TY - JOUR A1 - Fernádez-Canteli, A. A1 - Castillo, E. A1 - Blasón, Sergio T1 - A methodology for phenomenological analysis of cumulative damage processes. Application to fatigue and fracture phenomena N2 - Sample functions, i.e., stochastic process realizations, are used to define cumulative damage phenomena which end into an observable terminal state or failure. The complexity inherent to such phenomena justifies the use of phenomenological models associated with the evolution of a physical magnitude feasible to be monitored during the test. Sample functions representing the damage evolution may be identified, once normalized to the interval [0,1], with cumulative distribution functions (cdfs), generally, of the generalized extreme value (GEV) family. Though usually only a fraction of the whole damage evolution, according to the specific problem handled, is available from the test record, the phenomenological models proposed allow the whole damage process to be recovered. In this way, down- and upwards extrapolations of the whole damage process beyond the scope of the experimental program are provided as a fundamental tool for failure prediction in the practical design. The proposed methodology is detailed and its utility and generality confirmed by its successive application to representative well-known problems in fatigue and fracture characterization. The excellent fittings, the physical interpretation of the model parameters and the good expectations to achieve a complete probabilistic analysis of these phenomena justify the interest of the proposed phenomenological approach with possible applications to other cumulative damage processes. KW - Bayesian technique KW - Sample random results KW - Stochastic sample functions KW - Probabilistic assessment PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-552371 SN - 0142-1123 VL - 150 SP - 106311 PB - Elsevier Ltd. AN - OPUS4-55237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Üstündag, Ömer A1 - Bakir, Nasim A1 - Gook, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Hybrid laser‑arc welding of laser‑ and plasma‑cut 20‑mm‑thick structural steels N2 - It is already known that the laser beam welding (LBW) or hybrid laser-arc welding (HLAW) processes are sensitive to manufacturing tolerances such as gaps and misalignment of the edges, especially at welding of thick-walled steels due to its narrow beam diameter. Therefore, the joining parts preferably have to be milled. The study deals with the influence of the edge quality, the gap and the misalignment of edges on the weld seam quality of hybrid laser-arc welded 20-mm-thick structural steel plates which were prepared by laser and plasma cutting. Single-pass welds were conducted in butt joint configuration. An AC magnet was used as a contactless backing. It was positioned under the workpiece during the welding process to prevent sagging. The profile of the edges and the gap between the workpieces were measured before welding by a profile scanner or a digital camera, respectively. With a laser beam power of just 13.7 kW, the single-pass welds could be performed. A gap bridgeability up to 1 mm at laser-cut and 2 mm at plasma-cut samples could be reached respectively. Furthermore, a misalignment of the edges up to 2 mm could be welded in a single pass. The new findings may eliminate the need for cost and time-consuming preparation of the edges. KW - Hybrid laser-arc welding KW - Thick-walled steel KW - Edge quality KW - Gap bridgeability KW - Laser cutting KW - Plasma cutting PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-552013 SN - 0043-2288 VL - 66 SP - 507 EP - 514 PB - Springer AN - OPUS4-55201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schönherr, J. A. A1 - Duarte, Larissa A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Geilen, M. B. A1 - Klein, M. A1 - Oechsner, M. T1 - Robust determination of fatigue crack propagation thresholds from crack growth data N2 - The robust determination of the threshold against fatigue crack propagation DKth is of paramount importance in fracture mechanics based fatigue assessment procedures. The standards ASTM E647 and ISO 12108 introduce operational definitions of DKth based on the crack propagation rate da/dN and suggest linear fits of logarithmic DK– da/dN test data to calculate DKth. Since these fits typically suffer from a poor representation of the actual curvature of the crack propagation curve, a method for evaluating DKth using a nonlinear function is proposed. It is shown that the proposed method reduces the artificial conservativeness induced by the evaluation method as well as the susceptibility to scatter in test data and the influence of test data density. KW - Fatigue crack propagation threshold KW - ISO 12108 KW - ASTM E647 KW - Data evaluation methods KW - Experimental determination PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-552153 SN - 1996-1944 VL - 15 IS - 14 SP - 1 EP - 21 PB - MDPI CY - Basel AN - OPUS4-55215 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oster, Simon A1 - Fritsch, Tobias A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Bruno, Giovanni A1 - Maierhofer, Christiane A1 - Altenburg, Simon T1 - On the Registration of Thermographic In Situ Monitoring Data and Computed Tomography Reference Data in the Scope of Defect Prediction in Laser Powder Bed Fusion N2 - The detection of internal irregularities is crucial for quality assessment in metal-based additive manufacturing (AM) technologies such as laser powder bed fusion (L-PBF). The utilization of in-process thermography as an in situ monitoring tool in combination with post-process X-ray micro computed tomography (XCT) as a reference technique has shown great potential for this aim. Due to the small irregularity dimensions, a precise registration of the datasets is necessary as a requirement for correlation. In this study, the registration of thermography and XCT reference datasets of a cylindric specimen containing keyhole pores is carried out for the development of a porosity prediction model. The considered datasets show variations in shape, data type and dimensionality, especially due to shrinkage and material elevation effects present in the manufactured part. Since the resulting deformations are challenging for registration, a novel preprocessing methodology is introduced that involves an adaptive volume adjustment algorithm which is based on the porosity distribution in the specimen. Thus, the implementation of a simple three-dimensional image-to-image registration is enabled. The results demonstrate the influence of the part deformation on the resulting porosity location and the importance of registration in terms of irregularity prediction. KW - Selective laser melting (SLM) KW - Laser powder bed fusion (L-PBF) KW - Additive manufacturing (AM) KW - Process monitoring KW - Infrared thermography KW - X-ray computed tomography (XCT) KW - Defect detection KW - Image registration PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-549412 VL - 12 IS - 6 SP - 1 EP - 21 PB - MDPI AN - OPUS4-54941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eissel, A. A1 - Engelking, Lorenz A1 - Treutler, K. A1 - Schroepfer, Dirk A1 - Wesling, V. A1 - Kannengießer, Thomas T1 - Investigations on influencing the microstructure of additively manufactured Co‑Cr alloys to improve subsequent machining conditions N2 - Co-Cr alloys are frequently used for highly stressed components, especially in turbine and plant construction, due to their high resistance to thermal and mechanical stress, as well as to corrosive and abrasive loads. Furthermore, they are classified as difficult-to-cut materials because of their high strength and toughness as well as their low thermal conductivity. However, for Co, an increased cost and supply risk can be observed in recent years. Therefore, additive manufacturing (AM) offers significant economic advantages due to higher material efficiency regarding repair, modification, and manufacturing of such components. Concerning inhomogeneity and anisotropy of the microstructure and properties as well as manufacturing-related stresses, a lot of knowledge is still necessary for the economic use of additive welding processes in SMEs. In addition, subsequent machining, particularly contour milling, is essential to generate the required complex contours and surfaces. Hence, additive and machining manufacturing processes need to be coordinated in a complementary way, especially due to additional challenges arising in milling of heterogeneous hard-to-cut microstructures. Recently, it has been shown that modern, hybrid cutting processes, such as ultrasonic-assisted milling (US), can improve the cutting situation. In this investigation, the Co-Cr initial alloy is additionally modified with Ti and Zr up to 1 wt% with the aim to enhance the homogeneity of the microstructure and, thus, the machinability. Hence the investigation includes finish milling tests of the AM components and the comparison of US and conventional machining. Both the modifications and the ultrasonic assistance exhibit a significant effect on the machining situation; for example US causes a higher surface integrity of the finish milled surfaces compared to conventional milling. T2 - International Congress on Welding, Additive Manufacturing and associated non-destructive testing CY - Online meeting DA - 08.06.2022 KW - Cobalt-chromium alloy KW - Additive manufacturing KW - Ultrasonic-assisted milling KW - Surface integrity PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-560917 SP - 1 EP - 9 PB - Springer CY - Heidelberg AN - OPUS4-56091 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Bachmann, Marcel A1 - Artinov, Antoni A1 - Rethmeier, Michael T1 - Influence of the free surface reconstruction on the spatial laser energy distribution in high power laser beam welding modeling N2 - An accurate and efficient description of the spatial distribution of laser energy is a crucial factor for the modeling of laser material processing, e.g., laser welding, laser cutting, or laser-based additive manufacturing. In this study, a 3D heat transfer and fluid flow model coupled with the volume-of-fluid algorithm for free surface tracking is developed for the simulation of molten pool dynamics in high-power laser beam welding. The underlying laser-material interactions, i.e., the multiple reflections and Fresnel absorption, are considered by a raytracing method. Two strategies of free surface reconstruction used in the ray-tracing method are investigated: a typical piecewise linear interface calculation (PLIC)-based method and a novel localized level-set method. The PLIC-based method is discrete, resulting in noncontinuous free surface reconstruction. In the localized level-set method, a continuous free surface is reconstructed, and, thus, the exact reflection points can be determined. The calculated spatial laser energy distribution and the corresponding molten pool dynamics from the two methods are analyzed and compared. The obtained numerical results are evaluated with experimental measurements to assure the validity of the proposed model. It is found that distinct patterns of the beam multiple reflections are obtained with the different free surface reconstructions, which shows significant influence not only on the molten pool behaviors but also on the localized keyhole dynamics. KW - Laser beam welding KW - Laser energy distribution KW - Weld pool dynamics KW - Ray teacing PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-562429 SN - 1042-346X VL - 34 IS - 4 SP - 042023-1 EP - 042023-8 PB - Laser Institute of America CY - Orlando, Fla. AN - OPUS4-56242 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Batahgy, A. A1 - Elkousy, M. A1 - Al-Rahman, A. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael A1 - Gook, S. T1 - Retaining Mechanical Properties of GMA-Welded Joints of 9%Ni Steel Using Experimentally Produced Matching Ferritic Filler Metal N2 - Motivated by the loss of tensile strength in 9%Ni steel arc-welded joints performed using commercially available Ni-based austenitic filler metals, the viability of retaining tensile strength using an experimentally produced matching ferritic filler metal was confirmed. Compared to the austenitic Ni-based filler metal (685 MPa), higher tensile strength in gas metal arc (GMA) welded joints was achieved using a ferritic filler metal (749 MPa) due to its microstructure being similar to the base metal (645 MPa). The microstructure of hard martensite resulted in an impact energy of 71 J (-196 °C), which was two times higher than the specified minimum value of _>34 J. The tensile and impact strength of the welded joint is affected not only by its microstructure, but also by the degree of its mechanical mismatch depending on the type of filler metal. Welds with a harder microstructure and less mechanical mismatch are important for achieving an adequate combination of tensile strength and notched impact strength. This is achievable with the cost-effective ferritic filler metal. A more desirable combination of mechanical properties is guaranteed by applying low preheating temperature (200 °C), which is a more practicable and economical solution compared to the high post-weld heat treatment (PWHT) temperature (580 °C) suggested by other research. KW - 9%Ni steel KW - Ni-based austenitic filler metal KW - Mechanical mismatching KW - Microstructure KW - Post-weld heat treatment KW - Preheating KW - Matching ferritic filler metal PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-564610 SN - 1996-1944 VL - 15 IS - 23 SP - 1 EP - 14 PB - MDPI AN - OPUS4-56461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Nietzke, Jonathan A1 - Richter, Tim A1 - Mente, Tobias A1 - Mayr, P A1 - Nitsche, A T1 - Hydrogen effect on mechanical properties and cracking of creep‑resistant 9% Cr P92 steel and P91 weld metal N2 - Martensitic 9% Cr steels like P91 and P92 can show an increased susceptibility to delayed hydrogen-assisted cracking. The focus of this study was the microstructure and heat treatment efect on the mechanical properties of P92 base material and P91 multi-layer weld metal in both as-welded and post weld heat treated (PWHT) condition. Tensile tests with hydrogen free reference samples and electrochemically hydrogen charged samples were carried out; the mechanical properties were assessed and supported by detailed fractographic analysis. Finally, a hydrogen and microstructure-dependent fracture criterion is established. All investigated microstructures showed a hydrogen-infuenced degradation of the mechanical properties compared to the hydrogen-free reference samples. The as-welded martensitic P91 weld metal had the highest degree of degradation in the presence of hydrogen. The P91 PWHT weld metal and the P92 base material had comparable properties. From that point of view, a signifcantly increased risk for hydrogen-assisted cold cracking during welding fabrication of P91 weld joints must be considered before any heat treatment is conducted. T2 - IIW Annual Assembly, Meeting of Commission IX-C CY - Tokyo, Japan DA - 16.07.2022 KW - Creep-resisting materials KW - Welding KW - Hydrogen assisted cracking KW - Hydrogen embrittlement KW - Mechanical properties PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-564070 SN - 0043-2288 SP - 1 EP - 12 PB - Springer Nature CY - Basel (CH) AN - OPUS4-56407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heßmann, Jennifer A1 - Hilgenberg, Kai T1 - New approach for multi-material design: Combination of laser beam and electromagnetic melt pool displacement by induced Lorentz forces N2 - Multimaterial structures are a promising solution to reduce vehicle weight and save fuel or electric energy in automotive design. However, thermal joining of steel and aluminum alloys is a challenge to overcome due to different material properties and the formation of brittle intermetallic phases. In this study, a new joining approach for producing overlap line-shaped joints is presented. The lower joining partner (EN AW 5754) is melted by a laser beam, and this melt is displaced into a line-shaped cavity of the upper joining partner (1.0330) by induced Lorentz forces. The melt solidifies in the cavity to a material and form-fitting joint. This approach needs no auxiliary joining elements or filler materials. Previous investigation to produce spot-shaped joints by using this approach showed that quality and reproducibility were limited by known melt pool dynamics of aluminum alloys (keyhole collapses). For line-shaped joints, the melt displacement can take place behind the keyhole. This allows the displacement process to be spatially uncoupled from the influence of keyhole collapses. The study shows that this improved the process stability and the quality of the joint. The created line-shaped joints were microstructurally characterized by transversal sections. Intermetallic phases were identified by electron backscatter diffraction and EDX analysis. The detected intermetallic phases consist of a 5–6 μm compact phase seam of Al5.6Fe2 and a needle-shaped phase of Al13Fe4. Tensile shear tests were carried out to quantify the load capacity. It was possible to create a joint with a load capacity of about 2 kN. KW - Electromagnetic forces KW - Joining dissimilar materials KW - Laser beam welding KW - Steel and aluminium KW - Lorentz forces PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-564840 SN - 1042-346X VL - 35 IS - 1 SP - 1 EP - 8 PB - Laser Institute of America CY - Orlando, Fla. AN - OPUS4-56484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hübler, Daniela A1 - Gradt, Thomas T1 - Effect of different binders and secondary carbides on NbC cermets T1 - Einfluss unterschiedlicher Binder und Sekundärkarbide auf NbC-Hartmetalle N2 - Due to the rapidly increasing price of tungsten carbide and the significant health risks associated with the wear products of WC-Co (Co3O4 and Wo3), an alternative is required. Niobium carbide (NbC) is well suited as a cutting tool due to its high melting point and low solubility in iron. So far, NbC-Ni cermets best met the requirements of high hardness and toughness. Various secondary carbides such as VC, Mo2C, TiC, but also WC were added to further improve the hardness. N2 - Aufgrund des rasanten Preisanstiegs von Wolframcarbid und signifikanter Gesundheitsrisiken, die mit den Verschleißprodukten von WC-Co-Hartmetallen (Co3O4 and Wo3) einhergehen, wird eine Alternative benötigt. Niobcarbid (NbC) ist als Zerspanwerkzeug aufgrund seiner hohen Schmelztemperatur und seiner geringen Löslichkeit in Eisen gut geeignet. Im Vergleich zu reinem NbC, führte eine vollständige Substitution von WC zu NbC-Co zu einem Anstieg der Zähigkeit und Festigkeit. Als alternative Binder wurden anschließend Nickel- und Eisengebundene Binder untersucht. Obwohl eisengebundene Hartmetalle im Vergleich zu NbC-Ni Hartmetallen eine ökonomische und kostengünstigere Alternative darstellen würden, zeigten sie einen höheren Reibkoeffizienten und eine höhere Verschleißrate. Bisher erfüllen die NbC-Ni-Hartmetalle die Anforderungen hinsichtlich einer hohen Härte und Zähigkeit am besten. Verschiedene Sekundärkarbide, wie VC, Mo2C, TiC, aber auch WC wurden zusätzlich hinzugefügt, um die Härte weiter zu steigern. Elementanalysen der NbC-Ni-MeC Hartmetalle (Me = Metall) zeigten, dass der Binder eine kubisch-flächenzentrierter Mischkristall ist, während die NbC Phase ein Mischkristall des Typs (Nb, Me)C ist. KW - Niobium carbide (NbC) KW - Cutting tool KW - Binders PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-547202 SN - 0015-7899 VL - 86 IS - 2 SP - 197 EP - 211 PB - Springer CY - Berlin AN - OPUS4-54720 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -