TY - JOUR A1 - Strobl, Dominic A1 - Unger, Jörg F. A1 - Ghnatios, C. A1 - Klawoon, Alexander A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Robens-Radermacher, Annika T1 - Efficient bead-on-plate weld model for parameter estimation towards effective wire arc additive manufacturing simulation JF - Welding in the World N2 - Despite the advances in hardware and software techniques, standard numerical methods fail in providing real-time simulations, especially for complex processes such as additive manufacturing applications. A real-time simulation enables process control through the combination of process monitoring and automated feedback, which increases the flexibility and quality of a process. Typically, before producing a whole additive manufacturing structure, a simplified experiment in the form of a beadon-plate experiment is performed to get a first insight into the process and to set parameters suitably. In this work, a reduced order model for the transient thermal problem of the bead-on-plate weld simulation is developed, allowing an efficient model calibration and control of the process. The proposed approach applies the proper generalized decomposition (PGD) method, a popular model order reduction technique, to decrease the computational effort of each model evaluation required multiple times in parameter estimation, control, and optimization. The welding torch is modeled by a moving heat source, which leads to difficulties separating space and time, a key ingredient in PGD simulations. A novel approach for separating space and time is applied and extended to 3D problems allowing the derivation of an efficient separated representation of the temperature. The results are verified against a standard finite element model showing excellent agreement. The reduced order model is also leveraged in a Bayesian model parameter estimation setup, speeding up calibrations and ultimately leading to an optimized real-time simulation approach for welding experiment using synthetic as well as real measurement data. KW - Proper generalized decomposition KW - Model order reduction KW - Hardly separable problem KW - Additive manufacturing KW - Model calibration KW - Wire arc additive manufacturing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596502 DO - https://doi.org/10.1007/s40194-024-01700-0 SN - 0043-2288 SP - 1 EP - 18 PB - Springer AN - OPUS4-59650 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strobl, Dominic A1 - Unger, Jörg F. A1 - Ghnatios, C. A1 - Robens-Radermacher, Annika T1 - PGD in thermal transient problems with a moving heat source: A sensitivity study on factors affecting accuracy and efficiency JF - Engineering Reports N2 - Thermal transient problems, essential for modeling applications like welding and additive metal manufacturing, are characterized by a dynamic evolution of temperature. Accurately simulating these phenomena is often computationally expensive, thus limiting their applications, for example for model parameter estimation or online process control. Model order reduction, a solution to preserve the accuracy while reducing the computation time, is explored. This article addresses challenges in developing reduced order models using the proper generalized decomposition (PGD) for transient thermal problems with a specific treatment of the moving heat source within the reduced model. Factors affecting accuracy, convergence, and computational cost, such as discretization methods (finite element and finite difference), a dimensionless formulation, the size of the heat source, and the inclusion of material parameters as additional PGD variables are examined across progressively complex examples. The results demonstrate the influence of these factors on the PGD model’s performance and emphasize the importance of their consideration when implementing such models. For thermal example, it is demonstrated that a PGD model with a finite difference discretization in time, a dimensionless representation, a mapping for a moving heat source, and a spatial domain non-separation yields the best approximation to the full order model. KW - Additive manufacturing KW - Mapping for unseparable load KW - Model order reduction (MOR) KW - Thermal transient problem KW - Sensitivity analysis KW - Proper generalized decomposition (PGD) PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598001 DO - https://doi.org/10.1002/eng2.12887 IS - e12887 SP - 1 EP - 22 PB - John Wiley & Sons Ltd. CY - Berlin AN - OPUS4-59800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -