TY - JOUR A1 - Günther, Martin A1 - Lorenzetti, A. A1 - Schartel, Bernhard T1 - Fire Phenomena of Rigid Polyurethane Foams N2 - Rigid polyurethane foams (RPUFs) typically exhibit low thermal inertia, resulting in short ignition times and rapid flame spread. In this study, the fire phenomena of RPUFs were investigated using a multi-methodological approach to gain detailed insight into the fire behaviour of pentaneand water-blown polyurethane (PUR) as well as pentane-blown polyisocyanurate Polyurethane (PIR) foams with densities ranging from 30 to 100 kg/m3. Thermophysical properties were studied using thermogravimetry (TG); flammability and fire behaviour were investigated by means of the limiting oxygen index (LOI) and a cone calorimeter. Temperature development in burning cone calorimeter specimens was monitored with thermocouples inside the foam samples and visual investigation of quenched specimens’ cross sections gave insight into the morphological changes during burning. A comprehensive investigation is presented, illuminating the processes taking place during foam combustion. Cone calorimeter tests revealed that in-depth absorption of radiation is a significant factor in estimating the time to ignition. Cross sections examined with an electron scanning microscope (SEM) revealed a pyrolysis front with an intact foam structure underneath, and temperature measurement inside burning specimens indicated that, as foam density increased, their burning behaviour shifted towards that of solid materials. The superior fire performance of PIR foams was found to be based on the cellular structure, which is retained in the residue to some extent. KW - Foam KW - Polyurethane KW - Fire behaviour KW - Flammability PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-465577 SN - 2073-4360 VL - 10 IS - 10 SP - 1166-1 EP - 1166-22 PB - MDPI AN - OPUS4-46557 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Turski Silva Diniz, Analice A1 - Schartel, Bernhard T1 - The effects of property variation on the dripping behaviour of polymers during UL94 test simulated by particle finite element method N2 - The dripping behaviour of polymers is often observed experimentally through the UL94 flammability standard test. In this work, polymeric dripping under fire is investigated numerically using particle finite element method. A parametric analysis was carried out to observe the influence of a single property on overall dripping behaviour via a UL94 vertical test model. Surrogates and property ranges were defined for variation of the following parameters: glass transition temperature (Tg), melting temperature (Tm), decomposition temperature (Td), density (ρ), specific heat capacity (Cp), apparent effective heat of combustion of the volatiles, char yield (μ), thermal conductivity (k), and viscosity (η). Polyamide, poly(ether ether ketone), poly(methyl methacrylate), and polysulfone were used as benchmarks. Simulated results showed that specific heat capacity, thermal conductivity, and char yield allied with viscosity were the properties that most influenced dripping behaviour (starting time and occurrence). KW - Dripping KW - PFEM KW - UL 94 KW - Simulation KW - Fire behaviour PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-597449 SN - 1618-7229 VL - 24 IS - 1 PB - De Gruyter AN - OPUS4-59744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -