TY - JOUR A1 - Eisen, K A1 - Eifert, T A1 - Herwig, C A1 - Maiwald, Michael T1 - Current and future requirements to industrial analytical infrastructure—part 1: process analytical laboratories N2 - The competitiveness of the chemical and pharmaceutical industry is based on ensuring the required product quality while making optimum use of plants, raw materials, and energy. In this context, effective process control using reliable chemical process analytics secures global competitiveness. The setup of those control strategies often originate in process development but need to be transferable along the whole product life cycle. In this series of two contributions, we want to present a combined view on the future of PAT (process analytical technology), which is projected in smart labs (part 1) and smart sensors (part 2). In laboratories and pilot plants, offline chemical analytical methods are frequently used, where inline methods are also used in production. Here, a transferability from process development to the process in operation would be desirable. This can be obtained by establishing PAT methods for production already during process development or scale-up. However, the current PAT (Bakeev 2005, Org Process Res 19:3–62; Simon et al. 2015, Org Process Res Dev 19:3–62) must become more flexible and smarter. This can be achieved by introducing digitalization-based knowledge management, so that knowledge from product development enables and accelerates the integration of PAT. Conversely, knowledge from the production process will also contribute to product and process development. This contribution describes the future role of the laboratory and develops requirements therefrom. In part 2, we examine the future functionality as well as the ingredients of a smart sensor aiming to eventually fuel full PAT functionality—also within process development or scale-up facilities (Eifert et al. 2020, Anal Bioanal Chem). KW - Smart test laboratories KW - Laboratory 4.0 KW - Sustainable Production KW - Industry 4.0 PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504020 DO - https://doi.org/10.1007/s00216-020-02420-2 SN - 1618-2642 VL - 412 IS - 9 SP - 2027 EP - 2035 PB - Springer CY - Berlin Heidelberg AN - OPUS4-50402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gluth, Gregor A1 - Arbi, K. A1 - Bernal, S. A. A1 - Bondar, D. A1 - Castel, A. A1 - Chithiraputhiran, S. A1 - Dehghan, A. A1 - Dombrowski-Daube, K. A1 - Dubey, A. A1 - Ducman, V. A1 - Peterson, K. A1 - Pipilikaki, P. A1 - Valcke, S. L. A. A1 - Ye, G. A1 - Zuo, Y. A1 - Provis, J. L. T1 - RILEM TC 247-DTA round robin test: carbonation and chloride penetration testing of alkali-activated concretes N2 - Many standardised durability testing methods have been developed for Portland cement-based concretes, but require validation to determine whether they are also applicable to alkali-activated materials. To address this question, RILEM TC 247-DTA ‘Durability Testing of Alkali-Activated Materials’ carried out round robin testing of carbonation and chloride penetration test methods, applied to five different alkali-activated concretes based on fly ash, blast furnace slag or metakaolin. The methods appeared overall to demonstrate an intrinsic precision comparable to their precision when applied to conventional concretes. The ranking of test outcomes for pairs of concretes of similar binder chemistry was satisfactory, but rankings were not always reliable when comparing alkali-activated concretes based on different precursors. Accelerated carbonation testing gave similar results for fly ash-based and blast furnace slag-based alkali-activated concretes, whereas natural carbonation testing did not. Carbonation of concrete specimens was observed to have occurred already during curing, which has implications for extrapolation of carbonation testing results to longer service life periods. Accelerated chloride penetration testing according to NT BUILD 443 ranked the tested concretes consistently, while this was not the case for the rapid chloride migration test. Both of these chloride penetration testing methods exhibited comparatively low precision when applied to blast furnace slag-based concretes which are more resistant to chloride ingress than the other materials tested. KW - Alkali-activated materials KW - Durability KW - Carbonation KW - Chloride penetration KW - Concrete PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504045 DO - https://doi.org/10.1617/s11527-020-1449-3 SN - 1359-5997 SN - 1871-6873 VL - 53 IS - 1 SP - 21 PB - Springer Nature AN - OPUS4-50404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rus, J. A1 - Gustschin, A. A1 - Mooshofer, H. A1 - Grager, J.-C. A1 - Bente, Klaas A1 - Gaal, Mate A1 - Pfeiffer, F. A1 - Grosse, C. U. T1 - Qualitative comparison of non-destructive methods for inspection of carbon fiber-reinforced polymer laminates N2 - In the rapidly expanding composite industry, novel inspection methods have been developed in recent years. Particularly promising for air-coupled testing are cellular polypropylene transducers which offer better impedance matching to air than piezoelectric transducers. Furthermore, broadband transmitters (laser-induced ultrasound and thermoacoustic emitters) and receivers (optical microphones) have opened a completely new chapter for advanced contact-free ultra-sound inspection. X-ray dark-field radiography offers a different approach to detect porosity and microcracks, employing small angle X-ray scattering. These innovative ultrasonic and radiographic alternatives were evaluated in comparison with well-established inspection techniques. We applied thirteen different non-destructive methods to inspect the same specimen (a carbon fiber-reinforced polymer laminate with induced impact damage): air-coupled ultrasound testing (using piezoelectric transducers, broadband optical microphones, cellular polypropylene transducers, and a thermoa- coustic emitter), laser-induced ultrasound testing, ultrasonic immersion testing, phased array ultrasonic testing, optically excited lock-in thermography, and X-ray radiography (projectional absorption and dark-field, tomosynthesis, and micro-computed tomography). The inspection methods were qualitatively characterized by comparing the scan results. The conclusions are advantageous for a decision on the optimal method for certain testing constraints. KW - Carbon fiber-reinforced polymer KW - Air-coupled ultrasound KW - Optically excited lock-in thermography KW - X-ray micro-computed tomography KW - X-ray dark-field radiography PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509473 DO - https://doi.org/10.1177/0021998320931162 SN - 0021-9983 VL - 54 IS - 27 SP - 4325 EP - 4337 PB - SAGE AN - OPUS4-50947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, Q. A1 - Shinde, S. A1 - Grasso, G. A1 - Caroli, A. A1 - Abouhany, R. A1 - Lanzillotta, M. A1 - Pan, G. A1 - Wan, Wei A1 - Rurack, Knut A1 - Sellergren, B. T1 - Selective detection of phospholipids using molecularly imprinted fluorescent sensory core-shell particles N2 - Sphingosine-1-phosphate (S1P) is a bioactive sphingo-lipid with a broad range of activities coupled to its role in G-protein coupled receptor signalling. Monitoring of both intra and extra cellular levels of this lipid is challenging due to its low abundance and lack of robust affinity assays or sensors. We here report on fluorescent sensory core-shell molecularly imprinted polymer (MIP) particles responsive to near physiologically relevant levels of S1P and the S1P receptor modulator fingolimod phosphate (FP) in spiked human serum samples. Imprinting was achieved using the tetrabutylammonium (TBA) salt of FP or phosphatidic acid (DPPA·Na) as templates in combination with a polymerizable nitrobenzoxadiazole (NBD)-urea monomer with the dual role of capturing the phospho-anion and signalling its presence. The monomers were grafted from ca 300 nm RAFT-modified silica core particles using ethyleneglycol dimethacrylate (EGDMA) as crosslinker resulting in 10–20 nm thick shells displaying selective fluorescence response to the targeted lipids S1P and DPPA in aqueous buffered media. Potential use of the sensory particles for monitoring S1P in serum was demonstrated on spiked serum samples, proving a linear range of 18–60 μM and a detection limit of 5.6 μM, a value in the same range as the plasma concentration of the biomarker. KW - Molecularly imprinted polymers KW - Phospholipids KW - Fluorescence KW - Dye monomers PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509485 DO - https://doi.org/10.1038/s41598-020-66802-3 SN - 2045-2322 VL - 10 IS - 1 SP - 9924 PB - Nature Research CY - London AN - OPUS4-50948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Balzer, R. A1 - Behrens, H. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Kiefer, P. A1 - Deubener, J. A1 - Fechtelkord, M. T1 - Water in Alkali Aluminosilicate Glasses N2 - To understand the influence of water and alkalis on aluminosilicate glasses, three polymerized glasses with varying ratios of Na/K were synthesized [(22. 5-x)Na2O-xK2O-22.5 Al2O3-55 SiO2 with x = 0, 7.5, and 11.25]. Subsequently, these glasses were hydrated (up to 8 wt% H2O) in an internally heated gas pressure vessel. The density of hydrous glasses linearly decreased with water content above 1 wt%, consistent with the partial molar volume of H2O of 12 cm3/mol. Near-infrared spectroscopy revealed that hydroxyl groups are the dominant species at water content of <4 wt%, and molecular water becomes dominating at water content of >5 wt%. The fraction of OH is particularly high in the pure Na-bearing glass compared to the mixed alkali glasses. 27Al magic angle spinning-NMR spectroscopy shows that aluminum is exclusively fourfold coordinated with some variations in the local geometry. It appears that the local structure around Al becomes more ordered with increasing K/Na ratio. The incorporation of H2O reinforces this effect. The differential thermal analysis of hydrous glasses shows a significant mass loss in the range of glass transition already during the first upscan, implying the high mobility of water in the glasses. This observation can be explained by the open structure of the aluminosilicate network and by the low dissociation enthalpy of H2O in the glasses (≈ 8 kJ/mol). The effect of the dissolved H2O on the glass transition temperature is less pronounced than for other aluminosilicate glasses, probably because of the large fraction of Al in the glasses. KW - NMR spectroscopy KW - Alkali aluminosilicate glasses KW - Water speciation KW - Glass transition KW - Infrared spectroscopy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509497 DO - https://doi.org/10.3389/fmats.2020.00085 VL - 7 SP - 85 AN - OPUS4-50949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tiitta, M. A1 - Tiitta, V. A1 - Gaal, Mate A1 - Heikkinen, J. A1 - Lappalainen, R. A1 - Tomppo, L. T1 - Air-coupled ultrasound detection of natural defects in wood using ferroelectret and piezoelectric sensors N2 - Air-coupled ultrasound was used for assessing natural defects in wood boards by through-transmission scanning measurements. Gas matrix piezoelectric (GMP) and ferroelectret (FE) transducers were studied. The study also included tests with additional bias voltage with the ferroelectret receivers. Signal analyses, analyses of the measurement dynamics and statistical analyses of the signal parameters were conducted. After the measurement series, the samples were cut from the measurement regions and the defects were analyzed visually from the cross sections. The ultrasound responses were compared with the results of the visual examination of the cross sections. With the additional bias voltage, the ferroelectret measurement showed increased signal-to-noise ratio, which is especially important for air-coupled measurement of high-attenuation materials like wood. When comparing the defect response of GMP and FE sensors, it was found that FE sensors had more sensitive dynamic range, resulting from better s/n ratio and short response pulse. Classification test was made to test the possibility of detecting defects in sound wood. Machine learning methods including decision trees, k-nearest neighbor and support vector machine were used. The classification accuracy varied between 72 and 77% in the tests. All the tested machine learning methods could be used efficiently for the classification. KW - Air-coupled transducers KW - Wood KW - Ultrasound KW - Ultrasonic imaging KW - Ferroelectret KW - Machine learning PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509503 DO - https://doi.org/10.1007/s00226-020-01189-y SP - 1 EP - 14 PB - Springer AN - OPUS4-50950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Faßbender, Sebastian A1 - Rodiouchkina, K. A1 - Vanhaecke, F. A1 - Meermann, Björn T1 - Method development for on-line species-specific sulfur isotopic analysis by means of capillary electrophoresis/multicollector ICP-mass spectrometry N2 - In this work, a method for species-specific isotopic analysis of sulfur via capillary electrophoresis hyphenated on-line with multicollector ICP-MS (CE/MC-ICP-MS) was developed. Correction for the mass bias caused by instrumental mass discrimination was realized via external correction with multiple-injection sample-standard bracketing. By comparing the isotope ratio measurement results obtained using the newly developed on-line CE/MC-ICP-MS method with those obtained via traditional MC-ICP-MS measurement after analyte/matrix separation by anion exchange chromatography for isotopic reference materials and an in-house bracketing standard, the most suitable data evaluation method could be identified. The repeatability for the sulfate-δ34S value (calculated from 18 measurements of a standard conducted over seven measurement sessions) was 0.57‰ (2SD) and thereby only twice that obtained with off-line measurements (0.30‰, n = 68). As a proof of concept for analysis of samples with a real matrix, the determination of the sulfur isotopic composition of naturally present sulfate was performed for different river systems. The CE/MC-ICP-MS results thus obtained agreed with the corresponding off-line MC-ICP-MS results within the 2SD ranges, and the repeatability of consecutive δ34S measurements (n = 3) was between 0.3‰ and 1.3‰ (2SD). Finally, the isotopic analysis of two different S-species in a river water sample spiked with 2-pyridinesulfonic acid (PSA) was also accomplished. KW - River water sulfate KW - Environmental speciation KW - Sulfur isotopes KW - On-line CE/MC-ICP-MS KW - Multiple-injection sample-standard bracketing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509549 DO - https://doi.org/10.1007/s00216-020-02781-8 SN - 1618-2642 VL - 412 IS - 23 SP - 5637 EP - 5646 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-50954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Hoffmann, Marie A1 - Krüger, O. A1 - Murzin, V. A1 - Caliebe, W. A1 - Adam, Christian T1 - Chromium (VI) in phosphorus fertilizers determined with the diffusive gradients in thin-films (DGT) technique N2 - Phosphorus (P) fertilizers from secondary resources became increasingly important in the last years. However, these novel P-fertilizers can also contain toxic pollutants such as chromium in its hexavalent state (Cr(VI)). This hazardous form of chromium is therefore regulated with low limit values for agricultural products even though the correct determination of Cr(VI) in these fertilizers may be hampered by redox processes, leading to false results. Thus, we applied the novel diffusive gradients in thin-films (DGT) technique for Cr(VI) in fertilizers and compared the results with the standard wet chemical extraction method (German norm DIN EN 15192) and Cr K-edge X-ray Absorption near-edge structure (XANES) spectroscopy. We determined an overall good correlation between the wet chemical extraction and the DGT method. DGT was very sensitive and for most tested materials selective for the analysis of Cr(VI) in P-fertilizers. However, hardly soluble Cr(VI) compounds cannot be detected with the DGT method since only mobile Cr(VI) is analyzed. Furthermore, Cr K-edge XANES spectroscopy showed that the DGT binding layer also adsorbs small amounts of mobile Cr(III) so that Cr(VI) values are overestimated. Since certain types of the P fertilizers contain mobile Cr(III) or partly immobile Cr(VI), it is necessary to optimize the DGT binding layers to avoid aforementioned over- or underestimation. Furthermore, our investigations showed that the Cr K-edge XANES spectroscopy technique is unsuitable to determine small amounts of Cr(VI) in fertilizers (below approx. 1% of Cr(VI) in relation to total Cr). KW - Phosphorus fertilizer KW - Sewage sludge ash KW - Diffusive Gradients in thin films (DGT) KW - Chemical extraction KW - XANES spectroscopy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509578 DO - https://doi.org/10.1007/s11356-020-08761-w SN - 0944-1344 VL - 27 SP - 24320 EP - 24328 PB - Springer AN - OPUS4-50957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Florian, Camilo A1 - Déziel, J.-L. A1 - Kirner, Sabrina V. A1 - Siegel, J. A1 - Bonse, Jörn T1 - The role of the laser-induced oxide layer in the formation of laser-induced periodic surface structures N2 - Laser-induced periodic surface structures (LIPSS) are often present when processing solid targets with linearly polarized ultrashort laser pulses. The different irradiation parameters to produce them on metals, semiconductors and dielectrics have been studied extensively, identifying suitable regimes to tailor its properties for applications in the fields of optics, medicine, fluidics and tribology, to name a few. One important parameter widely present when exposing the samples to the high intensities provided by these laser pulses in air environment, that generally is not considered, is the formation of a superficial laser-induced oxide layer. In this paper, we fabricate LIPSS on a layer of the oxidation prone hard-coating material chromium nitride in order to investigate the impact of the laser-induced oxide layer on its formation. A variety of complementary surface analytic techniques were employed, revealing morphological, chemical and structural characteristics of well-known high-spatial frequency LIPSS (HSFL) together with a new type of low-spatial frequency LIPSS (LSFL) with an anomalous orientation parallel to the laser polarization. Based on this input, we performed finite-difference time-domain calculations considering a layered system resembling the geometry of the HSFL along with the presence of a laser-induced oxide layer. The simulations support a scenario that the new type of LSFL is formed at the interface between the laser-induced oxide layer and the non-altered material underneath. These findings suggest that LSFL structures parallel to the polarization can be easily induced in materials that are prone to oxidation. KW - Laser-induced oxide layer KW - Laser-induced periodic surface structures (LIPSS) KW - Surface chemistry KW - Femtosecond laser processing KW - Nanostructuring PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502530 DO - https://doi.org/10.3390/nano10010147 SN - 2079-4991 VL - 10(1) IS - Special issue "Laser-generated periodic nanostructures" SP - 147-1 EP - 147-18 PB - MDPI CY - Basel AN - OPUS4-50253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cubero, A. A1 - Martínez, E. A1 - Angurel, L.A. A1 - de la Fuente, G.F. A1 - Navarro, R. A1 - Legall, Herbert A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Effects of laser-induced periodic surface structures on the superconducting properties of Niobium N2 - It is well known that the use of ultrashort (fs) pulsed lasers can induce the generation of (quasi-) periodic nanostructures (LIPSS, ripples) on the surface of many materials. Such nanostructures have also been observed in sample’s surfaces irradiated with UV lasers with a pulse duration of 300 ps. In this work, we compare the characteristics of these nanostructures on 1-mm and on 25-μm thick niobium sheets induced by 30 fs n-IR and 300 ps UV pulsed lasers. In addition to conventional continuous or burst mode processing configurations, two-dimensional laser beam and line scanning modes have been investigated in this work. The latter allows the processing of large areas with a more uniform distribution of nanostructures at the surface. The influence of the generated nanostructures on the superconducting properties of niobium has also been explored. For this aim, magnetic hysteresis loops have been measured at different cryogenic temperatures to analyse how these laser treatments affect the flux pinning behaviour and, in consequence, the superconductor’s critical current values. It was observed that laser treatments are able to modify the superconducting properties of niobium samples. T2 - E-MRS Spring Meeting 2019 CY - Nice, France DA - 27.05.2019 KW - Superconductivity KW - Laser-induced periodic surface structures (LIPSS) KW - Niobium PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502541 DO - https://doi.org/10.1016/j.apsusc.2019.145140 SN - 0169-4332 SN - 1873-5584 VL - 508 IS - 1 SP - 145140-1 EP - 145140-7 PB - Elsevier CY - Amsterdam AN - OPUS4-50254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Benseghier, Z. A1 - Cuéllar, Pablo A1 - Luu, L.-H. A1 - Bonelli, S. A1 - Philippe, P. T1 - A parallel GPU-based computational framework for the micromechanical analysis of geotechnical and erosion problems N2 - This article deals with the relevance and practical feasibility of micromechanical simulations for their application to general geomechanical problems involving fluid-saturated granular assemblies, whether frictional or cohesive. A set of conceptual and numerical tools is here presented, advocating for a parallel computation using graphical processing units (GPUs) to treat large numbers of degrees of freedom with conventional Desktop computers. The fluid phase is here simulated with a particle-resolved approach in the frame of the Lattice Botzmann Method (LBM) while the granular solid phase is modelled as a collection of discrete particles from a Molecular Dynamics DEM perspective. The range of possible material behaviours for the solid granular phase is intended here to cover a broad spectrum from purely frictional to viscous cohesive materials with either brittle or transient debonding features. Specific details of the implementation and some validation cases are put forward. Finally, some exemplary applications in the fields of soil erosion and geotechnical profile installation are provided along with a discussion on the parallel performance of the presented models. The results show that a micromechanical approach can be feasible and useful in practice, providing meaningful insights into complex engineering problems like the erosion kinetics of a soil under an impinging jet or the penetration resistance of a deep foundation in a layered soil profile. KW - Offshore geomechanics KW - Erosion KW - Micromechanical modelling KW - LBM-DEM KW - GPU Parallel computing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502309 DO - https://doi.org/10.1016/j.compgeo.2019.103404 VL - 120 SP - Paper 103404, 1 PB - Elsevier Ltd. AN - OPUS4-50230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kool, L. A1 - Dekker, F. A1 - Bunschoten, A. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Velders, A. H. A1 - Saggiomo, V. T1 - Gold and silver dichroic nanocomposite in the quest for 3D printing the Lycurgus cup N2 - The Lycurgus cup is an ancient glass artefact that shows dichroism as it looks green when a white light is reflected on it and a red colouring appears when a white light is transmitted through it. This peculiar dichroic effect is due to silver and gold nanoparticles present in the glass. In this research we show the synthesis of dichroic silver nanoparticles and their embedding in a 3D printable nanocomposite. The addition of gold nanoparticles to the silver nanoparticle composite, gave a 3D printable nanocomposite with the same dichroism effect of the Lycurgus cup. KW - SAXS KW - Au KW - Ag KW - Nanocomposite KW - 3D printing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-501831 DO - https://doi.org/10.3762/bjnano.11.2 SP - 16 EP - 23 AN - OPUS4-50183 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H. R. T1 - Matrix-assisted laser desorption/ionization behavior of neat linear and cyclic poly(L-lactide)s and their blends N2 - Numerous new tin catalysts that enable the synthesis of cyclic polylactides with broad variation in their molecular mass were recently developed. The abundance of cyclics in matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra is, however, frequently reported to greatly exceed that of linears. Thus, the MALDI ionization behavior of various end-capped linear poly(L-lactide)s and one cyclic poly(L-lactide) was investigated and compared. Neat compounds and various blends of cyclic and linear species were prepared and studied under identical conditions with regard to sample preparation and instrumental condition, except for the laser power. For this purpose, two different MALDI-TOF mass spectrometers were applied. Our results reveal that cyclics indeed show a slightly better ionization in MALDI, although their ionization as a neat compound seems to be less effective than that of linear polylactides. The ionization of most linear polylactides investigated does not depend on the end group structure. However, linear polylactides containing 12-bromododecyl end groups reveal an unexpected saturation effect that is not caused by fragmentation of the polymer or the end group, or by electronic saturation of the detector digitizer. Furthermore, polylactides with a 2-bromoethyl end group did not show such a saturation effect. An overestimation of cyclic species in MALDI-TOF mass spectra of poly(L-lactide)s must be considered, but the commonly assumed peak suppression of linear polymers in mixtures of both structures can be excluded. KW - Polylactide KW - MALDI-TOF MS KW - Blends KW - Ionization PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504216 DO - https://doi.org/10.1002/rcm.8673 VL - 34 SP - e8673 PB - Wiley Online Libary AN - OPUS4-50421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Evsevleev, Sergei A1 - Paciornik, S. A1 - Bruno, Giovanni T1 - Advanced Deep Learning-Based 3D Microstructural Characterization of Multiphase Metal Matrix Composites N2 - The quantitative analysis of microstructural features is a key to understanding the micromechanical behavior of metal matrix composites (MMCs), which is a premise for their use in practice. Herein, a 3D microstructural characterization of a five-phase MMC is performed by synchrotron X-ray computed tomography (SXCT). A workflow for advanced deep learning-based segmentation of all individual phases in SXCT data is shown using a fully convolutional neural network with U-net architecture. High segmentation accuracy is achieved with a small amount of training data. This enables extracting unprecedently precise microstructural parameters (e.g., volume fractions and particle shapes) to be input, e.g., in micromechanical models. KW - Computed tomography KW - Convolutional neural networks KW - Deep learning KW - Metal matrix composites KW - Segmentations PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504261 DO - https://doi.org/10.1002/adem.201901197 SN - 1438-1656 VL - 22 IS - 4 SP - 1901197 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-50426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lu, Z. A1 - Becker, S. A1 - Leinitz, Sarah A1 - Schmidt, Wolfram A1 - von Klitzing, R. A1 - Stephan, D. T1 - Interaction of Different Charged Polymers with Potassium Ions and Their Effect on the Yield Stress of Highly Concentrated Glass Bead Suspensions N2 - The interaction of different charged polymers, namely anionic polycarboxylate superplasticizer (PCE) and neutral polyethylene glycol (PEG) with potassium ions, and their effect on the yield stress of highly concentrated glass bead suspension (GBS), were studied under different concentrations of potassium ions ([K+]). It was found that, compared to the neutral PEG, the negatively charged PCE can be adsorbed on glass beads (GB), and then decreases the yield stress of GBS. The increasing concentration of free polymer in the interstitial liquid phase with the increased polymer dosage leads to the higher yield stress of GBS, which may be caused by the higher Depletion force. In addition, this effect is also related to the charge density of the polymer and the [K+] in the solution. Along with the increase in [K+], the yield stress of GBS increases significantly with the addition of PCE, but this cannot be observed with PEG, which indicates that potassium ions can interact with negatively charged PCE instead of the neutral PEG. At last, the interparticle Forces between two single GB with adsorbed PCE in solutions containing [K+] and PCE were measured by colloidal probe atomic force microscopy to better understand the interaction of the charged polymer with counterions. KW - Yield stress KW - Free polymer KW - Charge density KW - Depletion force KW - Potassium ions PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506015 DO - https://doi.org/10.3390/ma13071490 SN - 1996-1944 VL - 13 IS - 7 SP - 1490, 1 EP - 1490, 16 PB - MDPI AN - OPUS4-50601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thomas, Maximilian A1 - Vollert, F. A1 - Weidemann, Jens A1 - Gibmeier, J. A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Surface- and volume-based investigation on influences of different Varestraint testing parameters and chemical compositions on solidification cracking in LTT filler metals N2 - The subject of this study is how, and to what extent, Varestraint/Transvarestraint test results are influenced by both testing parameters and characteristics of evaluation methods. Several different high-alloyed martensitic LTT (low Transformation temperature) filler materials, CrNi and CrMn type, were selected for examination due to their rather distinctive solidification cracking behaviour, which aroused interest after previous studies. First, the effects of different process parameter sets on the solidification cracking response were measured using standard approaches. Subsequently, microfocus X-ray computer tomography (μCT) scans were performed on the specimens. The results consistently show sub-surface cracking to significant yet varying extents. Different primary solidification types were found using wavelength dispersive X-ray (WDX) analysis conducted on filler metals with varying Cr/Ni equivalent ratios. This aspect is regarded as the main difference between the CrNiand CrMn-type materials in matters of cracking characteristics. Results show that when it comes to testing of modern highperformance alloys, one set of standard Varestraint testing parameters might not be equally suitable for all materials. Also, to properly accommodate different solidification types, sub-surface cracking has to be taken into account. KW - Solidification cracking KW - Varestraint testing KW - MVT KW - LTT filler metal KW - Microfocus X-ray computer tomography (μCT) PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506039 DO - https://doi.org/10.1007/s40194-020-00895-2 VL - 64 SP - 913 EP - 923 PB - Springer Nature CY - Heidelberg, New York AN - OPUS4-50603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cao, L. A1 - Thome, P. A1 - Agudo Jácome, Leonardo A1 - Somsen, C. A1 - Cailletaud, G. A1 - Eggeler, G. T1 - On the influence of crystallography on creep of circular notched single crystal superalloy specimens N2 - The present work contributes to a better understanding of the effect of stress multiaxiality on the creep behavior of single crystal Ni-base superalloys. For this purpose we studied the creep deformation and rupture behavior of double notched miniature creep tensile specimens loaded in three crystallographic directions [100], [110] and [111] (creep conditions: 950 °C and 400 MPa net section stress). Crystal plasticity finite element method (CPFEM) was used to analyze the creep stress and strain distributions during creep. Double notched specimens have the advantage that when one notch fails, the other is still intact and allows to study a material state which is close to rupture. No notch root cracking was observed, while microstructural damage (pores and micro cracks) were frequently observed in the center of the notch root region. This is in agreement with the FEM results (high axial stress and high hydrostatic stress in the center of the notched specimen). Twinning was observed in the notch regions of [110] and [111] specimens, and <112> {111} twins were detected and analyzed using orientation imaging scanning electron microscopy. The present work shows that high lattice rotations can be detected in SXs after creep fracture, but they are associated with the high strains accumulated in the final rupture event. KW - Single crystal Ni-Base superalloys KW - Double notched creep specimen KW - Stress distribution KW - Lattice rotation KW - Cracks PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506060 DO - https://doi.org/10.1016/j.msea.2020.139255 SN - 0921-5093 VL - 782 SP - 139255 PB - Elsevier B. V. AN - OPUS4-50606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - An, Biwen Annie A1 - Kleinbub, Sherin A1 - Özcan Sandikcioglu, Özlem A1 - Koerdt, Andrea T1 - Iron to Gas: Versatile Multiport Flow-Column Revealed Extremely High Corrosion Potential by Methanogen-Induced Microbiologically Influenced Corrosion (Mi-MIC) N2 - Currently, sulfate-reducing bacteria (SRB) is regarded as the main culprit of microbiologically influenced corrosion (MIC), mainly due to the low reported corrosion rates of other microorganisms. For example, the highest reported corrosion rate for methanogens is 0.065 mm/yr. However, by investigating methanogen-induced microbiologically influenced corrosion (Mi-MIC) using an in-house developed versatile multiport flow test column, extremely high corrosion rates were observed. We analyzed a large set of carbon steel beads, which were sectionally embedded into the test columns as substrates for iron-utilizing methanogen Methanobacterium IM1. After 14 days of operation using glass beads as fillers for section separation, the highest average corrosion rate of Methanobacterium IM1 was 0.2 mm/yr, which doubled that of Desulfovibrio ferrophilus IS5 and Desulfovibrio alaskensis 16109 investigated at the same conditions. At the most corroded region, nearly 80% of the beads lost 1% of their initial weight (fast-corrosion), resulting in an average corrosion rate of 0.2 mm/yr for Methanobacterium IM1-treated columns. When sand was used as filler material to mimic sediment conditions, average corrosion rates for Methanobacterium IM1 increased to 0.3 mm/yr (maximum 0.52 mm/yr) with over 83% of the beads having corrosion rates above 0.3 mm/yr. Scanning electron images of metal coupons extracted from the column showed methanogenic cells were clustered close to the metal surface. Methanobacterium IM1 is a hydrogenotrophic methanogen with higher affinity to metal than H2. Unlike SRB, Methanobacterium IM1 is not restricted to the availability of sulfate concentration in the environment. Thus, the use of the multiport flow column provided a new insight on the corrosion potential of methanogens, particularly in dynamic conditions, that offers new opportunities for monitoring and development of mitigation strategies. Overall, this study shows under certain conditions methanogenic archaea can cause higher corrosion than SRB, specific quantifications, i.e., maximum, average, and minimum corrosion rates can be determined, and that spatial statistical evaluations of MIC can be carried out. KW - Microbiologically influenced corrosion KW - Methanogen KW - Methane KW - Biocorrosion KW - Flow system KW - Modeling KW - Multiport PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506084 DO - https://doi.org/10.3389/fmicb.2020.00527 VL - 11 SP - Article 527 PB - Frontiers in microbiology AN - OPUS4-50608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ehlers, Henrik A1 - Pelkner, Matthias A1 - Thewes, R. T1 - Heterodyne Eddy Current Testing Using Magnetoresistive Sensors for Additive Manufacturing Purposes N2 - In recent years additive manufacturing technologies have become widely popular. For complex functional components or low volume production of workpieces, laser powder bed fusion can be used. High safety requirements, e.g. in the aerospace sector, demand extensive quality control. Therefore, offline non-destructive testing methods like computed tomography are used after manufacturing. Recently, for enhanced profitability and practicality online non-destructive testing methods, like optical tomography have been developed. This paper discusses the applicability of eddy current testing with magnetoresistive sensors for laser powder bed fusion parts. For this purpose, high spatial resolution giant magnetoresistance arrays are utilized for testing in combination with a single wire excitation coil. A heterodyne principle minimizes metrology efforts. This principle is compared to conventional signal processing in an eddy current testing setup using an aluminum test sample with artificial surface defects. To evaluate the influence of the powder used in the manufacturing process on eddy current testing and vice versa, a laser powder bed fusion mock-up made from stainless steel powder (316L) is used with artificial surface defects down to 100 µm. This laser powder bed fusion specimen was then examined using eddy current testing and the underlying principles. KW - Eddy current testing KW - Heterodyning KW - Laser powder bed fusion KW - Giant magnetoresistance KW - Additive manufacturing KW - 316L PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506140 DO - https://doi.org/10.1109/JSEN.2020.2973547 SN - 1530-437X VL - 20 IS - 11 SP - 5793 EP - 5800 PB - IEEE AN - OPUS4-50614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Spaltmann, Dirk T1 - Editorial: Special issue "Laser-induced periodic surface nano- and microstructures for tribological applications" N2 - Laser material processing is an emerging technology that generates surface functionalities on the basis of optical, mechanical, or chemical properties. In the form of laser surface texturing (LST), it has attracted a remarkable amount of research to tailor surface properties towards various tribological applications. The main advantages of this single-step, laser-based technology are the contactless machining, featuring a high flexibility, efficiency, and speed, along with the excellent quality of the processed products. LST can be applied precisely localized to sub-micrometric areas, but, via laser beam scanning, it is also feasible for structuring large surface areas at the square meter size. This Special Issue focuses on the latest developments concerning the tribological performance of laser-generated periodic surface nano- and microstructures and their applications. This includes the laser-based processing of different surface patterns, such as “self-organized” laser-induced periodic surface structures (LIPSS, ripples), grooves, micro-spikes, hierarchical hybrid nano-/micro-structures, microfeatures generated by direct laser interference patterning (DLIP), or even dimples or other topographic geometries shaped by direct laser modification or ablation. The applications of these periodically nano- and micro-patterned surfaces may improve the lubricated or non-lubricated tribological performance of surfaces in conformal and even non-conformal contact through a reduction of wear, a variation of the coefficient of friction, altered load carrying capacity, etc., resulting in energy saving, improved reliability, increased lifetimes as well as durability, leading in turn to extended maintenance intervals/reduced down-time. This can be beneficial in terms of bearings, gears, engines, seals, cutting tools, or other tribological components. Fundamental aspects addressed may involve the investigation of the relevant physical and chemical effects accompanying the laser-generated nano- and microscale topographies, such as alterations of the material structures, the hardness, superficial oxidation, the role of additives contained in lubricants, surface wettability, micro-hydrodynamic effects, etc. For this Special Issue we aim to attract both academic and industrial researchers and would like to provide a bridge between research in the fields of tribology and laser material processing in order to foster the current knowledge and present new ideas for future applications and new technologies. KW - Laser-induced periodic surface structures (LIPSS) KW - Tribology KW - Applications KW - Wear KW - Friction PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505948 DO - https://doi.org/10.3390/lubricants8030034 SN - 2075-4442 VL - 8 IS - 3 SP - 34, 1 EP - 34, 3 PB - MDPI CY - Basel AN - OPUS4-50594 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khrapov, D A1 - Koptyug, A. A1 - Manabaev, K. A1 - Léonard, Fabien A1 - Mishurova, Tatiana A1 - Bruno, Giovanni A1 - Cheneler, D. A1 - Loza, K. A1 - Epple, M. A1 - Surmenev, R. A1 - Surmeneva, M. T1 - The impact of post manufacturing treatment of functionally graded Ti6Al4V scaffolds on their surface morphology and mechanical strength N2 - An ultrasonic vibration post-treatment procedure was suggested for additively manufac-tured lattices. The aim of the present research was to investigate mechanical properties andthe differences in mechanical behavior and fracture modes of Ti6Al4V scaffolds treated withtraditional powder recovery system (PRS) and ultrasound vibration (USV). Scanning electronmicroscopy (SEM) was used to investigate the strut surface and the fracture surface mor-phology. X-ray computed tomography (CT) was employed to evaluate the inner structure,strut dimensions, pore size, as well as the surface morphology of additively manufacturedporous scaffolds. Uniaxial compression tests were conducted to obtain elastic modulus,compressive ultimate strength and yield stress. Finite element analysis was performedfor a body-centered cubic (BCC) element-based model and for CT-based reconstructiondata, as well as for a two-zone scaffold model to evaluate stress distribution during elasticdeformation. The scaffold with PRS post treatment displayed ductile behavior, while USVtreated scaffold displayed fragile behavior. Double barrel formation of PRS treated scaffoldwas observed during deformation. Finite element analysis for the CT-based reconstructionrevealed the strong impact of surface morphology on the stress distribution in comparisonwith BCC cell model because of partially molten metal particles on the surface of struts,which usually remain unstressed. KW - Additive manufacturing KW - Electron beam melting KW - Computed tomography KW - FEM KW - Lattice structures PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505960 DO - https://doi.org/10.1016/j.jmrt.2019.12.019 SN - 2238-7854 VL - 9 IS - 2 SP - 1866 EP - 1881 PB - Elsevier B.V. AN - OPUS4-50596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wurzler, Nina A1 - Schütter, J. D. A1 - Wagner, R. A1 - Dimper, M. A1 - Lützenkirchen-Hecht, D. A1 - Özcan Sandikcioglu, Özlem T1 - Trained to corrode: Cultivation in the presence of Fe(III) increases the electrochemical activity of iron reducing bacteria – An in situ electrochemical XANES study N2 - This paper reports results from in situ electrochemical X-ray absorption near-edge spectroscopy (XANES) studies of the corrosion processes on model thin iron films in the presence of iron reducing bacteria Shewanella putrefaciens. Here we investigate the electrochemical activity of two cultures grown in the presence and absence of Fe(III) citrate in the culture medium. The XANES spectra and the OCP data of the Fe sample incubated with the culture grown in absence of Fe(III) did not show any significant changes during twenty hours of monitoring. In the case of the culture grown in Fe(III) containing medium, an accelerated dissolution of the iron film was observed together with the formation of a mixed Fe(II)-Fe(III) hydroxide surface layer. The open circuit potential (OCP) steadily approached the free corrosion potential of iron in neutral chloride containing electrolytes, indicating a continuous dissolution process without passivation. KW - Microbiologically influenced corrosion KW - XANES KW - Electrochemistry KW - Iron reducing bacteria PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505732 DO - https://doi.org/10.1016/j.elecom.2020.106673 VL - 112 SP - 106673 PB - Elsevier B.V. AN - OPUS4-50573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Smales, Glen Jacob A1 - Seitz, H. A1 - Solomun, Tihomir A1 - Sturm, Heinz T1 - Ectoine interaction with DNA: Influence on ultraviolet radiation damage N2 - Ectoine is a small zwitterionic osmolyte and compatible solute, which does not interfere with cell metabolism even at molar concentrations. Plasmid DNA (pUC19) was irradiated with ultraviolet radiation (UV-C at 266 nm) under quasi physiological conditions (PBS) and in pure water in the presence and absence of ectoine (THP(B)) and hydroxyectoine (THP(A)). Different types of UV induced DNA damage were analysed: DNA single-strand breaks (SSBs), abasic sites and cyclobutane pyrimidine dimers (CPDs). A complex interplay between these factors was observed with respect to the nature and occurrence of DNA damage with 266 nm photons. In PBS, the cosolutes showed efficient protection against base damage, whilst in pure water, a dramatic shift from SSB damage to base damage was observed when cosolutes were added. To test whether these effects are caused by ectoine binding to DNA, further experiments were conducted: small-angle X-ray scattering (SAXS), surface-plasmon resonance (SPR) measurements and Raman spectroscopy. The results show, for the first time, a close interaction between ectoine and DNA. This is in stark contrast to the assumption made by preferential exclusion models, which are often used to interpret the behaviour of compatible solutes within cells and with biomolecules. It is tentatively proposed that the alterations of UV damage to DNA are attributed to ectoine influence on nucleobases through the direct interaction between ectoine and DNA. KW - Ectoine KW - DNA KW - Radiation damage KW - Radiation protection KW - SSB KW - DNA damage KW - DNA protection KW - Compatible solute KW - Zwitterion KW - Hydroxyectoine KW - Salt KW - PBS KW - UV absorption KW - DNA strand-break KW - DNA base damage KW - Ectoine UV absorption KW - Ectoine DNA protection KW - Excited states KW - UV irradiation KW - UV-A KW - UV-B KW - UV-C KW - 266nm KW - UV photons KW - Ectoine-DNA binding KW - Raman spectroscopy KW - UV-Vis KW - Radical scavenger KW - OH scavenger KW - Hydroxyl radicals KW - CPD KW - Abasic site KW - Agarose gel electrophorese KW - SYBR gold KW - DNA melting temperature KW - Counterions KW - Preferential exclusion KW - Cancer KW - Therapy KW - UV protection KW - Sunscreen PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505772 DO - https://doi.org/10.1039/d0cp00092b SN - 1463-9076 SN - 1463-9084 VL - 22 IS - 13 SP - 6984 EP - 6992 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-50577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Hänninen, H. A1 - Böllinghaus, Thomas T1 - In-situ ToF-SIMS analyses of deuterium re-distribution in austenitic steel AISI 304L under mechanical load N2 - Hydrocarbons fuel our economy. Furthermore, intermediate goods and consumer products are often hydrocarbon-based. Beside all the progress they made possible, hydrogen-containing substances can have severe detrimental effects on materials exposed to them. Hydrogen-assisted failure of iron alloys has been recognised more than a century ago. The present study aims to providing further insight into the degradation of the austenitic stainless steel AISI 304L (EN 1.4307) exposed to hydrogen. To this end, samples were electrochemically charged with the hydrogen isotope deuterium (2H, D) and analysed by scanning electron microscopy (SEM), electron back-scatter diffraction (EBSD) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). It was found that deuterium caused a phase transformation from the original γ austenite into ε- and α’-martensite. Despite their low solubility for hydrogen, viz. deuterium, the newly formed phases showed high deuterium concentration which was attributed to the increased density of traps. Information about the behaviour of deuterium in the material subjected to external mechanical load was gathered. A four-point-bending device was developed for this purpose. This allowed to analyse in-situ pre-charged samples in the ToF-SIMS during the application of external mechanical load. The results indicate a movement of deuterium towards the regions of highest stress. KW - ToF-SIMS KW - Hydrogen KW - Deuterium KW - AISI 304L KW - EBSD PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505142 DO - https://doi.org/10.1038/s41598-020-60370-2 VL - 10 IS - 1 SP - 3611 PB - Nature AN - OPUS4-50514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Florian, Camilo A1 - Wonneberger, R. A1 - Undisz, A. A1 - Kirner, Sabrina V. A1 - Wasmuth, Karsten A1 - Spaltmann, Dirk A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Chemical effects during the formation of various types of femtosecond laser-generated surface structures on titanium alloy N2 - In this contribution, chemical, structural, and mechanical alterations in various types of femtosecond laser-generated surface structures, i.e., laser-induced periodic surface structures (LIPSS, ripples), Grooves, and Spikes on titanium alloy, are characterized by various surface analytical techniques, including X-ray diffraction and glow-discharge optical emission spectroscopy. The formation of oxide layers of the different laser-based structures inherently influences the friction and wear performance as demonstrated in oil-lubricated reciprocating sliding tribological tests (RSTTs) along with subsequent elemental mapping by energy-dispersive X-ray analysis. It is revealed that the fs-laser scan processing (790 nm, 30 fs, 1 kHz) of near-wavelength-sized LIPSS leads to the formation of a graded oxide layer extending a few hundreds of nanometers into depth, consisting mainly of amorphous oxides. Other superficial fs-laser-generated structures such as periodic Grooves and irregular Spikes produced at higher fluences and effective number of pulses per unit area present even thicker graded oxide layers that are also suitable for friction reduction and wear resistance. Ultimately, these femtosecond laser-induced nanostructured surface layers efficiently prevent a direct metal-to-metal contact in the RSTT and may act as an anchor layer for specific wear-reducing additives contained in the used engine oil. KW - Laser-induced oxide layer KW - Laser-induced periodic surface strctures (LIPSS) KW - Femtosecond laser processing KW - Tribology KW - Surface processing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505660 DO - https://doi.org/10.1007/s00339-020-3434-7 SN - 0947-8396 SN - 1432-0630 VL - 126 IS - 4 SP - 266 PB - Springer Nature Switzerland AG AN - OPUS4-50566 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - X-ray radiation protection aspects during ultrashort laser processing N2 - Ultrashort pulse laser processing of materials allows for precise machining with high accuracy. By increasing the repetition rate to several 100 kHz, laser machining becomes quick and cost-effective. Ultrafast laser processing at high repetition rates and peak intensities above 10^13 W/cm^2 can cause a potential hazard by generation of unwanted x-ray radiation. Therefore, radiation protection must be considered. For 925 fs pulse duration at a center wavelength of 1030 nm, the x-ray emission in air at a repetition rate of 400 kHz was investigated up to a peak intensity of 2.6 × 10^14 W/cm^2. Based on the presented measurements, the properties of potential shielding materials will be discussed. By extending our previous works, a scaling of the x-ray radiation emission to higher peak intensities up to 10^15 W/cm^2 is described, and emitted x-ray doses are predicted. KW - Laser ablation KW - Ultrashort pulse laser processing KW - Laser-induced x-ray emission KW - Radiation protection PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505677 DO - https://doi.org/10.2351/1.5134778 VL - 32 IS - 2 SP - 022004 AN - OPUS4-50567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Léonard, Fabien A1 - Zhang, Zhen A1 - Krebs, Holger A1 - Bruno, Giovanni T1 - Structural and Morphological Quantitative 3D Characterisation of Ammonium Nitrate Prills by X-ray Computed Tomography N2 - The mixture of ammonium nitrate (AN) prills and fuel oil (FO), usually referred to as ANFO, is extensively used in the mining industry as a bulk explosive. One of the major performance predictors of ANFO mixtures is the fuel oil retention, which is itself governed by the complex pore structure of the AN prills. In this study, we present how X-ray computed tomography (XCT), and the associated advanced data processing workflow, can be used to fully characterise the structure and morphology of AN prills. We show that structural parameters such as volume fraction of the different phases and morphological parameters such as specific surface area and shape factor can be reliably extracted from the XCT data, and that there is a good agreement with the measured oil retention values. Importantly, oil retention measurements (qualifying the efficiency of ANFO as explosives) correlate well with the specific surface area determined by XCT. XCT can therefore be employed non-destructively; it can accurately evaluate and characterise porosity in ammonium nitrate prills, and even predict their efficiency. KW - ANFO KW - Explosives KW - Surface area KW - Porosity KW - XCT KW - Data processing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505395 DO - https://doi.org/10.3390/ma13051230 VL - 13 IS - 5 (Special Issue "Micro Non-Destructive Testing and Evaluation") SP - 1230 PB - MDPI AN - OPUS4-50539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scheuerlein, C. A1 - Andrieux, J. A1 - Michels, M. A1 - Lackner, F. A1 - Chiriac, R. A1 - Hagner, M. A1 - Di Michiel, M. A1 - Meyer, Christian A1 - Toche, F. ED - Foley, C. P. T1 - Effect of the fabrication route on the phase and volume changes during the reaction heat treatment of Nb3Sn superconducting wires N2 - Accelerator magnets that can reach magnetic fields well beyond the Nb-Ti performance limits are presently being built and developed, using Nb3Sn superconductors. This technology requires reaction heat treatment (RHT) of the magnet coils, during which Nb3Sn is formed from its ductile precursor materials (a “wind and react” approach). The Nb3Sn microstructure and microchemistry are strongly influenced by the conductor fabrication route, and by the Phase changes during RHT. By combining in situ differential scanning calorimetry, high Energy synchrotron x-ray diffraction, and micro-tomography experiments, we have acquired a unique data set that describes in great detail the phase and microstructure changes that take place during the processing of restacked rod process (RRP), powder-in-tube (PIT), and internal tin (IT) Nb3Sn wires. At temperatures below 450 ° the phase evolutions in the three wire types are similar, with respectively solid state interdiffusion of Cu and Sn, Cu6Sn5 formation, and Cu6Sn5 peritectic transformation. Distinct differences in phase evolutions in the wires are found when temperatures exceed 450 °C. The volume changes of the conductor during RHT are a difficulty in the production of Nb3Sn accelerator magnets. We compare the wire diameter changes measured in situ by dilatometry with the phase and void volume evolution of the three types of Nb3Sn wire. Unlike the Nb3Sn wire length changes, the wire diameter evolution is characteristic for each Nb3Sn wire type. The strongest volume increase, of about 5%, is observed in the RRP wire, where the main diameter increase occurs above 600 °C upon Nb3Sn formation. KW - Nb3Sn KW - Microstructure KW - Phase transformations KW - Volume changes KW - X-ray diffraction KW - Differential scanning calorimetry KW - Synchrotron micro-tomography PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505128 DO - https://doi.org/10.1088/1361-6668/ab627c VL - 33 IS - 3 SP - 034004 PB - IOP Publishing CY - Bristol (UK) AN - OPUS4-50512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vollert, F. A1 - Thomas, Maximilian A1 - Kromm, Arne A1 - Gibmeier, J. T1 - Solidification Cracking Assessment of LTT Filler Materials by Means of Varestraint Testing and μCT N2 - Investigations of the weldability of metals often deal with hot cracking, as one of the most dreaded imperfections during weld fabrication. The hot cracking investigations presented in this paper were carried out as part of a study on the development of low transformation temperature (LTT) weld filler materials. These alloys allow to mitigate tensile residual stresses that usually arise during welding using conventional weld filler materials. By this means, higher fatigue strength and higher lifetimes of the weld can be achieved. However, LTT weld filler materials are for example, high-alloyed Cr/Ni steels that are susceptible to the formation of hot cracks. To assess hot cracking, we applied the standardized modified varestraint transvarestraint hot cracking test (MVT), which is well appropriate to evaluate different base or filler materials with regard to their hot cracking susceptibility. In order to consider the complete material volume for the assessment of hot cracking, we additionally applied microfocus X-ray computer tomography (μCT). It is shown that by a suitable selection of welding and MVT parameter the analysis of the complete 3D hot crack network can provide additional information with regard to the hot cracking model following Prokhorov. It is now possible to determine easy accessible substitute values (e.g., maximum crack depth) for the extent of the Brittleness Temperature Range (BTR) and the minimum critical strain Pmin. KW - LTT weld filler materials KW - μCT-analysis KW - Hot cracking KW - Varestraint test PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509126 DO - https://doi.org/10.3390/ma13122726 VL - 13 IS - 12 SP - 2726 PB - MDPI AN - OPUS4-50912 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Maren A1 - Niebergall, Ute A1 - Wachtendorf, Volker A1 - Böhning, Martin T1 - Evaluation of UV-induced embrittlement of PE-HD by Charpy impact test N2 - The impact fracture behavior of two common high-density polyethylene grades for container applications were intensively studied by the instrumented Charpy impact test after well-defined exposure to UV-irradiation. Individual stages of the impact event, such as crack initiation and crack propagation energy as well as maximum impact load, were investigated from the recorded load–deflection curves. UV-induced material property changes were further investigated by infrared spectroscopy, differential scanning calorimetry, and dynamic-mechanical analysis as well as density measurements. Based on the results of the Charpy impact test, three indicators were identified to describe the extend of photooxidation on high-density polyethylene: (a) a reduced Charpy impact strength—at least to half of its initial value for a distinctly brittle impact fracture, (b) a marked decrease in the crack propagation contribution to the impact strength, and (c) an increase of the brittle features of the fracture surface. KW - Degradation KW - Mechanical properties KW - Packaging KW - Polyolefins KW - Polyethylene PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509130 DO - https://doi.org/10.1002/APP.49069 SN - 0021-8995 VL - 137 IS - 36 SP - 49069 PB - Wiley AN - OPUS4-50913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Saleh, Maysoon I. A1 - Rühle, Bastian A1 - Wang, Shu A1 - Radnik, Jörg A1 - You, Yi A1 - Resch-Genger, Ute T1 - Assessing the protective effects of different surface coatings on NaYF4:YB3+, Er3+, upconverting nanoparticles in buffer and DMEM N2 - We studied the dissolution behavior of β NaYF4:Yb(20%), Er(2%) UCNP of two different sizes in biologically relevant media i.e., water (neutral pH), phosphate buffered saline (PBS), and Dulbecco’s modified Eagle medium (DMEM) at different temperatures and particle concentrations. Special emphasis was dedicated to assess the influence of different surface functionalizations, particularly the potential of mesoporous and microporous silica shells of different thicknesses for UCNP stabilization and protection. Dissolution was quantified electrochemically using a fluoride ion selective electrode (ISE) and by inductively coupled plasma optical emission spectrometry (ICP OES). In addition, dissolution was monitored fluorometrically. These experiments revealed that a thick microporous silica shell drastically decreased dissolution. Our results also underline the critical influence of the chemical composition of the aqueous environment on UCNP dissolution. In DMEM, we observed the formation of a layer of adsorbed molecules on the UCNP surface that protected the UCNP from dissolution and enhanced their fluorescence. Examination of this layer by X ray photoelectron spectroscopy (XPS) and mass spectrometry (MS) suggested that mainly phenylalanine, lysine, and glucose are adsorbed from DMEM. These findings should be considered in the future for cellular toxicity studies with UCNP and other nanoparticles and the design of new biocompatible surface coatings. KW - Fluorescence KW - Lifetime KW - Method KW - Quantification KW - Stability KW - Coating KW - Surface chemistry KW - Lanthanide KW - Fluoride KW - Electrochemistry KW - ICP-OES KW - Upconversion KW - Nano KW - Particle KW - Aging KW - Quality assurance KW - Mass spectrometry KW - XPS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515984 DO - https://doi.org/10.1038/s41598-020-76116-z SN - 2045-2322 VL - 10 IS - 1 SP - 19318-1 EP - 19318-11 PB - Springer Nature CY - London AN - OPUS4-51598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reichel, V. E. A1 - Matuszak, J. A1 - Bente, Klaas A1 - Heil, T. A1 - Kraupner, A. A1 - Dutz, S. A1 - Cicha, I. A1 - Faivre, D. T1 - Magnetite-Arginine Nanoparticles as a Multifunctional Biomedical Tool N2 - Iron oxide nanoparticles are a promising platform for biomedical applications, both in terms of diagnostics and therapeutics. In addition, arginine-rich polypeptides are known to penetrate across cell membranes. Here, we thus introduce a system based on magnetite nanoparticles and the polypeptide poly-l-arginine (polyR-Fe3O4). We show that the hybrid nanoparticles exhibit a low cytotoxicity that is comparable to Resovist®, a commercially available drug. PolyR-Fe3O4 particles perform very well in diagnostic applications, such as magnetic particle imaging (1.7 and 1.35 higher signal respectively for the 3rd and 11th harmonic when compared to Resovist®), or as contrast agents for magnetic resonance imaging (R2/R1 ratio of 17 as compared to 11 at 0.94 T for Resovist®). Moreover, these novel particles can also be used for therapeutic purposes such as hyperthermia, achieving a specific heating power ratio of 208 W/g as compared to 83 W/g for Feridex®, another commercially available product. Therefore, we envision such materials to play a role in the future theranostic applications, where the arginine ability to deliver cargo into the cell can be coupled to the magnetite imaging properties and cancer fighting activity. KW - Iron oxide KW - Nanoparticle KW - Theranostics KW - MRI KW - Hyperthermia PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515993 DO - https://doi.org/10.3390/nano10102014 VL - 10 IS - 10 SP - 2014 PB - MDPI AN - OPUS4-51599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Borcherding, H. A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Lifetime encoding in flow cytometry for bead‑based sensing of biomolecular interaction N2 - To demonstrate the potential of time-resolved flow cytometry (FCM) for bioanalysis, clinical diagnostics, and optically encoded bead-based assays, we performed a proof-of-principle study to detect biomolecular interactions utilizing fluorescence lifetime (LT)-encoded micron-sized polymer beads bearing target-specific bioligands and a recently developed prototype lifetime flow cytometer (LT-FCM setup). This instrument is equipped with a single excitation light source and different fluorescence detectors, one operated in the photon-counting mode for time-resolved measurements of fluorescence decays and three detectors for conventional intensity measurements in different spectral windows. First, discrimination of bead-bound biomolecules was demonstrated in the time domain exemplarily for two targets, Streptavidin (SAv) and the tumor marker human chorionic gonadotropin (HCG). In a second step, the determination of biomolecule concentration levels was addressed representatively for the inflammation-related biomarker tumor necrosis factor (TNF-α) utilizing fluorescence intensity measurements in a second channel of the LT-FCM instrument. Our results underline the applicability of LT-FCM in the time domain for measurements of biomolecular interactions in suspension assays. In the future, the combination of spectral and LT encoding and multiplexing and the expansion of the time scale from the lower nanosecond range to the longer nanosecond and the microsecond region is expected to provide many distinguishable codes. This enables an increasing degree of multiplexing which could be attractive for high throughput screening applications. KW - Fluorescence KW - Sensor KW - Assay KW - Protein KW - Multiplexing KW - Flow cytometry KW - Barcoding KW - Lifetime KW - Dye KW - Bead KW - Bead-based assay KW - Method KW - Quantification PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516007 DO - https://doi.org/10.1038/s41598-020-76150-x VL - 10 IS - 1 SP - 19477 PB - Nature AN - OPUS4-51600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blasenbauer, D. A1 - Huber, F. A1 - Lederer, J. A1 - Quina, M. A1 - Blanc-Biscarat, D. A1 - Bogush, A. A1 - Bontempi, E. A1 - Blondeau, J. A1 - Chimenos, J. A1 - Dahlbo, H. A1 - Fagerqvist, J. A1 - Giro-Paloma, J. A1 - Hjelmar, O. A1 - Hyks, J. A1 - Keaney, J. A1 - Lupsea-Toader, M. A1 - O’Caollai, C. A1 - Orupõld, K. A1 - Pajak, T. A1 - Simon, Franz-Georg A1 - Svecova, L. A1 - Syc, M. A1 - Uvang, R. A1 - Vaajasaari, K. A1 - van Caneghem, J. A1 - van Zomeren, A. A1 - Vasarevičius, S. A1 - Wégner, K. A1 - Fellner, J. T1 - Legal situation and current practice of waste incineration bottom ash utilisation in Europe N2 - Almost 500 municipal solid waste incineration plants in the EU, Norway and Switzerland generate about 17.6 Mt/a of incinerator bottom ash (IBA). IBA contains minerals and metals. Metals are mostly separated and sold to the scrap market and minerals are either disposed of in landfills or utilised in the construction sector. Since there is no uniform regulation for IBA utilisation at EU level, countries developed own rules with varying requirements for utilisation. As a result from a cooperation network between European experts an up-to-date overview of documents regulating IBA utilisation is presented. Furthermore, this work highlights the different requirements that have to be considered. Overall, 51 different parameters for the total content and 36 different parameters for the emission by leaching are defined. An analysis of the defined parameter reveals that leaching parameters are significantly more to be considered compared to total content parameters. In order to assess the leaching behaviour nine different leaching tests, including batch tests, up-flow percolation tests and one diffusion test (monolithic materials) are in place. A further discussion of leaching parameters showed that certain countries took over limit values initially defined for landfills for inert waste and adopted them for IBA utilisation. The overall utilisation rate of IBA in construction works is approximately 54 wt%. It is revealed that the rate of utilisation does not necessarily depend on how well regulated IBA utilisation is, but rather seems to be a result of political commitment for IBA recycling and economically interesting circumstances. KW - Bottom ash KW - Leaching tests KW - Utilisation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-500161 DO - https://doi.org/10.1016/j.wasman.2019.11.031 SN - 0956-053X VL - 102 SP - 868 EP - 883 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-50016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haller, T. A1 - Völker, Christoph A1 - Hartmann, T. T1 - Machine learning based multi-sensor fusion for the nondestructive testing of corrosion in concrete N2 - Half-cell potential mapping (HP) is the most popular non-destructive testing method (NDT) for locating corrosion damage in concrete. It is generally accepted that HP is susceptible to environmental factors caused by salt-related deterioration, such as different moisture and chloride gradients. Additional NDT methods are able to identify distinctive areas but are not yet used to estimate more accurate test results. We present a Supervised Machine Learning (SML) based approach to data fusion of seven different signal features to obtain higher quality information. SMLs are methods that explore (or learn) relationships between different (sensor) data from predefined data labels. To obtain a representative, labelled data set we conducted a comprehensive experiment simulating the deterioration cycle of a chloride exposed device in the laboratory. Our data set consists of 18 measurement campaigns, each containing HP, Ground Penetrating- Radar, Microwave Moisture and Wenner resistivity data. We compare the performance of different ML approaches. Many outperform the best single method, HP. We describe the intrinsic challenges posed by a data-driven approach in NDT and show how future work can help overcome them. T2 - SMAR2019 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures CY - Potsdam, Germany DA - 27.08.2019 KW - Machine Learning KW - NDT KW - Half-Cell Potential Mapping KW - Corrosion KW - Reinforced Concrete KW - Data Fusion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-498563 UR - http://www.ndt.net/?id=24890 VL - 25 IS - 1 SP - 24890-1 EP - 24890-8 PB - NDT.net CY - Kirchwald AN - OPUS4-49856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lu, Z. C. A1 - Haist, M. A1 - Ivanov, D. A1 - Jakob, C. A1 - Jansen, D. A1 - Schmid, M. A1 - Kißling, P. A. A1 - Leinitz, Sarah A1 - Link, J. A1 - Mechtcherine, V. A1 - Neubauer, J. A1 - Plank, J. A1 - Schmidt, Wolfram A1 - Schilde, C. A1 - Schröfl, C. A1 - Sowoidnich, T. A1 - Stephan, D. T1 - Characterization data of reference cement CEM III/A 42.5N used for priority program DFG SPP 2005 "Opus Fluidum Futurum - Rheology of reactive, multiscale, multiphase construction materials" N2 - Two types of cements were selected as the reference cement in the priority program 2005 of the German Research Foundation (DFG SPP 2005). A thorough characterization of CEM I 42.5 R has been made in a recent publication. In this paper, the characterization data of the other reference cement CEM III/A 42.5 N are presented from the aspects of chemical and mineralogical compositions as well as physical and chemical properties. The characterization data of the slag, which is the second main constituent of this specific cement besides the clinker, are presented independently. For all data received, the mean values and the corresponding errors were calculated. The data shall be used for the ongoing research within the priority program. Also, researchers from outside this priority program can benefit from these data if the same materials are used. KW - Cement KW - Slag KW - Characterization KW - DFG SPP 2005 PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568980 DO - https://doi.org/10.1016/j.dib.2020.105524 SN - 2352-3409 VL - 30 SP - 1 EP - 14 PB - Elsevier CY - Amsterdam AN - OPUS4-56898 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thiedeitz, M. A1 - Schmidt, Wolfram A1 - Härder, M. A1 - Kränkel, T. T1 - Performance of rice husk ash as supplementary cementitious material after production in the field and in the lab N2 - Supplementary cementitious materials (SCM) can reduce the total amount of Portland cement clinker in concrete production. Rice husk ashes (RHA) can be converted from an agricultural by-product to a high-performance concrete constituent due to a high amount of reactive silica with pozzolanic properties if they are burnt under controlled conditions. The way and duration of combustion, the cooling process as well as the temperature have an effect on the silica form and thus, the chemical and physical performance of the RHA. Various studies on the best combustion technique have been published to investigate the ideal combustion techniques. Yet, the process mostly took place under laboratory conditions. Investigating the difference between the performance of RHA produced in a rural environment and laboratory conditions is useful for the assessment and future enhancement of RHA production, and its application both as building material, for example in rural areas where it is sourced in large quantities, and as additive for high performance concrete. Thus, the paper presents a comparison between RHA produced under rudimentary conditions in a self-made furnace in the rural Bagamoyo, Tanzania and under controlled laboratory conditions at the Technical University of Munich, Germany, with different combustion methods and temperatures. In a second step, RHA was ground to reach particle size distributions comparable to cement. In a third step, cement pastes were prepared with 10%, 20% and 40% of cement replacement, and compared to the performance of plain and fly ash blended cement pastes. The results show that controlled burning conditions around 650 °C lead to high reactivity of silica and, therefore, to good performance as SCM. However, also the RHA burnt under less controlled conditions in the field provided reasonably good properties, if the process took place with proper burning parameters and adequate grinding. The knowledge can be implemented in the field to improve the final RHA performance as SCM in concrete. KW - Rice husk ash KW - Agricultural by-product KW - Supplementary cementitious material KW - Waste management KW - Carbon dioxide emissions PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568953 DO - https://doi.org/10.3390/ma13194319 SN - 1996-1944 VL - 13 SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-56895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ziesche, R. A1 - Robinson, J. A1 - Kok, M. A1 - Markötter, Henning A1 - Kockelmann, W. A1 - Kardjilov, N. A1 - Manke, I. A1 - Brett, D. A1 - Shearing, P. T1 - Editors’ Choice—4D Neutron and X-ray Tomography Studies of High Energy Density Primary Batteries: Part I. Dynamic Studies of LiSOCl2 during Discharge N2 - The understanding of dynamic processes in Li-metal batteries is an important consideration to enable the full capacity of cells to be utilised. These processes, however, are generally not directly observable using X-ray techniques due to the low attenuation of Li; and are challenging to visualise using neutron imaging due to the low temporal resolution of the technique. In this work, complementary X-ray and neutron imaging are combined to track the dynamics of Li within a primary Li/SOCl2 cell. The temporal challenges posed by neutron imaging are overcome using the golden ratio imaging method which enables the identification of Li diffusion in operando. This combination of techniques has enabled an improved understanding of the processes which limit rate performance in Li/SOCl2 cells and may be applied beyond this chemistry to other Li-metal cells. KW - Nneutron imaging KW - X-ray imaging KW - Tomography KW - Primary Battery PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515802 DO - https://doi.org/10.1149/1945-7111/abbbbc SN - 1945-7111 VL - 13 IS - 167 SP - 130545 PB - IOP Publishing AN - OPUS4-51580 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Axel A1 - Goedecke, Caroline A1 - Eisentraut, Paul A1 - Piechotta, Christian A1 - Braun, Ulrike T1 - Microplastic analysis using chemical extraction followed by LC‑UV analysis: a straightforward approach to determine PET content in environmental samples N2 - Background: The ubiquitous occurrence of microplastic particles in marine and aquatic ecosystems was intensively investigated in the past decade. However, we know less about the presence, fate, and input paths of microplastic in terrestrial ecosystems. A possible entry path for microplastic into terrestrial ecosystems is the agricultural application of sewage sludge and solid bio-waste as fertilizers. Microplastic contained in sewage sludge also includes Polyethylene terephthalate (PET), which could originate as fiber from textile products or as a fragment from packaging products (foils, bottles, etc.). Information about microplastic content in such environmental samples is limited yet, as most of the used analytical methods are very time-consuming, regarding sample preparation and detection, require sophisticated analytical tools and eventually need high user knowledge. Results: Here, we present a simple, specific tool for the analysis of PET microplastic particles based on alkaline extraction of PET from the environmental matrix and subsequent determination of the monomers, terephthalic acid, using liquid chromatography with UV detection (LC-UV). The applicability of the method is shown for different types of PET in several soil-related, terrestrial environmental samples, e.g., soil, sediment, compost, fermentation residues, but also sewage sludge, suspended particles from urban water management systems, and indoor dust. Recoveries for model samples are between 94.5 and 107.1%. Limit of determination and limit of quantification are absolute masses of 0.031 and 0.121 mg PET, respectively. In order to verify the measured mass contents of the environmental samples, a method comparison with thermal extraction-desorption-gas chromatography–mass spectrometry (TED-GC/MS) was conducted. Both methods deliver similar results and corroborated each other. PET mass contents in environmental samples range from values below LOQ in agriculture soil up to 57,000 mg kg−1 in dust samples. Conclusions: We demonstrate the potential of an integral method based on chemical extraction for the Determination of PET mass contents in solid environmental samples. The method was successfully applied to various matrices and may serve as an analytical tool for further investigations of PET-based microplastic in terrestrial ecosystems. KW - Soil KW - Analysis KW - Microplastic KW - PET KW - LC-UV PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509060 DO - https://doi.org/10.1186/s12302-020-00358-x IS - 32 SP - 85 PB - Springer Open CY - Berlin AN - OPUS4-50906 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biesen, L. A1 - Nirmalananthan-Budau, Nithiya A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Müller, T. J. J. T1 - Solid-State Emissive Aroyl-S,N-Ketene Acetals with Tunable N2 - N-Benzyl aroyl-S,N-ketene acetals can be readily synthesized by condensation of aroyl chlorides and N-Benzyl 2-methyl benzothiazolium salts in good to excellent yields, yielding a library of 35 chromophores with bright solid-state emission and aggregation-induced emission characteristics. Varying the substituent from electron-donating to electronwithdrawing enables the tuning of the solid-state emission Color from deep blue to red. KW - Nano KW - Nanoparticle KW - Photoluminescence KW - Fluorescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - dye KW - Enhancement KW - Particle KW - Polarity KW - AIE KW - Aggregation KW - Aggregation-induced emission KW - Solid state emission PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509072 DO - https://doi.org/10.1002/anie.201916396 VL - 59 IS - 25 SP - 10037 EP - 10041 PB - Wiley Online Libary AN - OPUS4-50907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mezera, Marek A1 - Alamri, S. A1 - Hendriks, W. A. P. M. A1 - Hertwig, Andreas A1 - Elert, Anna Maria A1 - Bonse, Jörn A1 - Kunze, T. A1 - Lasagni, A. F. A1 - Römer, G. R. B. E. T1 - Hierarchical micro-/nano-structures on polycarbonate via UV pulsed laser processing N2 - Hierarchical micro/-nanostructures were produced on polycarbonate polymer surfaces by employing a two-step UV-laser processing strategy based on the combination of Direct Laser Interference Patterning (DLIP) of gratings and pillars on the microscale (3 ns, 266 nm, 2 kHz) and subsequently superimposing Laser-induced Periodic Surface Structures (LIPSS; 7–10 ps, 350 nm, 100 kHz) which adds nanoscale surface features. Particular emphasis was laid on the influence of the direction of the laser beam polarization on the morphology of resulting hierarchical surfaces. Scanning electron and atomic force microscopy methods were used for the characterization of the hybrid surface structures. Finite-difference time-domain (FDTD) calculations of the laser intensity distribution on the DLIP structures allowed to address the specific polarization dependence of the LIPSS formation observed in the second processing step. Complementary chemical analyzes by micro-Raman spectroscopy and attenuated total reflection Fourier-transform infrared spectroscopy provided in-depth information on the chemical and structural material modifications and material degradation imposed by the laser processing. It was found that when the linear laser polarization was set perpendicular to the DLIP ridges, LIPSS could be formed on top of various DLIP structures. FDTD calculations showed enhanced optical intensity at the topographic maxima, which can explain the dependency of the morphology of LIPSS on the polarization with respect to the orientation of the DLIP structures. It was also found that the degradation of the polymer was enhanced for increasing accumulated fluence levels. KW - Direct laser interference patterning KW - Laser-induced periodic surface structures (LIPSS) KW - Polycarbonate KW - Hierarchical structures KW - Surface functionalization PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509101 DO - https://doi.org/10.3390/nano10061184 SN - 2079-4991 VL - 10(6) IS - Special issue "Laser-generated periodic nanostructures" SP - 1184-1 EP - 1184-19 PB - MDPI CY - Basel AN - OPUS4-50910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Pfüger, Mika A1 - Velasco-Vélez, Juan-Jesús A1 - Sahre, Mario A1 - Radnik, Jörg A1 - Bernicke, Michael A1 - Bernsmeier, Denis A1 - Hodoroaba, Vasile-Dan A1 - Krumrey, Michael A1 - Strasser, Peter A1 - Kraehnert, Ralph A1 - Hertwig, Andreas T1 - Assessing optical and electrical properties of highly active IrOx catalysts for the electrochemical oxygen evolution reaction via spectroscopic ellipsometry N2 - Efficient water electrolysis requires highly active electrodes. The activity of corresponding catalytic coatings strongly depends on material properties such as film thickness, crystallinity, electrical conductivity, and chemical surface speciation. Measuring these properties with high accuracy in vacuum-free and nondestructive methods facilitates the elucidation of structure−activity relationships in realistic environments. Here, we report a novel approach to analyze the optical and electrical properties of highly active oxygen evolution reaction (OER) catalysts via spectroscopic ellipsometry (SE). Using a series of differently calcined, mesoporous, templated iridium oxide films as an example, we assess the film thickness, porosity, electrical resistivity, electron concentration, electron mobility, and interband and intraband transition energies by modeling of the optical spectra. Independently performed analyses using scanning electron microscopy, energy-dispersive X-ray spectroscopy, ellipsometric porosimetry, X-ray reflectometry, and absorption spectroscopy indicate a high accuracy of the deduced material properties. A comparison of the derived analytical data from SE, resonant photoemission spectroscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy with activity measurements of the OER suggests that the intrinsic activity of iridium oxides scales with a shift of the Ir 5d t2g sub-level and an increase of p−d interband transition energies caused by a transition of μ1-OH to μ3-O species. KW - Spectroscopic ellipsometry KW - Electrocatalysis KW - Oxygen evolution reaction KW - Mesoporous iridium oxide films KW - Non-destructive ambient analysis KW - Intrinsic OER activity KW - Complementary methodology and metrology PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516288 DO - https://doi.org/10.1021/acscatal.0c03800 SN - 2155-5435 VL - 10 IS - 23 SP - 14210 EP - 14223 PB - American Chemical Society AN - OPUS4-51628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - García-González, M. A1 - Blasón Gonzalez, Sergio A1 - García-García, I. A1 - Lamela-Rey, M. J. A1 - Fernández-Canteli, A. A1 - Álvarez-Arenal, Á. T1 - Optimized planning and evaluation of dental implant fatigue testing: A specific software application N2 - Mechanical complications in implant-supported fixed dental prostheses are often related to implant and prosthetic design. Although the current ISO 14801 provides a framework for the evaluation of dental implant mechanical reliability, strict adherence to it may be difficult to achieve due to the large number of test specimens which it requires as well as the fact that it does not offer any probabilistic reference for determining the endurance limit. In order to address these issues, a new software program called ProFatigue is presented as a potentially powerful tool to optimize fatigue testing of implant-supported prostheses. The present work provides a brief description of some concepts such as load, fatigue and stress-number of cycles to failure curves (S-N curves), before subsequently describing the current regulatory situation. After analyzing the two most recent versions of the ISO recommendation (from 2008 and 2016), some limitations inherent to the experimental methods which they propose are highlighted. Finally, the main advantages and instructions for the correct implementation of the ProFatigue free software are given. This software will contribute to improving the performance of fatigue testing in a more accurate and optimized way, helping researchers to gain a better understanding of the behavior of dental implants in this type of mechanical test. KW - Dental materials KW - Prostheses KW - Implants KW - Reference standards KW - Software KW - Cyclic loading KW - Fatigue KW - Lifetime KW - S-N curve KW - Staircase method PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516268 DO - https://doi.org/10.3390/biology9110372 SN - 2079-7737 VL - 9 IS - 11 SP - 372-1 EP - 372-12 PB - MDPI CY - Basel AN - OPUS4-51626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thummerer, G. A1 - Mayr, G. A1 - Hirsch, Philipp Daniel A1 - Ziegler, Mathias A1 - Burgholzer, P. T1 - Photothermal Image Reconstruction in Opaque Media with Virtual Wave Backpropagation N2 - Thermographic reconstruction of defects that lie in the bulk of a sample is a difficult task because entropy production during heat diffusion leads to information loss. To reconstruct defects one has to solve an inverse heat conduction problem. The quality of the reconstruction is closely related to the information content of the observed data set that is reflected by the decreasing ability to spatially resolve a defect with growing defect depth. In this work we show a 2D reconstruction of rectangular slots with different width-to-depth ratios in a metallic sample. For this purpose, we apply the virtual wave concept and incorporate positivity and sparsity as prior information to overcome the diffusion-based information loss partially. The reconstruction is based on simulated and experimental pulse thermography data. In the first reconstruction step, we compute a virtual wave field from the surface temperature data. This allows us, in the second step, to use ultrasonic backpropagation methods for image reconstruction. KW - Virtual wave concept KW - Thermography KW - Photothermal Technique KW - Image reconstruction PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506166 DO - https://doi.org/10.1016/j.ndteint.2020.102239 VL - 112 SP - 102239 PB - Elsevier Ltd. CY - Netherlands AN - OPUS4-50616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rosenkranz, D. A1 - Kriegel, F. L. A1 - Mavrakis, E. A1 - Pergantis, S. A. A1 - Reichardt, P. A1 - Tentschert, J. A1 - Jakubowski, N. A1 - Laux, P. A1 - Panne, Ulrich A1 - Luch, A. T1 - Versatile dual-inlet sample introduction system for multi-mode single particle inductively coupled plasma mass spectrometry N2 - Metal-containing nanoparticles (NP) can be characterized with inductively coupled plasma mass spectrometers (ICP-MS) in terms of their size and number concentration by using the single-particle mode of the instrument (spICP-MS). The accuracy of measurement depends on the setup, operational conditions of the instrument and specific parameters that are set by the user. The transport efficiency of the ICP-MS is crucial for the quantification of the NP and usually requires a reference material with homogenous size distribution and a known particle number concentration. Currently, NP reference materials are available for only a few metals and in limited sizes. If particles are characterized without a reference standard, the results of both size and particle number may be biased. Therefore, a dual-inlet Setup for characterizing nanoparticles with spICP-MS was developed to overcome this problem. This setup is based on a conventional introduction system consisting of a pneumatic nebulizer (PN) for nanoparticle solutions and a microdroplet Generator (μDG) for ionic calibration solutions. A new and flexible interface was developed to facilitate the coupling of μDG, PN and the ICP-MS system. The interface consists of available laboratory components and allows for the calibration, nanoparticle (NP) characterization and cleaning of the arrangement, while the ICP-MS instrument is still running. Three independent analysis modes are available for determining particle size and number concentration. Each mode is based on a different calibration principle. While mode I (counting) and mode III (μDG) are known from the literature, mode II (sensitivity), is used to determine the transport efficiency by inorganic ionic Standard solutions only. It is independent of NP reference materials. The μDG based inlet system described here guarantees superior analyte sensitivities and, therefore, lower detection limits (LOD). The size dependent LODs achieved are less than 15 nm for all NP (Au, Ag, CeO2) investigated. KW - Spectrometer KW - Reference KW - Calibration PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536121 DO - https://doi.org/10.3791/61653 SN - 1940-087X IS - 163 SP - 1 EP - 19 PB - MyJoVE Corporation CY - Cambridge, MA, USA AN - OPUS4-53612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Winkelmann, A. T1 - About the reliability of EBSD measurements: Data enhancement N2 - An extensive set of information about the diffracting volume is carried by EBSD patterns: the crystal lattice, the reciprocal lattice, the crystal structure, the crystal symmetry, the mean periodic number of the diffracting phase, the source point from where it has been projected (projection centre), the crystal orientation, the sample topography (local tilt), the (preparation) quality of defect density of the crystal, and possible pattern overlaps. Some of this information is used regularly in conventional EBSD analyses software while others are still waiting for a more widespread application. Despite the wealth of information available, the accuracy and precision of the data that are presently extracted from conventional EBSD patterns are often well below the actual physical limits. Using a selection of example applications, we will demonstrate the gain in angular resolution possible using relatively low-resolution patterns of approximately 20k pixels in combination with pattern matching (PM) approaches. In this way, fine details in a microstructure can be revealed which would otherwise be hidden in the orientation noise. KW - EBSD KW - Orientation precision KW - Disorientation KW - Grain boundary KW - Phase transformation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521618 DO - https://doi.org/10.1088/1757-899X/891/1/012018 VL - 891 SP - 012018 PB - IOP Science AN - OPUS4-52161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zosef, M. A1 - Fahmy, Alaa A1 - El Hotaby, W. A1 - Hassan, A. A1 - Khalil, A. A1 - Anis, B. T1 - High performance graphene-based PVF foam for lead removal from water N2 - The synthesis and optimization of superior and eco-friendly sorbents for Pb(II) pose a great challenge in the field of water treatment. The sorbent was developed by introducing graphene oxide (GO) into the matrix of polyvinyl formaldehyde (PVF) foam. The immobilization of GO in PVF results in significant increase in the maximum adsorption capacity (Qt) of GO powder for Pb(II), from ≈800 to ≈1730 mg g−1 in the case of GO/PVF foam. As compared with GO powder in Pb(II) aqueous solutions, PVF matrix keeps GO sheets stable without any agglomeration. The large surface area of GO sheet allows the abundant oxygenated functional groups on its surface to participate effectively in the Pb(II) adsorption process, leading to the huge increase of the Qt. Adsorption isotherms and kinetic studies indicated that the sorption process of Pb(II) on GO/PVF was done on heterogenous surface by ion-exchange reaction. The GO/PVF foam showed an excellent reusability for more than 10 cycles with almost the same efficiency and without any significant change in its physical properties. KW - Water treatment KW - Graphene oxide KW - Lead ions KW - Polyvinyl formaldehyde foam KW - Superior sorbent PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523013 DO - https://doi.org/10.1016/j.jmrt.2020.08.011 VL - 9 IS - 5 SP - 11861 EP - 11875 PB - Elsevier B.V. AN - OPUS4-52301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Selbmann, L. A1 - Benkő, Z. A1 - Coleine, C. A1 - de Hoog, S. A1 - Donati, C. A1 - Druzhinina, I. A1 - Emri, T. A1 - Ettinger, C. L. A1 - Gladfelter, A. S. A1 - Gorbushina, Anna A1 - Grigoriev, I. V. A1 - Grube, M. A1 - Gunde-Cimerman, N. A1 - Karányi, Z. A. A1 - Kocsis, B. A1 - Kubressoian, T. A1 - Miklós, I. A1 - Miskei, M. A1 - Muggia, L. A1 - Northen, T. A1 - Novak-Babič, M. A1 - Pennacchio, C. A1 - Pfliegler, W. P. A1 - Pòcsi, I. A1 - Prigione, V. A1 - Riquelme, M. A1 - Segata, N. A1 - Schumacher, Julia A1 - Shelest, E. A1 - Sterflinger, K. A1 - Tesei, D. A1 - U’Ren, J. M. A1 - Varese, G. C. A1 - Vázquez-Campos, X. A1 - Vicente, V. A. A1 - Souza, E. M. A1 - Zalar, P. A1 - Walker, A. K. A1 - Stajich, J. E. T1 - Shed Light in the DaRk LineagES of the Fungal Tree of Life—STRES N2 - The polyphyletic group of black fungi within the Ascomycota (Arthoniomycetes, Dothideomycetes, and Eurotiomycetes) is ubiquitous in natural and anthropogenic habitats. Partly because of their dark, melanin-based pigmentation, black fungi are resistant to stresses including UV- and ionizing-radiation, heat and desiccation, toxic metals, and organic pollutants. Consequently, they are amongst the most stunning extremophiles and poly-extreme-tolerant organisms on Earth. Even though ca. 60 black fungal genomes have been sequenced to date, [mostly in the family Herpotrichiellaceae (Eurotiomycetes)], the class Dothideomycetes that hosts the largest majority of extremophiles has only been sparsely sampled. By sequencing up to 92 species that will become reference genomes, the “Shed light in The daRk lineagES of the fungal tree of life” (STRES) project will cover a broad collection of black fungal diversity spread throughout the Fungal Tree of Life. Interestingly, the STRES project will focus on mostly unsampled genera that display different ecologies and life-styles (e.g., ant- and lichen-associated fungi, rock-inhabiting fungi, etc.). With a resequencing strategy of 10- to 15-fold depth coverage of up to ~550 strains, numerous new reference genomes will be established. To identify metabolites and functional processes, these new genomic resources will be enriched with metabolomics analyses coupled with transcriptomics experiments on selected species under various stress conditions (salinity, dryness, UV radiation, oligotrophy). The data acquired will serve as a reference and foundation for establishing an encyclopedic database for fungal metagenomics as well as the biology, evolution, and ecology of the fungi in extreme environments. KW - Adaptation KW - Black fungi KW - Dothideomycetes KW - Eurotiomycetes KW - Extremophiles KW - Genomics KW - Metabolomics KW - Secondary metabolites KW - Stress conditions KW - Transcriptomics PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519328 DO - https://doi.org/10.3390/life10120362 VL - 10 IS - 12 SP - 362 PB - MDPI CY - Basel AN - OPUS4-51932 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hünger, K.-J. A1 - Kositz, M. A1 - Danneberg, M. A1 - Radnik, Jörg T1 - Enrichment of aluminium in the near‐surface region of natural quartzite rock after aluminium exposure N2 - Alkali–silica reaction (ASR) is an ongoing problem that causes damage to concrete constructions and reduces their durability. Therefore, minimizing this undesired reaction is of great interest for both safety and economic reasons. Additives containing high aluminium content are very effective in reducing the release of silica and enhancing the durability of concrete; however, the mechanism for this effect is still under discussion. In this study, an enrichment of aluminium in the near‐surface region was observed for natural quartzite rock after storage in Al (OH)3 and metakaolin as aluminium sources, from which we conclude that the formation of aluminosilicate sheets of a few nanometres inhibits the silica release; this hypothesis is supported by high‐resolution spectra of Al 2p, Si 2p and O 1s. KW - Alkali-silica reaction KW - Quartzite rock KW - X-ray photoelectron spectroscopy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519394 DO - https://doi.org/10.1002/sia.6918 SN - 0142-2421 SP - 1 EP - 7 PB - Wiley VCH AN - OPUS4-51939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xin, L. A1 - Mika, J. A1 - Horbert, V. A1 - Bischoff, S. A1 - Schubert, H. A1 - Borowski, J. A1 - Maenz, S. A1 - Huber, R. A1 - Sachse, A. A1 - Illerhaus, Bernhard A1 - Kinne, R. W. T1 - Systematic postoperative assessment of a minimally-invasive sheep model for the treatment of osteochondral defects N2 - To assess the clinical course of a sheep stifle joint model for osteochondral (OC) defects, medial femoral condyles (MFC) were exposed without patella luxation using medial parapatellar skin (3–4 cm) and deep incisions (2–3 cm). Two defects (7 mm diameter; 10 mm depth; OC punch) were left empty or refilled with osteochondral autologous transplantation cylinders (OATS) and explanted after six weeks. Incision-to-suture time, anesthesia time, and postoperative wound or impairment scores were compared to those in sham-operated animals. Implant performance was assessed by X-ray, micro-computed tomography, histology, and immunohistology (collagens 1, 2; aggrecan). There were no surgery-related infections or patellar luxations. Operation, anesthesia, and time to complete stand were short (0.5, 1.4, and 1.5 h, respectively). The wound trauma score was low (0.4 of maximally 4; day 7). Empty-defect and OATS animals reached an impairment score of 0 significantly later than sham animals (7.4 and 4.0 days, respectively, versus 1.5 days). Empty defects showed incomplete healing and dedifferentiation/heterotopic differentiation; OATS-filled defects displayed advanced bone healing with remaining cartilage gaps and orthotopic expression of bone and cartilage markers. Minimally-invasive, medial parapatellar surgery of OC defects on the sheep MFC allows rapid and low-trauma recovery and appears well-suited for implant testing. KW - Osteochondral stifle joint defect KW - Sheep animal model KW - Minimally-invasive parapatellar approach PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520180 DO - https://doi.org/10.3390/life10120332 SN - 2075-1729 VL - 10 IS - 12 SP - 1 EP - 14 PB - MDPI CY - Basel AN - OPUS4-52018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -