TY - JOUR A1 - Gernhard, M. A1 - Rautenberg, Max A1 - Hörner, G. A1 - Weber, B. A1 - Emmerling, Franziska A1 - Roth, C. T1 - Mechanochemical Synthesis as a Greener Way to ProduceIron-based Oxygen Reduction Catalysts N2 - Iron-based catalysts have been reported manifold and studied as platinum group metal (PGM) free alternatives for the catalysis of the oxygen reduction reaction (ORR). However, their sustainable preparation by greener synthesis approaches is usually not discussed. In this work, we propose a new method for the sustainable preparation of such catalysts by using a mechanochemical approach, with no solvents and non-toxic chemicals. The materials obtained from low temperature carbonization (700 °C) exhibit considerable and stable catalytic performance for ORR in alkaline medium. A catalyst obtained from iron hydroxide, tryptophan, dicyandiamide, and ammonium nitrate shows the best electrocatalytic Performance with an overpotential of 921 mV vs. RHE at 0.1 mA/cm2 and an electron transfer number of 3.4. KW - PGM-free catalyst KW - Oxygen Reduction Reaction KW - AEMFC KW - Mössbauer Spectroscopy KW - Sustainable Synthesis PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-535326 VL - 647 IS - 22 SP - 2080 EP - 2087 PB - Weinheim-VCH GmbH AN - OPUS4-53532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -