TY - JOUR A1 - Küttenbaum, Stefan A1 - Braml, T. A1 - Taffe, A. A1 - Keßler, S. A1 - Maack, Stefan T1 - Reliability assessment of existing structures using results of nondestructive testing JF - Structural Concrete N2 - Making optimal decisions about the reliability of existing structures requires that the information used in assessment adequately represents the properties and the condition of the structures. The knowledge gap regarding a structure to be assessed can be successively filled by individually purposeful observations on site. This paper gives an overview of an approach for utilizing nondestructively gathered measurement results in reliability assessment of existing structures. An essential part of measurement-based stochastic modeling of basic variables is the calculation of measurement uncertainties, which serves to establish confidence in measurement, to ensure the comparability of unambiguously expressed measurement results, and to quantify the quality of the measured information. Regarding the current discourse on how to treat information collected on-site in the context of assessment, the authors recommend that measurement uncertainty becomes an uncertainty component mandatorily to be represented in measurement-based stochastic models. The main steps of the proposed concept are presented, and the advantages of its application are emphasized by means of a prestressed concrete bridge as case study. The bridge is assessed regarding the serviceability limit state decompression using ultrasonic and radar data measured at the structure. KW - Bridge KW - Measurement uncertainty KW - Prestressed concrete KW - Stochastic modeling KW - Probabilistic methods PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529927 DO - https://doi.org/10.1002/suco.202100226 SN - 1751-7648 VL - 22 IS - 5 SP - 2895 EP - 2915 PB - John Wiley & Sons Ltd CY - Oxford AN - OPUS4-52992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -