TY - JOUR A1 - Wurzler, Nina A1 - Schutter, Jan David A1 - Wagner, R. A1 - Dimper, Matthias A1 - Lützenkirchen-Hecht, D. A1 - Özcan Sandikcioglu, Özlem T1 - Abundance of Fe(III) during cultivation affects the microbiologically influenced corrosion (MIC) behaviour of iron reducing bacteria Shewanella putrefaciens N2 - The effect of the presence of Fe(III) during the cultivation on the electrochemical activity and corrosion behaviour of dissimilatory iron reducing bacteria Shewanella putrefaciens was studied by means of ex situ and in situ X-ray absorption near-edge spectroscopy (XANES). Stainless steel AISI 304 and thin iron films were studied as substrates. XANES analysis indicated an accelerated iron dissolution and growth of an oxide/hydroxide film for the culture grown with Fe(III) in comparison to the culture grown in absence of Fe(III). Electrochemical Analysis indicated that the biofilm resulted in acceleration of the general corrosion but provides protection against local corrosion. KW - Stainless Steel KW - XANES KW - Iron KW - Cyclic Voltammetry KW - Microbiological Corrosion PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-513788 VL - 174 SP - 108855 PB - Elsevier Ltd. AN - OPUS4-51378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schutter, Jan David A1 - Eberhardt, Karl A1 - Elert, Anna Maria A1 - Radnik, Jörg A1 - Geißler, Daniel A1 - Özcan Sandikcioglu, Özlem T1 - Synthesis and characterization of lipopolysaccharide (LPS) anchored polystyrene microparticles as a synthetic model system for attachment studies N2 - Outer membrane lipopolysaccharides (LPS) play a crucial role in determining attachment behavior and pathogenicity of bacteria. The aim of this study was to develop a simple procedure for anchoring bacterial lipopolysaccharides to polystyrene (PS) microparticles as a model system for in situ attachment studies. By using a swellcapture methodology, commercially available LPS of Pseudomonas aeruginosa (strain ATCC 27316 serotype 10.22) was anchored onto PS microparticles in a proof-of-concept study. A detailed chemical and morphological characterization has proven the success of LPS incorporation. It was shown that the coverage and structure of the LPS film was concentration dependent. The procedure can easily be adapted to LPS of other bacterial strains to generate a synthetic model toolkit for attachment studies. KW - Bacterial lipopolysaccharides KW - Pseudomonas aeruginosa KW - Polystyrene microparticles KW - Swell-capture KW - Biomimicry PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-579818 SN - 0927-7765 VL - 226 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-57981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -