TY - JOUR A1 - Wilke, Manuel A1 - Batzdorf, Lisa A1 - Fischer, Franziska A1 - Rademann, Klaus A1 - Emmerling, Franziska T1 - Cadmium phenylphosphonates: preparation, characterisation and in situ investigation N2 - The successful mechanochemical syntheses of three cadmium phenylphosphonates indicates that mechanochemistry is ideally suited for synthesizing metal phosphonates. With this powerful synthesis tool it is possible to synthesize rapidly and efficiently both known and novel phosphonates. The Crystal structures of the two new compounds, and, were solved from PXRD data. They contain monodeprotonated phenylphosphonate and neutral phenylphosphonic acid ligands. The synthesis pathways of all three compounds were investigated in situ. A diffusion mechanism is corroborated by our findings. Intermediates could be detected and identified. The kinetically favored product (3) could always be detected during the syntheses. The thermodynamic stability of the compounds and the stoichiometric ratio of the starting materials are the two directing factors for the synthesis of the final products. KW - Mechanochemistry KW - Metal phosphonate KW - In situ KW - MOF KW - XRD PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-363322 SN - 2046-2069 VL - 6 IS - 42 SP - 36011 EP - 36019 PB - Royal Soc Chemistry CY - Cambridge, UK AN - OPUS4-36332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Manuel A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Rademann, Klaus A1 - Emmerling, Franziska T1 - The structure and in situ synthesis investigation of isomorphic mononuclear molecular metal phenylphosphonates N2 - We describe a fast and effective synthesis for molecular metal phosphonates. Isomorphic compounds [M(II)(HO₃PPh)₂(H₂O₃PPh)₂(H₂O)₂] (M = Mn (1), Co (2), Ni (3); Ph = C₆H₅) were obtained by grinding. The complexes are mononuclear compounds containing neutral and monodeprotonated phenylphosphonic acid and water as ligands. The crystal structures were determined using powder X-ray diffraction (PXRD) data and validated by extended X-ray absorption fine structure (EXAFS) data. Combined synchrotron XRD measurements and Raman spectroscopy were conducted for investigating the reactions in situ. Based on these data, the intermediates were characterized and the formation mechanism was derived. KW - Mechanochemistry KW - Metal phosphonate KW - In situ KW - XRD PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-363944 SN - 1477-9226 SN - 1477-9234 SN - 1364-5447 VL - 45 IS - 23 SP - 9460 EP - 9467 AN - OPUS4-36394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Manuel A1 - Kabelitz, Anke A1 - Gorelik, T. E. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Kolb, U. A1 - Rademann, K. A1 - Emmerling, Franziska T1 - The crystallisation of copper(II) phenylphosphonates N2 - The crystal structures and syntheses of four different copper(II) phenylphosphonates, the monophenylphosphonates α-, β-, and γ-Cu(O3PC6H5)·H2O (α-CuPhPmH (1) β-CuPhPmH (2) and γ-CuPhPmH (3)), and the diphosphonate Cu(HO3PC6H5)2·H2O (CuPhP2mH (4)), are presented. The compounds were synthesized from solution at room temperature, at elevated temperature, under hydrothermal conditions, and mechanochemical conditions. The structures of α-CuPhPmH (1) and CuPhP2mH (4) were solved from powder X-ray diffraction data. The structure of β-CuPhPmH (2) was solved by single crystal X-ray analysis. The structures were validated by extended X-ray absorption fine structure (EXAFS) and DTA analyses. Disorder of the crystal structure was elucidated by electron diffraction. The relationship between the compounds and their reaction pathways were investigated by in situ synchrotron measurements. KW - Mechanochemistry KW - Metal phosphonate KW - In situ PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-384217 SN - 1477-9226 SN - 1477-9234 VL - 45 IS - 43 SP - 17453 EP - 17463 PB - The Royal Society of Chemistry AN - OPUS4-38421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -