TY - JOUR A1 - Kovacevic, E. A1 - Strunskus, T. A1 - Santhosh, N. M. A1 - Zavasnik, Z. A1 - Unger, Wolfgang A1 - Sauvage, T. A1 - Ammar, M.-R. A1 - Cvelbar, U. A1 - Berndt, J. T1 - Thermal stability studies of plasma deposited hydrogenated carbon nitride nanostructures N2 - Thermally stable carbon nitride nanostructures have potential applications in surface coatings and automotive fields. In this work, hydrogenated nitrogen-rich carbon nitride nanoparticles have been synthesised via low-pressure low-power plasma vapour deposition technique from methane/Nitrogen gas mixture in a dry process. Thermal stability of the initially prepared hydrogenated carbon Nitride structures has been analysed by near-edge X-ray absorption fine-structure spectroscopy (NEXAFS, insitu), Raman spectroscopy, scanning and transmission electron microscopy and nuclear reaction Analysis (NRA). Thermal studies reveal the excellent stability of the material and nitrogen-rich characteristics (N/C ratio 0.5e0.2 ± 0.01). The obtained results suggest transformation of sp3-rich as-deposited carbon Nitride into sp2-carbon phase with more graphitic features upon thermal annealing. Such in-situ thermal studies of plasma deposited carbon nitrides confirm the conversion of sp3-rich phase to sp2-rich carbon phase at the critical temperature (about 450 K), without a huge loss in nitrogen content. The analysis revealed that the material is a stable plasma deposit after this critical temperature up to >1100 K. Additionally, super hydrophilic carbon nitride nanostructure transforms into a hydrophobic surface after thermal annealing. These thermally stable hydrophobic carbon nitride nanoparticles could be used as a promising material for the hydrophobic coatings for various applications, especially for harsh conditions. KW - Carbon nanoparticles KW - Hydrogenated nanostructures KW - Plasma deposition KW - NEXAFS KW - Thermal annealing PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-536163 SN - 0008-6223 VL - 184 SP - 82 EP - 90 PB - Elsevier Ltd. AN - OPUS4-53616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unger, Wolfgang A1 - Senoner, M. A1 - Stockmann, Jörg M. A1 - Fernandez, V. A1 - Fairley, N. A1 - Passiu, C. A1 - Spencer, N. D. A1 - Rossi, A. T1 - Summary of ISO/TC 201 International Standard ISO 18516:2019 Surface chemical analysis - Determination of lateral resolution and sharpness in beam-based methods with a range from nanometres to micrometres and its implementation for imaging laboratory X-ray photoelectron spectrometers (XPS) N2 - ISO 18516:2019 Surface chemical analysis—Determination of lateral resolution and sharpness in beam-based methods with a range from nanometres to micrometres revises ISO 18516:2006 Surface chemical analysis—Auger electron spectroscopy and X-ray photoelectron spectroscopy—Determination of lateral resolution. It implements three different methods delivering parameters useful to express the lateral resolution: (1) the straight edge method, (2) the narrow line method and (3) the grating method. The theoretical background of these methods is introduced in ISO/TR 19319:2013 Surface chemical analysis—Fundamental approaches to determination of lateral resolution and sharpness in beam-based methods. The revised International Standard ISO 18516 delivers standardized procedures for the determination of the (1) effective lateral resolution by imaging of square-wave gratings, the (2) lateral resolution expressed as the parameter D12–88 characterizing the steepness of the sigmoidal edge spread function (ESF) determined by imaging a straight edge and (3) the lateral resolution expressed as the full width of half maximum of the line spread function (LSF), wLSF, determined by imaging a narrow line. The last method also delivers information on the shape of the LSF, which characterizes an individual imaging instrument. Finally, the implementation of all three standardized methods in the field of imaging laboratory X-ray photoelectron spectroscopy (XPS) is shortly presented. This part of the letter is based on the use of a new test sample developed at ETH Zurich, Switzerland. This test sample displays a micrometre scaled pattern motivated by the resolving power of recent imaging XPS instruments. KW - Grating method KW - Imaging AES KW - Imaging SIMS KW - Imaging XPS KW - Lateral resolution KW - Narrow line method KW - Noise in image KW - Resolution criterion KW - Straight edge method PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-536330 SN - 1096-9918 VL - 54 IS - 4 SP - 320 EP - 327 PB - Wiley CY - Chichester AN - OPUS4-53633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Anja A1 - Krahl, T. A1 - Radnik, Jörg A1 - Wagner, Andreas A1 - Werner, W. S. M. A1 - Ritter, B. A1 - Kemnitz, E. A1 - Unger, Wolfgang T1 - Chemical in-depth analysis of (Ca/Sr)F2 core–shell like nanoparticles by X-ray photoelectron spectroscopy with tunable excitation energy N2 - The fluorolytic sol–gel synthesis is applied with the intention to obtain two different types of core–shell nanoparticles, namely, SrF2–CaF2 and CaF2–SrF2. In two separate fluorination steps for core and shell formation, the corresponding metal lactates are reacted with anhydrous HF in ethylene glycol. Scanning transmission electron microscopy (STEM) and dynamic light scattering (DLS) confirm the formation of particles with mean dimensions between 6.4 and 11.5 nm. The overall chemical composition of the particles during the different reaction steps is monitored by quantitative Al Kα excitation X-ray photoelectron spectroscopy (XPS). Here, the formation of stoichiometric metal fluorides (MF2) is confirmed, both for the core and the final core–shell particles. Furthermore, an in-depth analysis by synchrotron radiation XPS (SR-XPS) with tunable excitation energy is performed to confirm the core–Shell character of the nanoparticles. Additionally, Ca2p/Sr3d XPS intensity ratio in-Depth profiles are simulated using the software Simulation of Electron Spectra for Surface Analysis (SESSA). In principle, core–shell like particle morphologies are formed but without a sharp interface between calcium and strontium containing phases. Surprisingly, the in-depth chemical distribution of the two types of nanoparticles is equal within the error of the experiment. Both comprise a SrF2-rich core domain and CaF2-rich shell domain with an intermixing zone between them. Consequently, the internal morphology of the final nanoparticles seems to be independent from the synthesis chronology. KW - Metal fluorides KW - Sol-gel synthesis KW - Synchrotron radiation KW - X-ray photoelectron spectroscopy PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-522284 SN - 0142-2421 VL - 53 IS - 5 SP - 494 EP - 508 PB - Wiley VCH AN - OPUS4-52228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steiner, S. A1 - Heldt, J. A1 - Sobol, Oded A1 - Unger, Wolfgang A1 - Frömeling, T. T1 - Influence of oxygen vacancies on core-shell formation in solid solutions of (Na,Bi)TiO3 and SrTiO3 N2 - Solid solutions of (Na,Bi)TiO3 (NBT) and SrTiO3 (ST) are materials of interest for high-strain or high-energy density capacitor applications. Often, they exhibit chemical heterogeneity and develop core-shell structures during regular solid-state synthesis with an NBT-rich core. In this case, the NBT forms first so that the strontium needs to diffuse into the material to reach chemical homogeneity. Depending on the presence of core-shell structures, the electrical properties can vary drastically. In this work, we rationalize the effect of variations in oxygen vacancy concentration by Fe-acceptor and Nb-donor doping. It can be shown that a diffusion couple of strontium and oxygen is responsible for chemical homogenization and that the oxygen vacancy content can control the formation of a core-shell structure. KW - Lead-free ceramics KW - Bismuth titanates KW - Core-shell structures KW - Diffusion/diffusivity KW - Ferroelectricity/ferroelectric materials PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-525988 SP - 1 EP - 10 PB - Wiley Periodicals LLC, John Wiley & Sons, Inc. AN - OPUS4-52598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kjaervik, Marit A1 - Ramstedt, M. A1 - Schwibbert, Karin A1 - Dietrich, P. M A1 - Unger, Wolfgang T1 - Comparative Study of NAP-XPS and Cryo-XPS for the Investigation of Surface Chemistry of the Bacterial Cell-Envelope N2 - Bacteria generally interact with the environment via processes involving their cell-envelope. Thus, techniques that may shed light on their surface chemistry are attractive tools for providing an understanding of bacterial interactions. One of these tools is Al Kα-excited photoelectron spectroscopy (XPS) with its estimated information depth of <10 nm. XPS-analyses of bacteria have been performed for several decades on freeze-dried specimens in order to be compatible with the vacuum in the analysis chamber of the spectrometer. A limitation of these studies has been that the freeze-drying method may collapse cell structure as well as introduce surface contaminants. However, recent developments in XPS allow for analysis of biological samples at near ambient pressure (NAP-XPS) or as frozen hydrated specimens (cryo-XPS) in vacuum. In this work, we have analyzed bacterial samples from a reference strain of the Gram-negative bacterium Pseudomonas fluorescens using both techniques. We compare the results obtained and, in general, observe good agreement between the two techniques. Furthermore, we discuss advantages and disadvantages with the two analysis approaches and the output data they provide. XPS reference data from the bacterial strain are provided, and we propose that planktonic cells of this strain (DSM 50090) are used as a reference material for surface chemical analysis of bacterial systems. KW - P. Fluorescens KW - Cryo XPS KW - NAP-XPS KW - DSM 5009 PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-525640 VL - 9 SP - Article 666161 PB - Frontiers CY - Switzerland AN - OPUS4-52564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ehlert, Christopher A1 - Holzweber, Markus A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Saalfrank, Peter T1 - A detailed assignment of NEXAFS resonances of imidazolium based ionic liquids N2 - In Near Edge X-Ray Absorption Fine Structure (NEXAFS) spectroscopy X-Ray photons are used to excite tightly bound core electrons to low-lying unoccupied orbitals of the system. This technique offers insight into the electronic structure of the system as well as useful structural information. In this work, we apply NEXAFS to two kinds of imidazolium based ionic liquids ([CnC₁im]⁺[NTf₂]⁻ and [C₄C₁im]⁺[I]⁻). A combination of measurements and quantum chemical calculations of C K and N K NEXAFS resonances is presented. The simulations, based on the transition potential density functional theory method (TP-DFT), reproduce all characteristic features observed by the experiment. Furthermore, a detailed assignment of resonance features to excitation centers (carbon or nitrogen atoms) leads to a consistent interpretation of the spectra. KW - Ionic liquids KW - NEXAFS KW - DFT spectrum simulations PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-367223 SN - 1463-9076 SN - 1463-9084 VL - 18 IS - 12 SP - 8654 EP - 8661 PB - Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-36722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neukammer, J. A1 - Hussels, M. A1 - Kummrow, A. A1 - Devonshire, A. A1 - Foy, C. A1 - Huggett, J. A1 - Parkes, H. A1 - Zel, J. A1 - Milavec, M. A1 - Schimmel, H. A1 - Unger, Wolfgang A1 - Akgoz, M. A1 - McHugh, V. A1 - Grunert, H.-P. A1 - Zeichhardt, H. T1 - Survey results on nucleic acid tests of infectious diseases: present status and need for rapid and patient near diagnostics N2 - This survey will discuss current and emerging isothermal and rapid polymerase chain reaction (PCR) based nucleic acid amplification methods for patient near diagnostics. To assess the clinical need of rapid diagnostics for infectious diseases based on nucleic acid tests (NATs) we performed and analysed a questionnaire among laboratories participating in corresponding INSTAND ring trials for external quality assurance. The questions concerning new amplification technologies like isothermal nucleic acid amplification, potentially suited to significantly decrease turnaround times, were complemented by questions to evaluate the present status of NATs. Besides end-users, companies were also addressed by sending out a manufacturer specific questionnaire. Analysis of the answers from 48 laboratories in 14 European countries revealed that a much shorter turnaround time is requested for selected pathogens compared to about 2 h or longer when applying temperature cycling amplification, i.e. PCR. In this context, most frequently mentioned were MRSA, norovirus, influenza A and B viruses, cytomegalovirus (CMV) as well as hepatitis B virus (HBV) and hepatitis C virus (HCV). At present, 8% of the laboratories having participated in this survey apply isothermal amplification of nucleic acid to identify infectious pathogens. KW - Nucleic acid tests KW - Infectious diseases KW - Virus detection KW - Bacteria detection KW - Isothermal nucleic acid amplification KW - Status report KW - Questionnaire KW - NAT KW - PCR PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0183-lab0000160 UR - http://www.egms.de/static/en/journals/lab/2015-6/lab000016.shtml SN - 1869-4241 VL - 6 SP - 1 EP - 11 PB - GMS CY - Düsseldorf AN - OPUS4-36133 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ehlert, Christopher A1 - Unger, Wolfgang A1 - Saalfrank, P. T1 - C K-edge NEXAFS spectra of graphene with physical and chemical defects: a study based on density functional theory N2 - Recently, C K-edge Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra of graphite (HOPG) surfaces have been measured for the pristine material, and for HOPG treated with either bromine or krypton plasmas (Lippitz et al., Surf. Sci., 2013, 611, L1). Changes of the NEXAFS spectra characteristic for physical (krypton) and/or chemical/physical modifications of the surface (bromine) upon plasma treatment were observed. Their molecular origin, however, remained elusive. In this work we study by density functional theory, the effects of selected point and line defects as well as chemical modifications on NEXAFS carbon K-edge spectra of single graphene layers. For Br-treated surfaces, also Br 3d X-ray Photoelectron Spectra (XPS) are simulated by a cluster approach, to identify possible chemical modifications. We observe that some of the defects related to plasma treatment lead to characteristic changes of NEXAFS spectra, similar to those in experiment. Theory provides possible microscopic origins for these changes. KW - Graphene KW - NEXAFS KW - Spectrum simulation KW - Density functional theory PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-309658 SN - 1463-9076 SN - 1463-9084 VL - 16 IS - 27 SP - 14083 EP - 14095 PB - The Royal Soc. of Chemistry CY - Cambridge AN - OPUS4-30965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mozetic, M. A1 - Ostrikov, K. A1 - Ruzic, D.N. A1 - Curreli, D. A1 - Cvelbar, U. A1 - Vesel, A. A1 - Primc, G. A1 - Leisch, M. A1 - Jousten, K. A1 - Malyshev, O.B. A1 - Hendricks, J.H. A1 - Kövér, L. A1 - Tagliaferro, A. A1 - Conde, O. A1 - Silvestre, A.J. A1 - Giapintzakis, J. A1 - Buljan, M. A1 - Radic, N. A1 - Drazic, G. A1 - Bernstorff, S. A1 - Biedermann, H. A1 - Kylián, O. A1 - Hanus, J. A1 - Milosevic, S. A1 - Galtayries, A. A1 - Dietrich, Paul A1 - Unger, Wolfgang A1 - Lehocky, M. A1 - Sedlarik, V. A1 - Stana-Kleinschek, K. A1 - Drmota-Petric, A. A1 - Pireaux, J.J. A1 - Rogers, J.W. A1 - Anderle, M. T1 - Recent advances in vacuum sciences and applications N2 - Recent advances in vacuum sciences and applications are reviewed. Novel optical interferometer cavity devices enable pressure measurements with ppm accuracy. The innovative dynamic vacuum standard allows for pressure measurements with temporal resolution of 2 ms. Vacuum issues in the construction of huge ultra-high vacuum devices worldwide are reviewed. Recent advances in surface science and thin films include new phenomena observed in electron transport near solid surfaces as well as novel results on the properties of carbon nanomaterials. Precise techniques for surface and thin-film characterization have been applied in the conservation technology of cultural heritage objects and recent advances in the characterization of biointerfaces are presented. The combination of various vacuum and atmospheric-pressure techniques enables an insight into the complex phenomena of protein and other biomolecule conformations on solid surfaces. Studying these phenomena at solid–liquid interfaces is regarded as the main issue in the development of alternative techniques for drug delivery, tissue engineering and thus the development of innovative techniques for curing cancer and cardiovascular diseases. A review on recent advances in plasma medicine is presented as well as novel hypotheses on cell apoptosis upon treatment with gaseous plasma. Finally, recent advances in plasma nanoscience are illustrated with several examples and a roadmap for future activities is presented. KW - Vacuum KW - Surface KW - Plasma KW - Interface KW - Nanoscience PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-304884 SN - 0022-3727 SN - 1361-6463 VL - 47 IS - 15 SP - 153001-1 EP - 153001-23 PB - IOP Publ. CY - Bristol AN - OPUS4-30488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinrich, Thomas A1 - Traulsen, Christoph Hans-Henning A1 - Darlatt, Erik A1 - Richter, S. A1 - Poppenberg, J. A1 - Traulsen, N.L. A1 - Linder, I. A1 - Lippitz, Andreas A1 - Dietrich, Paul A1 - Dib, B. A1 - Unger, Wolfgang A1 - Schalley, C.A. T1 - The versatility of 'Click' reactions at surfaces: Molecular recognition at interfaces N2 - In order to investigate molecular recognition on surfaces, an azide-functionalized monolayer was deposited on gold. The monolayer was characterized by X-ray photoelectron spectroscopy (XPS) and angle-resolved near-edge X-ray absorption fine structure (NEXAFS) experiments and the decomposition of the azide upon irradiation with X-ray beams was investigated. Subsequently, various alkyne-functionalized host and guest molecules were attached to the azide by 1,3-dipolar cycloaddition. These modified surfaces and their host–guest chemistry were analysed by XPS and angle-resolved NEXAFS. The reversibility of guest binding was shown for one example as a proof of principle. KW - 'Click' reaction KW - Azide-terminated surfaces KW - SAMs KW - Host guest molecules KW - Molecular recognition at interfaces PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-306463 SN - 2046-2069 VL - 4 IS - 34 SP - 17694 EP - 17702 PB - RSC Publishing CY - London AN - OPUS4-30646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -