TY - GEN A1 - Hahn, Oliver A1 - Nöller, Renate ED - Bausi, A. T1 - Pigments and dyes N2 - The present volume is the main achievement of the Research Networking Programme ‘Comparative Oriental Manuscript Studies’, funded by the European Science Foundation in the years 2009–2014. It is the first attempt to introduce a wide audience to the entirety of the manuscript cultures of the Mediterranean East. The chapters reflect the state of the art in such fields as codicology, palaeography, textual criticism and text editing, cataloguing, and manuscript conservation as applied to a wide array of language traditions including Arabic, Armenian, Avestan, Caucasian Albanian, Christian Palestinian Aramaic, Coptic, Ethiopic, Georgian, Greek, Hebrew, Persian, Slavonic, Syriac, and Turkish. Seventy-seven scholars from twenty-one countries joined their efforts to produce the handbook. The resulting reference work can be recommended both to scholars and students of classical and oriental studies and to all those involved in manuscript research, digital humanities, and preservation of cultural heritage. The volume includes maps, illustrations, indexes, and an extensive bibliography. KW - Pigments KW - Dyes PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-447833 UR - https://www.aai.uni-hamburg.de/en/comst/publications/handbook.html SN - 978-3-7323-1768-4 SN - 978-3-7323-1769-1 SN - 978-3-7323-1770-7 SP - 75 EP - 77 PB - European Science Foundation CY - Hamburg AN - OPUS4-44783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sun, Yijuan A1 - Gawlitza, Kornelia A1 - Valderrey, Virginia A1 - Bell, Jérémy A1 - Rurack, Knut T1 - Polymerizable BODIPY probe crosslinker for the molecularly imprinted polymer-based detection of organic carboxylates via fluorescence N2 - This contribution reports the development of a polymerizable BODIPY-type fluorescent probe targeting small-molecule carboxylates for incorporation into molecularly imprinted polymers (MIPs). The design of the probe crosslinker includes a urea recognition site p-conjugated to the 3-position of the BODIPY core and two methacrylate moieties. Titration experiments with a carboxylate-expressing antibiotic, levofloxacin (LEVO), showed a blue shift of the absorption band as well as a broadening and decrease in emission, attributed to hydrogen bonding between the probe’s urea group and the carboxylate group of the antibiotic. Using this probe crosslinker, core–shell particles with a silica core and a thin MIP shell were prepared for the detection of LEVO. The MIP exhibited highly selective recognition of LEVO, with an imprinting factor of 18.1 compared to the non-imprinted polymer. Transmission electron microscopy confirmed the core–shell structure and spectroscopic studies revealed that the receptor’s positioning leads to a unique perturbation of the polymethinic character of the BODIPY chromophore, entailing the favourable responses. These features are fully preserved in the MIP, whereas no such response was observed for competitors such as ampicillin. The sensory particles allowed to detect LEVO down to submicromolar concentrations in dioxane. We have developed here for the first time a BODIPY probe for organic carboxylates and incorporated it into polymers using the imprinting technique, paving the way for BODIPY-type fluorescent MIP sensors. KW - Fluorescence KW - BODIPY probe KW - Molecularly Imprinted Polymers KW - Sensor Materials KW - Dyes KW - Water analysis KW - Advanced materials PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-598629 SP - 1 EP - 11 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -