TY - JOUR A1 - Pohl, Christoph A1 - Smilauer, V. A1 - Unger, Jörg F. T1 - A three-phase transport model for high-temperature concrete simulations validated with X-ray CT data N2 - Concrete exposure to high temperatures induces thermo-hygral phenomena, causing water phase changes, buildup of pore pressure and vulnerability to spalling. In order to predict these phenomena under various conditions, a three-phase transport model is proposed. The model is validated on X-ray CT data up to 320 ◦C, showing good agreement of the temperature profiles and moisture changes. A dehydration description, traditionally derived from thermogravimetric analysis, was replaced by a formulation based on data from neutron radiography. In addition, treating porosity and dehydration evolution as independent processes, previous approaches do not fulfil the solid mass balance. As a consequence, a new formulation is proposed that introduces the porosity as an independent variable, ensuring the latter condition. KW - Concrete KW - Porous media KW - Spalling KW - Dehydration KW - Moisture transport KW - Heat transfer KW - Pore pressure KW - Porosity KW - Finite elements PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-532840 UR - https://doi.org/10.5281/zenodo.4890635 SN - 1996-1944 VL - 14 IS - 17 SP - 1 EP - 21 PB - MDPI CY - Basel AN - OPUS4-53284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -