiO2-NPs from a silane derivative of pH-insensitive RhB. Subsequently, the custom-made naphthalimide pH probe, that utilizes a protonation-controlled photoinduced electron transfer process, was covalently attached to the carboxylic acid groups at the surface of both types of NPs. Fluorescence microscopy studies with the molecular and nanoscale optical probes and A549 lung cancer cells confirmed the cellular uptake of all probes and their penetration into acidic cell compartments, i.e., the lysosomes, indicated by the switching ON of the green naphthalimide fluorescence. This underlines their suitability for intracellular pH sensing, with the SiO2-based nanosensor revealing the best performance regarding uptake speed and stability. KW - Sensors KW - Silica and polystyrene nanoparticles KW - pH probe KW - Fluorescence spectroscopy KW - Cell studies KW - Dye KW - Particle synthesis PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-569198 SN - 2045-2322 VL - 13 IS - 1 SP - 1321 EP - 1336 PB - Nature CY - London AN - OPUS4-56919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tang, Chi-Long A1 - Seeger, Stefan A1 - Röllig, Mathias T1 - Improving the comparability of FFF-3D printing emission data by adjustment of the set extruder temperature N2 - Fused filament fabrication (FFF) is a material extrusion-based technique often used in desktop 3D printers. Polymeric filaments are melted and are extruded through a heated nozzle to form a 3D object in layers. The extruder temperature is therefore a key parameter for a successful print job but also one of the main emission driving factors as harmful pollutants (e.g., ultrafine particles) are formed by thermal polymer degradation. The awareness of potential health risks has increased the number of emission studies in the past years. However, studies usually refer their calculated emission data to the printer set extruder temperature for comparison purposes. In this study, we used a thermocouple and an infrared camera to measure the actual extruder temperature and found significant temperature deviations to the displayed set temperature among printer models. Our result shows that printing the same filament feedstocks with three different printer models and with identical printer set temperature resulted in a variation in particle emission of around two orders of magnitude. A temperature adjustment has reduced the variation to approx. one order of magnitude. Thus, it is necessary to refer the measured emission data to the actual extruder temperature as it poses a more accurate comparison parameter for evaluation of the indoor air quality in user scenarios or for health risk assessments. KW - Ultrafine particles KW - Infrared thermography KW - Thermocouple KW - Indoor air quality KW - FFF-3D printer PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-572842 VL - 18 SP - 100217 PB - Elsevier Ltd. CY - Amsterdam, Niederlande AN - OPUS4-57284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roesch, Philipp A1 - Vogel, Christian A1 - Wittwer, Philipp A1 - Huthwelker, T. A1 - Borca, C. A1 - Sommerfeld, Thomas A1 - Kluge, Stephanie A1 - Piechotta, Christian A1 - Kalbe, Ute A1 - Simon, Franz-Georg T1 - Taking a Look at the Surface: µ-XRF Mapping and Fluorine K-edge µ-XANES Spectroscopy of Organofluorinated Compounds in Environmental Samples and Consumer Products N2 - For the first time, µ-X-ray fluorescence (µ-XRF) mapping combined with fluorine K-edge µ-X-ray absorption near-edge structure (µ-XANES) spectroscopy was applied to depict per- and polyfluoroalkyl substances (PFAS) contamination and inorganic fluoride in samples concentrations down to 100 µg/kg fluoride. To demonstrate the matrix tolerance of the method, several PFAS contaminated soil and sludge samples as well as selected consumer product samples (textiles, food contact paper and permanent baking sheet) were investigated. µ-XRF mapping allows for a unique element-specific visualisation at the sample surface and enables localisation of fluorine containing compounds to a depth of 1 µm. Manually selected fluorine rich spots were subsequently analysed via fluorine K-edge µ-XANES spectroscopy. To support spectral interpretation with respect to inorganic and organic chemical distribution and compound class determination, linear combination (LC) fitting was applied to all recorded µ-XANES spectra. Complementarily, solvent extracts of all samples were target-analysed via LC-MS/MS spectrometry. The detected PFAS sum values range from 20 to 1136 µg/kg dry weight (dw). All environmentally exposed samples revealed higher concentration of PFAS with a chain length >C8 (e.g. 580 µg/kg dw PFOS for Soil1), whereas the consumer product samples showed a more uniform distribution with regard to chain lengths from C4 to C8. Independent from quantified PFAS amounts via target analysis, µ-XRF mapping combined with µ-XANES spectroscopy was successfully applied to detect both point-specific concentration maxima and evenly distributed surface coatings of fluorinated organic contaminants in the corresponding samples. KW - PFAS KW - XRF KW - LC-MS/MS KW - XANES KW - Fluoride KW - Soil PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-576109 SN - 2050-7887 SP - 1 EP - 12 PB - Royal Society of Chemistry AN - OPUS4-57610 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -