TY - JOUR A1 - Karapanagiotis, Christos A1 - Hicke, Konstantin A1 - Krebber, Katerina T1 - Eine Sammlung durch Maschinelles Lernen unterstützter Verteilter Faseroptischer Sensoren für Infrastrukturmonitoring T1 - A collection of machine learning assisted distributed fiber optic sensors for infrastructure monitoring N2 - In this paper, we present a collection of machine learning assisted distributed fiber optic sensors (DFOS) for applications in the field of infrastructure monitoring. We employ advanced signal processing based on artificial neural networks (ANNs) to enhance the performance of the dynamic DFOS for strain and vibration sensing. Specifically, ANNs in comparison to conventional and computationally expensive correlation and linearization algorithms, deliver lower strain errors and speed up the signal processing allowing real time strain monitoring. Furthermore, convolutional neural networks (CNNs) are used to denoise the dynamic DFOS signal and enable useable sensing lengths of up to 100 km. Applications of the machine learning assisted dynamic DFOS in road traffic and railway infrastructure monitoring are demonstrated. In the field of static DFOS, machine learning is applied to the well-known Brillouin optical frequency domain analysis (BOFDA) system. Specifically, CNN are shown to be very tolerant against noisy spectra and contribute towards significantly shorter measurement times. Furthermore, different machine learning algorithms (linear and polynomial regression, decision trees, ANNs) are applied to solve the well-known problem of cross-sensitivity in cases when temperature and humidity are measured simultaneously. The presented machine learning assisted DFOS can potentially contribute towards enhanced, cost effective and reliable monitoring of infrastructures. N2 - In diesem Beitrag stellen wir eine Sammlung von verteilten faseroptischen Sensoren (DFOS) vor, die mit Hilfe von Maschinellem Lernen arbeiten und für Anwendungen im Bereich der Infrastrukturüberwachung geeignet sind. Wir setzen hierbei fortschrittliche Signalverarbeitung auf der Grundlage Künstlicher Neuronaler Netze ein, um die Leistungsfähigkeit dynamischer DFOS für die Messung von Dehnungen und Vibrationen zu verbessern. Insbesondere Künstliche Neuronale Netze (ANNs) liefern im Vergleich zu konventionellen und rechenintensiven Korrelations- und Linearisierungsalgorithmen geringere Dehnungsfehler und beschleunigen die Signalverarbeitung, so dass eine Dehnungsüberwachung in Echtzeit möglich ist. Darüber hinaus wenden wir Convolutional Neural Networks (CNNs) an, um dynamische DFOS-Signale zu entrauschen und damit nutzbare Messlängen von bis zu 100 km zu ermöglichen. Es werden Anwendungsbeispiele dieser durch Maschinelles Lernen unterstützten dynamischen DFOS in den Bereichen des Straßenverkehrsmonitorings und der Zug- und Gleisüberwachung aufgezeigt. Im Bereich der statischen DFOS wird Maschinelles Lernen auf das Verfahren der Optischen Brillouin-Frequenzbereichsanalyse (BOFDA) angewendet. Insbesondere CNN erweisen sich hier als sehr robust gegenüber verrauschten Spektren und tragen zu deutlich kürzeren Messzeiten bei. Darüber hinaus werden verschiedene Algorithmen des maschinellen Lernens (lineare und polynome Regression, Entscheidungsbäume, ANNs) angewandt, um das bekannte Problem der Querempfindlichkeit bei DFOS in den Fällen zu lösen, in denen Temperatur und Feuchtigkeit gleichzeitig gemessen werden sollen. Die hier vorgestellten, durch Maschinelles Lernen unterstützten, DFOS können zu einer verbesserten, kostengünstigen und zuverlässigen Überwachung von Infrastrukturen beitragen. KW - Artificial neural networks KW - Brillouin sensing KW - Distributed acoustic sensing KW - Fibre optic sensors KW - Infrastructure monitoring PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-569044 SN - 0171-8096 SP - 1 EP - 19 PB - De Gruyter AN - OPUS4-56904 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -