TY - JOUR A1 - Müller, Anja A1 - Swaraj, S. A1 - Sparnacci, K. A1 - Unger, Wolfgang T1 - Shell thickness determination for PTFE‐PS core‐shell nanoparticles using scanning transmission X‐ray microscopy (STXM) N2 - A scanning transmission X‐ray microscopy (STXM)‐based methodology is introduced for determining the dimensions (shell thickness, core and total diameter) of core‐shell nanoparticles, which exhibit a strong X‐ray absorption contrast and a well‐defined interface between core and shell material. A low radiation dosage during data acquisition and, therefore, less X‐ray beam‐induced damage of the sample is achieved by recording STXM images only at 2 predetermined energies of maximum Absorption contrast, instead of recording a stack of images across the whole absorption edge. A model core‐shell nanoparticle, polytetrafluoroethylene (PTFE) cores with polystyrene (PS) shell, is used for demonstration. Near‐edge X‐ray absorption fine structure spectroscopy confirms the significant difference in X‐ray absorption behavior between PTFE and PS. Additionally, because of the insolubility of styrene in PTFE a well‐defined interface between particle core and shell is expected. To validate the STXM results, both the naked PTFE cores as well as the complete core‐shell nanoparticles are examined by scanning electron microscopy (SEM). The introduced STXM‐based methodology yields particle dimensions in agreement with the SEM results and provides additional information such as the position of the particle core, which cannot be extracted from a SEM micrograph. T2 - European conference on applications of surface and interface analysis (ECASIA'17) CY - Montpellier, France DA - 24.09.2017 KW - Core-shell nanoparticles KW - Polymers KW - PS KW - PTFE KW - SEM KW - STXM PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-449700 SN - 1096-9918 SN - 0142-2421 VL - 50 IS - 11 SP - 1077 EP - 1082 PB - John Wiley & Sons CY - Hoboken, New Jersey, USA AN - OPUS4-44970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Anja A1 - Sparnacci, K. A1 - Unger, Wolfgang A1 - Tougaard, S. T1 - Determining nonuniformities of core-shell nanoparticle coatings by analysis of the inelastic background of X-ray photoelectron spectroscopy survey spectra N2 - Most real core-shell nanoparticle (CSNP) samples deviate from an ideal core-shell structure potentially having significant impact on the particle properties. An ideal structure displays a spherical core fully encapsulated by a shell of homogeneous thickness, and all particles in the sample exhibit the same shell thickness. Therefore, analytical techniques are required that can identify and characterize such deviations. This study demonstrates that by analysis of the inelastic background in X-ray photoelectron spectroscopy (XPS) survey spectra, the following types of deviations can be identified and quantified: the nonuniformity of the shell thickness within a nanoparticle sample and the incomplete encapsulation of the cores by the shell material. Furthermore, CSNP shell thicknesses and relative coverages can be obtained. These results allow for a quick and straightforward comparison between several batches of a specific CSNP, different coating approaches, and so forth. The presented XPS methodology requires a submonolayer distribution of CSNPs on a substrate. Poly(tetrafluoroethylene)-poly(methyl methacrylate) and poly(tetrafluoroethylene)-polystyrene polymer CSNPs serve as model systems to demonstrate the applicability of the approach. KW - Core-shell KW - Nanoparticles KW - Inelastic background KW - Polymers KW - QUASES KW - XPS PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-511315 SN - 0142-2421 SN - 1096-9918 VL - 52 SP - 1 EP - 8 PB - Wiley CY - Chichester AN - OPUS4-51131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -