TY - CONF A1 - Krankenhagen, Rainer A1 - Röllig, Mathias A1 - Worzewski, Tamara A1 - Doroshtnasir, Manoucher T1 - Thermographic rotor blade inspection from larger distances – a promising tool for the maintenance of wind turbines N2 - The permanently increasing number of wind turbines requires suited inspection and monitoring methods to ensure liability and security. Concerning the inspection of ro-tor blades, only manual inspections are state of the art. Thermographic Testing (TT) has the potential to detect typical failures and damages on rotor blades. The paper presents some results of onsite measurements carried out as “passive thermogra-phy”, i.e. without a defined heating procedure. Due the totally contactless meas-urement principle, TT can be applied to rotating blades as well as to resting blades. Both methods will be compared with respect to their possible realization. T2 - WCNDT 2016 CY - Munich, Germany DA - 13.06.2016 KW - Wind turbine rotor blade KW - Thermographic inspection KW - Passive thermography KW - Nondestructive testing PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-366331 SN - 978-3-940283-78-8 SP - We.4.D.4., 1 EP - 8 AN - OPUS4-36633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breese, Philipp Peter A1 - Becker, Tina A1 - Oster, Simon A1 - Metz, C. A1 - Altenburg, Simon T1 - In-situ defect detection via active laser thermographic testing for PBF-LB/M N2 - Great complexity characterizes Additive Manufacturing (AM) of metallic components via laser powder bed fusion (PBF-LB/M). Due to this, defects in the printed components (like cracks and pores) are still common. Monitoring methods are commercially used, but the relationship between process data and defect formation is not well understood yet. Furthermore, defects and deformations might develop with a temporal delay to the laser energy input. The component’s actual quality is consequently only determinable after the finished process. To overcome this drawback, thermographic in-situ testing is introduced. The defocused process laser is utilized for nondestructive testing performed layer by layer throughout the build process. The results of the defect detection via infrared cameras are shown for a research PBF-LB/M machine. This creates the basis for a shift from in-situ monitoring towards in-situ testing during the AM process. Defects are detected immediately inside the process chamber, and the actual component quality is determined. T2 - Lasers in Manufacturing (LiM) CY - Munich, Germany DA - 26.06.2023 KW - Additive manufacturing KW - Laser powder bed fusion KW - Nondestructive testing KW - Laser thermography KW - Defect detection PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-585060 SP - 1 EP - 10 PB - Wissenschaftliche Gesellschaft Lasertechnik und Photonik (WLT) CY - Hannover AN - OPUS4-58506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pirskawetz, Stephan A1 - Schmidt, S. T1 - Detection of wire breaks in prestressed concrete bridges by Acoustic Emission analysis N2 - problem. One reason is the sensitivity to stress corrosion cracking of the prestressing steel. Failure of prestressing wires can result in collapse of the entire structure without premature indication by transverse bending cracks or considerable deformation. The response of a structure to significant number of prestressing wire breaks was studied on a bridge in Brandenburg, Germany. Two thirds of the prestressing wires in concentrated tendons of two girders were cut before the bridge was demolished. Acoustic Emission Analysis was used to detect the wire breaks. Thus, the number of wire breaks was correlated with results of other measurement techniques, in particular strain measurements on the girders. In preparation of the measurements, the acoustic properties of the bridge were determined and the suitability of Schmidt hammer impacts as an acoustic reference source was validated. KW - Real scale test KW - Acoustic emission monitoring KW - Structural health monitoring (SHM) KW - Prestressed concrete bridge KW - Stress corrosion cracking KW - Wire break KW - Destructive testing KW - Nondestructive testing PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-573927 SN - 2666-1659 VL - 14 SP - 1 EP - 10 PB - Elsevier Ltd AN - OPUS4-57392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gebauer, D. A1 - Gutiérrez, R, A1 - Marx, S. A1 - Butler, M. A1 - Grahl, K. A1 - Thiel, T. A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Pirskawetz, Stephan A1 - Breit, W. A1 - Schickert, M. A1 - Krüger, M. T1 - Interrelated dataset of rebound numbers, ultrasonic pulse velocities and compressive strengths of drilled concrete cores from an existing structure and new fabricated concrete cubes N2 - Two test series were examined using nondestructive measuring methods by six independent laboratories before determining their compressive strength. The nondestructive test methods used were the rebound hammer and ultrasonic pulse velocity measurement. Two types of geometries were investigated: drilled cores and cubes. The measurement procedure for each of these datasets is conditioned to the geometry and is therefore different. The first series consists of 20 drilled cores (approximately diameter/height = 10 cm/20 cm) from the 55-year-old Lahntal Viaduct near Limburg, Germany. After preparation in the first laboratory, the lateral surface of the drilled cores was tested with the rebound hammer using a given pattern. Every laboratory tested every drilled core at different locations. Ultrasonic measurements in transmission were performed repeatedly at predefined points on the flat surfaces of the specimen. The second series consisted of 25 newly manufactured concrete cubes of a mix with a target concrete strength class of C30/37. The edge length was 15 cm. Each laboratory received five specimens of this test series. Thus, contrary to the first series, each specimen was tested by only one laboratory. Two side faces of each cube were tested with the rebound hammer. In addition, ultrasonic measurements were performed by one laboratory. The time of flight was measured between the tested side faces of the rebound hammer at different positions. For both series, rebound hammers were used to determine the R-value as well as the Q-value. The rebound hammer models within the laboratories were always the same, while they differed between the laboratories. The ultrasonic measurements took place with different measurement systems and couplants. Finally, both specimen series were tested destructively for compressive strength. The dataset contains the raw data summarized in tabular form. In addition, relevant calculated data are included in some cases. For the ultrasonic measurements, the time of flight has already been converted into the ultrasonic velocity. Besides, in addition to the raw data of the compressive strength test (force, weight, and geometry values), the calculated compressive strengths and densities are also provided. KW - Nondestructive testing KW - Ultra sound KW - Rebound hammer KW - Existing structure KW - Civil engineering PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-574655 SN - 2352-3409 VL - 48 IS - 109201 SP - 1 EP - 13 PB - Elsevier Inc. AN - OPUS4-57465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maack, Stefan A1 - Villalobos, S. A1 - Scott, D. T1 - Validation of artificial defects for non-destructive testing measurements on a reference structure N2 - Non-destructive testing was established over the last decades as an important tool for assessing damages, material characterization and quality assurance in civil engineering. For example, Ground Penetrating Radar (GPR) can be used to scan large areas of concrete structures to determine the spatial position of the reinforcement. With the ultrasonic echo method, the thickness of concrete structures can be easily determined even if a high density of reinforcement is given. Various methods and processes have been developed for the validation of NDT procedures aiming at ensuring the quality of measurements in practical use. The Probability of Detection (POD) for example, is an available method to compare different technical devices with each other quantitatively regarding their performance. With this method, the best suited testing device for a specific inspection task under defined boundary conditions can be selected. By using the Guide to the Expression of Uncertainty in Measurement (GUM), it is possible to quantify the measurement uncertainty of an inspection procedure for a specific task. Another important aspect to improve the acceptance of Non-destructive testing methods is the development of reference specimens. Reference specimens serve for the calibration and further development of NDT methods under realistic conditions in different laboratories under the same conditions. A particular challenge here is the most realistic representation of a damage that can occur at building sites. Possible damages include for example horizontal and vertical cracks or honeycombs in concrete. Such a reference structure was built for the development of a new design of power plant constructions. Comparative studies on the manufacturing of realistic honeycombs and delaminations were carried out in advance on a test specimen. The results of this study are presented here. T2 - ICCRRR 2018 - Concrete Repair, Rehabilitation and Retrofitting CY - Cape Town, South Africa DA - 19.11.2018 KW - Zerstörungsfreie Prüfung KW - Nondestructive testing KW - Istzustandserfassung KW - Ultrasonic PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-464497 SN - 2261-236X VL - 199 SP - 1 EP - 9 PB - EDP Sciences CY - Les Ulis AN - OPUS4-46449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bühling, Benjamin A1 - Maack, Stefan A1 - Strangfeld, Christoph T1 - OsciCheck - A Novel Fluidic Transducer for Air-Coupled Ultrasonic Measurements N2 - Ultrasonic measurement technology has become indispensable in NDT-CE. Air-coupled ultrasonic (ACU) measurement techniques promise to reduce measurement time. However, the signal quality suffers from large specific impedance mismatch at the transducer-air and air-specimen interface. Additionally, large pressure amplitudes are necessary for the penetration depth required in NDT-CE applications. To address the specific requirements of ultrasonic testing in NDT-CE, a robust ACU transducer was developed, that generates ultrasound by quickly switching a pressurized air flow. The simple design of the fluidic transducer makes the device maintenance free and resilient against harsh environmental conditions. Since the signal is generated by aeroacoustics, there is no specific impedance mismatch between the transducer and the surrounding air. The ultrasonic signal exhibits frequencies in the 30-60 kHz range and is therefore well suited to penetrate heterogenous materials such as concrete. This contribution gives an introduction in the working principle and signal characteristics of the fluidic transducer. Its applicability to measurements in concrete is verified. A detailed outlook is given to discuss the future potential of fluidic ultrasonic actuators. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Air-coupled ultrasound KW - Nondestructive testing KW - Fluidics KW - Bistable amplifier KW - Aeroacoustics PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-555271 UR - https://www.ndt.net/search/docs.php3?id=27319 VL - 2022/09 SP - 1 EP - 9 PB - NDT.net CY - Bad Breisig AN - OPUS4-55527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Niederleithinger, Ernst A1 - Abraham, O. A1 - Mooney, M. T1 - Geophysical methods in civil engineering: Overview and new concepts N2 - Geophysical methods have been used in civil engineering for decades. The main field of application is - to no surprise – in geotechnical projects from site characterization to foundation quality assurance. For more than 25 years, ground penetrating radar (GPR) and seismic methods have found applications in structural engineering. Recently introduced geophysical methods have been adopted to ultrasonic investigations in various fields. They help to improve the quality of structural imaging and to detect small changes in concrete. An overview of the history and current use of geophysics in civil engineering is given. Selected examples of new concepts include advances in wave based imaging, quality assurance for foundations, detecting small changes in concrete as well as moisture and corrosion detection are discussed. T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering CY - Berlin, Germany DA - 15.09.2015 KW - Nondestructive testing KW - Civil engineering KW - Geophysics PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-344666 UR - https://www.ndt.net/?id=18260 SN - 1435-4934 VL - 20 IS - 11 SP - 1 EP - 6 PB - NDT.net CY - Kirchwald AN - OPUS4-34466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bühling, Benjamin A1 - Maack, Stefan T1 - Improving onset picking in ultrasonic testing by using a spectral entropy criterion N2 - In ultrasonic testing, material and structural properties of a specimen can be derived from the time-of-flight (ToF). Using signal features, such as the first peak or envelope maximum, to calculate the ToF is error-prone in multipath arrangements or dispersive and attenuating materials, which is not the case for the signal onset. Borrowing from seismology, researchers used the Akaike information criterion (AIC) picker to automatically determine onset times. The most commonly used formulation, Maeda's AIC picker, is reassessed and found to be based on inappropriate assumptions for signals often used in ultrasonic testing and dependent on arbitrary parameters. Consequently, an onset picker for ultrasonic through-transmission measurements is proposed, based on a spectral entropy criterion (SEC) to model the signal using the AIC framework. This SEC picker takes into account the spectral properties of the ultrasonic signal and is virtually free of arbitrary parameters. Synthetic and experimental data are used to compare the performance of SEC and AIC pickers. It is shown that the accuracy of onset picking is improved for densely sampled data. KW - Akaike information criterion picker KW - Nondestructive testing KW - Ultrasound KW - Time of flight PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-594284 UR - https://pubs.aip.org/asa/jasa/article/155/1/544/3061576/Improving-onset-picking-in-ultrasonic-testing-by SN - 0001-4966 VL - 155 IS - 1 SP - 544 EP - 554 PB - AIP Publishing CY - Melville, NY, USA AN - OPUS4-59428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -