TY - JOUR A1 - Lu, Z. C. A1 - Haist, M. A1 - Ivanov, D. A1 - Jakob, C. A1 - Jansen, D. A1 - Schmid, M. A1 - Kißling, P. A. A1 - Leinitz, Sarah A1 - Link, J. A1 - Mechtcherine, V. A1 - Neubauer, J. A1 - Plank, J. A1 - Schmidt, Wolfram A1 - Schilde, C. A1 - Schröfl, C. A1 - Sowoidnich, T. A1 - Stephan, D. T1 - Characterization data of reference cement CEM III/A 42.5N used for priority program DFG SPP 2005 "Opus Fluidum Futurum - Rheology of reactive, multiscale, multiphase construction materials" N2 - Two types of cements were selected as the reference cement in the priority program 2005 of the German Research Foundation (DFG SPP 2005). A thorough characterization of CEM I 42.5 R has been made in a recent publication. In this paper, the characterization data of the other reference cement CEM III/A 42.5 N are presented from the aspects of chemical and mineralogical compositions as well as physical and chemical properties. The characterization data of the slag, which is the second main constituent of this specific cement besides the clinker, are presented independently. For all data received, the mean values and the corresponding errors were calculated. The data shall be used for the ongoing research within the priority program. Also, researchers from outside this priority program can benefit from these data if the same materials are used. KW - Cement KW - Slag KW - Characterization KW - DFG SPP 2005 PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568980 DO - https://doi.org/10.1016/j.dib.2020.105524 SN - 2352-3409 VL - 30 SP - 1 EP - 14 PB - Elsevier CY - Amsterdam AN - OPUS4-56898 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Martin A1 - Tscheuschner, Georg A1 - Herrmann, Stefan A1 - Weller, Michael G. T1 - Fast Detection of 2,4,6-Trinitrotoluene (TNT) at ppt Level by a Laser-Induced Immunofluorometric Biosensor N2 - The illegal use of explosives by terrorists and other criminals is an increasing issue in public spaces, such as airports, railway stations, highways, sports venues, theaters, and other large buildings. Security in these environments can be achieved by different means, including the installation of scanners and other analytical devices to detect ultra-small traces of explosives in a very short time-frame to be able to take action as early as possible to prevent the detonation of such devices. Unfortunately, an ideal explosive detection system still does not exist, which means that a compromise is needed in practice. Most detection devices lack the extreme analytical sensitivity, which is nevertheless necessary due to the low vapor pressure of nearly all explosives. In addition, the rate of false positives needs to be virtually zero, which is also very difficult to achieve. Here we present an immunosensor system based on kinetic competition, which is known to be very fast and may even overcome affinity limitation, which impairs the performance of many traditional competitive assays. This immunosensor consists of a monolithic glass column with a vast excess of immobilized hapten, which traps the fluorescently labeled antibody as long as no explosive is present. In the case of the explosive 2,4,6-trinitrotoluene (TNT), some binding sites of the antibody will be blocked, which leads to an immediate breakthrough of the labeled protein, detectable by highly sensitive laser-induced fluorescence with the help of a Peltier-cooled complementary metal-oxide-semiconductor (CMOS) camera. Liquid handling is performed with high-precision syringe pumps and chip-based mixing-devices and flow-cells. The system achieved limits of detection of 1 pM (1 ppt) of the fluorescent label and around 100 pM (20 ppt) of TNT. The total assay time is less than 8 min. A cross-reactivity test with 5000 pM solutions showed no signal by pentaerythritol tetranitrate (PETN), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). This immunosensor belongs to the most sensitive and fastest detectors for TNT with no significant cross-reactivity by non-related compounds. The consumption of the labeled antibody is surprisingly low: 1 mg of the reagent would be sufficient for more than one year of continuous biosensor operation. KW - Airport KW - Aviation KW - Bombs KW - Terrorism KW - Biosensing KW - Continuous Sensor KW - High-Speed KW - Ultrasensitive PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511245 DO - https://doi.org/10.3390/bios10080089 VL - 10 IS - 8 SP - 89 PB - MDPI CY - Basel AN - OPUS4-51124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steglich, P. A1 - Bondarenko, S. A1 - Mai, C. A1 - Paul, Martin A1 - Weller, Michael G. A1 - Mai, A. T1 - CMOS-Compatible Silicon Photonic Sensor for Refractive Index Sensing Using Local Back-Side Release N2 - Silicon photonic sensors are promising candidates for lab-on-a-chip solutions with versatile applications and scalable production prospects using complementary metal-oxide semiconductor (CMOS) fabrication methods. However, the widespread use has been hindered because the sensing area adjoins optical and electrical components making packaging and sensor handling challenging. In this work, a local back-side release of the photonic sensor is employed, enabling a separation of the sensing area from the rest of the chip. This approach allows preserving the compatibility of photonic integrated circuits in the front-end of line and metal interconnects in the back-end of line. The sensor is based on a micro-ring resonator and is fabricated on wafer-level using a CMOS technology. We revealed a ring resonator sensitivity for homogeneous sensing of 106 nm/RIU. KW - Photonic biosensor KW - Lab-on-a-chip KW - Ring resonator KW - Resonance wavelength shift KW - PIC technology KW - Back-side integration PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517139 DO - https://doi.org/10.1109/LPT.2020.3019114 VL - 32 IS - 19 SP - 1241 EP - 1244 PB - IEEE AN - OPUS4-51713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Adams, L. C. A1 - Brangsch, J. A1 - Reimann, C. A1 - Kaufmann, Jan Ole A1 - Buchholz, R. A1 - Karst, U. A1 - Botnar, R. M. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Simultaneous molecular MRI of extracellular matrix collagen and inflammatory activity to predict abdominal aortic aneurysm rupture N2 - Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease with an up to 80% mortality in case of rupture. Current biomarkers fail to account for size-independent risk of rupture. By combining the information of different molecular probes, multi-target molecular MRI holds the potential to enable individual characterization of AAA. In this experimental study, we aimed to examine the feasibility of simultaneous imaging of extracellular collagen and inflammation for size-independent prediction of risk of rupture in murine AAA. The study design consisted of: (1) A outcome-based longitudinal study with imaging performed once after one week with follow-up and death as the end-point for assessment of rupture risk. (2) A week-by-week study for the characterization of AAA development with imaging after 1, 2, 3 and 4 weeks. For both studies, the animals were administered a type 1 collagen-targeted gadolinium-based probe (surrogate marker for extracellular matrix (ECM) remodeling) and an iron oxide-based probe (surrogate marker for inflammatory activity), in one imaging session. In vivo measurements of collagen and iron oxide probes showed a significant correlation with ex vivo histology (p < 0.001) and also corresponded well to inductively-coupled plasma-mass spectrometry and laser-ablation inductively-coupled plasma mass spectrometry. Combined evaluation of collagen-related ECM remodeling and inflammatory activity was the most accurate predictor for AAA rupture (sensitivity 80%, specificity 100%, area under the curve 0.85), being superior to information from the individual probes alone. Our study supports the feasibility of a simultaneous assessment of collagen-related extracellular matrix remodeling and inflammatory activity in a murine model of AAA. KW - Atherosclerosis KW - Specific probe KW - Magnetic resonance imaging KW - Gadolinium KW - Iron oxide KW - Ferumoxytol KW - Inductively‑coupled mass spectrometry KW - ICP-MS KW - LA-ICP-MS KW - Laser ablation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525864 UR - https://www.nature.com/articles/s41598-020-71817-x DO - https://doi.org/10.1038/s41598-020-71817-x VL - 10 IS - 1 SP - 15206 PB - Springer Nature Limited CY - London, New York, Berlin, Shanghai and Tokyo AN - OPUS4-52586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Adams, L. C. A1 - Brangsch, J. A1 - Reimann, C. A1 - Kaufmann, Jan Ole A1 - Nowak, K. A1 - Buchholz, R. A1 - Karst, U. A1 - Botnar, R. M. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Noninvasive imaging of vascular permeability to predict the risk of rupture in abdominal aortic aneurysms using an albumin binding probe N2 - Abdominal aortic aneurysm (AAA) remains a fatal disease. Its development encompasses a complex interplay between hemodynamic stimuli on and changes in the arterial wall. Currently available biomarkers fail to predict the risk of AAA rupture independent of aneurysm size. Therefore, novel biomarkers for AAA characterization are needed. In this study, we used a mouse model of AAA to investigate the potential of magnetic resonance imaging (MRI) with an albumin-binding probe to assess changes in vascular permeability at different stages of aneurysm growth. Two imaging studies were performed: a longitudinal study with follow-up and death as endpoint to predict rupture risk and a week-by-week study to characterize AAA development. AAAs, which eventually ruptured, demonstrated a significantly higher in vivo MR signal enhancement from the albumin-binding probe (p = 0.047) and a smaller non-enhancing thrombus area compared to intact AAAs (p = 0.001). The ratio of albumin-binding-probe enhancement of the aneurysm wall to size of non-enhancing-thrombus-area predicted AAA rupture with high sensitivity/specificity (100%/86%). More advanced aneurysms with higher vascular permeability demonstrated an increased uptake of the albumin-binding-probe. These results indicate that MRI with an albumin-binding probe may enable noninvasive assessment of vascular permeability in murine AAAs and prediction of rupture risk. KW - Magnetic resonance imaging KW - Imaging KW - Tomography KW - Gadolinium KW - Contrast agent KW - Atherosclerosis KW - ICP-MS KW - Gadofosveset KW - Angiography KW - LA-ICP-MS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525541 DO - https://doi.org/10.1038/s41598-020-59842-2 VL - 10 SP - Article number: 3231 PB - Springer Nature Limited CY - London, New York, Berlin, Shanghai and Tokyo AN - OPUS4-52554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Keller, S. A1 - Borde, T. A1 - Brangsch, J. A1 - Reimann, C. A1 - Kader, A. A1 - Schulze, D. A1 - Buchholz, R. A1 - Kaufmann, Jan Ole A1 - Karst, U. A1 - Schellenberger, E. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Assessment of the hepatic tumor extracellular matrix using elastin‑specific molecular magnetic resonance imaging in an experimental rabbit cancer model N2 - To investigate the imaging performance of an elastin-specific molecular magnetic resonance imaging (MRI) probe with respect to the extracellular matrix (ECM) in an experimental hepatic cancer model. Twelve rabbits with hepatic VX2 tumors were examined using 3 T MRI 14, 21, and 28 days after tumor implantation for two subsequent days (gadobutrol, day 1; elastin-specific probe, day 2). The relative enhancement (RE) of segmented tumor regions (central and margin) and the peritumoral matrix was calculated using pre-contrast and delayed-phase T1w sequences. MRI measurements were correlated to histopathology and element-specific and spatially resolved mass spectrometry (MS). Mixed-model analysis was performed to assess the performance of the elastin-specific probe. In comparison to gadobutrol, the elastin probe showed significantly stronger RE, which was pronounced in the tumor margin (day 14–28: P ≤ 0.007). In addition, the elastin probe was superior in discriminating between tumor regions (χ2(4) = 65.87; P < 0.001). MRI-based measurements of the elastin probe significantly correlated with the ex vivo elastinstain (R = .84; P <0 .001) and absolute gadolinium concentrations (ICP-MS: R = .73, P <0 .01). LA-ICP-MS imaging confirmed the colocalization of the elastin-specific probe with elastic fibers. Elastin-specific molecular MRI is superior to non-specific gadolinium-based contrast agents in imaging the ECM of hepatic tumors and the peritumoral tissue. KW - Elastin-specific molecular agent KW - Extracellular matrix KW - Hepatocellular carcinoma KW - Inductively coupled plasma mass spectroscopy KW - Laser ablation-inductively coupled plasma-mass spectrometry KW - Magnetic resonance imaging KW - MR imaging KW - ESMA KW - Gadolinium PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517360 DO - https://doi.org/10.1038/s41598-020-77624-8 VL - 10 IS - 1 SP - 20785 PB - Nature AN - OPUS4-51736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Biyikal, Mustafa A1 - Gröninger, Delia A1 - Weller, Michael G. A1 - Martínez Mánez, R. A1 - Rurack, Knut ED - Climent Terol, Estela T1 - Multiplexed Detection of Analytes on Single Test Strips with Antibody-Gated Indicator-Releasing Mesoporous Nanoparticles N2 - Rapid testing methods for the use directly at apointof need are expected to unfold their true potential especiallywhen offering adequate capabilities for the simultaneousmeasurement of multiple analytes of interest. Considering theunique modularity,high sensitivity,and selectivity of antibody-gated indicator delivery (gAID) systems,amultiplexed assayfor three small-molecule explosives (TATP, TNT,PETN) wasthus developed, allowing to detect the analytes simultaneouslywith asingle test strip at lower ppb concentrations in the liquidphase in < 5min using afluorescence reader or asmartphonefor readout. While the TNT and PETN systems were newlydeveloped here,all the three systems also tolerated harshermatrices than buffered aqueous model solutions.Besidesasingle-track strip,the outstanding modularity of the hybridbiosensor materials in combination with strip-patterningtechnologies allowed us to obtain amultichannel strip inastraightforwardmanner,offering comparable analyticalperformance while allowing to be tailored even more to theusersneed. KW - Multiplexing KW - Explosives detection KW - Gated materials KW - Fluorescence PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518424 DO - https://doi.org/10.1002/anie.202009000 SN - 1433-7851 SN - 1521-3773 VL - 59 IS - 52 SP - 23862 EP - 23869 PB - Wiley-VCH CY - Weinheim AN - OPUS4-51842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ziegler, K. A1 - Kunert, A. T. A1 - Reinmuth-Selzle, K. A1 - Leifke, A. L. A1 - Widera, D. A1 - Weller, Michael G. A1 - Schuppan, D. A1 - Fröhlich-Nowoisky, J. A1 - Lucas, K. A1 - Pöschl, U. T1 - Chemical modification of pro-inflammatory proteins by peroxynitrite increases activation of TLR4 and NF-κB: Implications for the health effects of air pollution and oxidative stress N2 - Environmental pollutants like fine particulate matter can cause adverse health effects through oxidative stress and inflammation. Reactive oxygen and nitrogen species (ROS/RNS) such as peroxynitrite can chemically modify proteins, but the effects of such modifications on the immune system and human health are not well understood. In the course of inflammatory processes, the Toll-like receptor 4 (TLR4) can sense damage-associated molecular patterns (DAMPs). Here, we investigate how the TLR4 response and pro-inflammatory potential of the proteinous DAMPs α-Synuclein (α-Syn), heat shock protein 60 (HSP60), and high-mobility-group box 1 protein (HMGB1), which are relevant in neurodegenerative and cardiovascular diseases, changes upon chemical modification with peroxynitrite. For the peroxynitrite-modified proteins, we found a strongly enhanced activation of TLR4 and the pro-inflammatory transcription factor NF-κB in stable reporter cell lines as well as increased mRNA expression and secretion of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-8 in human monocytes (THP-1). This enhanced activation of innate immunity via TLR4 is mediated by covalent chemical modifications of the studied DAMPs. Our results show that proteinous DAMPs modified by peroxynitrite more potently amplify inflammation via TLR4 activation than the native DAMPs, and provide first evidence that such modifications can directly enhance innate immune responses via a defined receptor. These findings suggest that environmental pollutants and related ROS/RNS may play a role in promoting acute and chronic inflammatory disorders by structurally modifying the body's own DAMPs. This may have important consequences for chronic neurodegenerative, cardiovascular or gastrointestinal diseases that are prevalent in modern societies, and calls for action, to improve air quality and climate in the Anthropocene. KW - Protein nitration KW - Protein oligomerization KW - Damage-associated molecular patterns (DAMPs) KW - Pattern recognition receptor KW - Anthropocene KW - Environmental pollutants PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517128 DO - https://doi.org/10.1016/j.redox.2020.101581 VL - 37 SP - 101581 PB - Elsevier B.V. AN - OPUS4-51712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahmadi, Samim A1 - Burgholzer, P. A1 - Jung, P. A1 - Caire, G. A1 - Ziegler, Mathias T1 - Super resolution laser line scanning thermography N2 - In this paper we propose super resolution measurement and post-processing strategies that can be applied in thermography using laser line scanning. The implementation of these techniques facilitates the separation of two closely spaced defects and avoids the expected deterioration of spatial resolution due to heat diffusion. The experimental studies were performed using a high-power laser as heat source in combination with pulsed thermography measurements (step scanning) or with continuous heating measurements (continuous scanning). Our work shows that laser line step scanning as well as continuous scanning both can be used within our developed super resolution (SR) techniques. Our SR techniques make use of a compressed sensing based algorithm in post- processing, the so-called iterative joint sparsity (IJOSP) approach. The IJOSP method benefits from both - the sparse nature of defects in space as well as from the similarity of each measurement. In addition, we show further methods to improve the reconstruction quality e.g. by simple manipulations in thermal image processing such as by considering the effect of the scanning motion or by using different optimization algorithms within the IJOSP approach. These super resolution image processing methods are discussed so that the advantages and disadvantages of each method can be extracted. Our contribution thus provides new approaches for the implementation of super resolution techniques in laser line scanning thermography and informs about which experimental and post-processing parameters should be chosen to better separate two closely spaced defects. KW - Super resolution KW - Laser thermography KW - Compressed sensing KW - Laser scanning KW - Joint sparsity PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509796 DO - https://doi.org/10.1016/j.optlaseng.2020.106279 SN - 0143-8166 VL - 134 SP - 106279 PB - Elsevier Ltd. AN - OPUS4-50979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahmadi, Samim A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Burgholzer, P. A1 - Jung, P. A1 - Caire, G. A1 - Ziegler, Mathias T1 - Laser excited super resolution thermal imaging for nondestructive inspection of internal defects N2 - A photothermal super resolution technique is proposed for an improved inspection of internal defects. To evaluate the potential of the laser-based thermographic technique, an additively manufactured stainless steel specimen with closely spaced internal cavities is used. Four different experimental configurations in transmission, reflection, stepwise and continuous scanning are investigated. The applied image post-processing method is based on compressed sensing and makes use of the block sparsity from multiple measurement events. This concerted approach of experimental measurement strategy and numerical optimization enables the resolution of internal defects and outperforms conventional thermographic inspection techniques. KW - Super Resolution KW - Laser Thermography KW - Non Destructive Testing KW - Comressed Sensing KW - Inverse Problem KW - Thermography PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519016 DO - https://doi.org/10.1038/s41598-020-77979-y VL - 10 IS - 1 SP - 22357 PB - Springer Nature AN - OPUS4-51901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thummerer, G. A1 - Mayr, G. A1 - Hirsch, Philipp Daniel A1 - Ziegler, Mathias A1 - Burgholzer, P. T1 - Photothermal Image Reconstruction in Opaque Media with Virtual Wave Backpropagation N2 - Thermographic reconstruction of defects that lie in the bulk of a sample is a difficult task because entropy production during heat diffusion leads to information loss. To reconstruct defects one has to solve an inverse heat conduction problem. The quality of the reconstruction is closely related to the information content of the observed data set that is reflected by the decreasing ability to spatially resolve a defect with growing defect depth. In this work we show a 2D reconstruction of rectangular slots with different width-to-depth ratios in a metallic sample. For this purpose, we apply the virtual wave concept and incorporate positivity and sparsity as prior information to overcome the diffusion-based information loss partially. The reconstruction is based on simulated and experimental pulse thermography data. In the first reconstruction step, we compute a virtual wave field from the surface temperature data. This allows us, in the second step, to use ultrasonic backpropagation methods for image reconstruction. KW - Virtual wave concept KW - Thermography KW - Photothermal Technique KW - Image reconstruction PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506166 DO - https://doi.org/10.1016/j.ndteint.2020.102239 VL - 112 SP - 102239 PB - Elsevier Ltd. CY - Netherlands AN - OPUS4-50616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radtke, Martin A1 - Rakotondrajoa, A. T1 - Machine learning based quantification of synchrotron radiation-induced X-ray fluorescence measurements - a case study N2 - In this work, we describe the use of artificial neural networks for the quantification of X-ray fluorescence measurements. The training data were generated using Monte Carlo simulation, which avoided the use of adapted reference materials. The extension of the available data set by means of an ANN to generate additional data was demonstrated. Particular emphasis was put on the comparability of simulated and experimental data and how the influence of deviations can be reduced. The search for the optimal hyperparameter, manual and automatic, is also described. For the presented case, we were able to train a network with a mean absolute error of 0.1 weight percent for the synthetic data and 0.7 weight percent for a set of experimental data obtained with certified reference materials. KW - Machine learning KW - BAMline KW - XRF KW - Synchrotron KW - Neural network PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519008 DO - https://doi.org/10.1088/2632-2153/abc9fb SP - 1 EP - 16 PB - IOP Publishing AN - OPUS4-51900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Herzel, Hannes A1 - Grevel, K.-D. A1 - Emmerling, Franziska A1 - Dachs, E. A1 - Benisek, A. A1 - Adam, Christian A1 - Majzlan, J. T1 - Thermodynamic properties of calcium alkali phosphates Ca(Na,K)PO4 N2 - Calcium alkali phosphates Ca(Na,K)PO4 are main constituents of bioceramics and thermochemically produced phosphorus fertilizers because of their bioavailability. Sparse thermodynamic data are available for the endmembers CaNaPO4 and CaKPO4. In this work, the missing data were determined for the low-temperature phase modifications of the endmembers CaNaPO4 and CaKPO4 and three intermediate Ca(Na,K)PO4 compositions. Standard enthalpy of formation ranges from - 2018.3 ± 2.2 kJ mol-1 to - 2030.5 ± 2.1 kJ mol-1 and standard entropy from 137.2 ± 1.0 J mol-1 K-1 to 148.6 ± 1.0 J mol-1 K-1 from sodium endmember b-CaNaPO4 to potassium endmember b0-CaKPO4. Thermodynamic functions are calculated up to 1400 K for endmembers and the sodium-rich intermediate phase b-Ca(Na0.93K0.07)PO4. Functions above 640 K are extrapolated because of the phase transition from low- to high-temperature phase. Impurities in the synthesized intermediate phases c-Ca(Na0.4K0.6)PO4 and c-Ca Na0.35K0.65)PO4 and one additional phase transition around 500 K impeded the determination of high-temperature thermodynamic functions. In general, data for phase transition temperatures agree with the previously reported phase diagrams. KW - Formation enthalpy KW - Heat capacity KW - Phase transformation KW - Bioceramics KW - Phosphorus fertilizer KW - Entropy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507640 DO - https://doi.org/10.1007/s10853-020-04615-5 VL - 55 SP - 8477 EP - 8490 PB - Springer AN - OPUS4-50764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Herzel, Hannes A1 - Dombinov, V. A1 - Vogel, Christian A1 - Willbold, S. A1 - Levandowski, G. V. A1 - Meiller, M. A1 - Müller, F. A1 - Zang, J. W. A1 - da Fonseca-Zang, W. A. A1 - Jablonowski, N. D. A1 - Schrey, S. D. A1 - Adam, Christian T1 - Soybean Fertilized by P-Phases from Bagasse-Based Materials: P-Extraction Procedures, Diffusive Gradients in Thin Films (DGT), and X-ray Diffraction Analysis (XRD) N2 - The Brazilian sugarcane industry produced around 173 million tons (Mt) of bagasse in 2018. Bagasse is a by-product of juice extraction for ethanol and sugar production and is combusted in order to generate power, producing up to 10 Mt of ash per year. This ash contains various concentrations of plant nutrients, which allow the ash to be used as a crop fertilizer. However, the concentration and extractability of phosphorus (P), an essential plant nutrient, are low in bagasse ash. To increase the P content, we co-gasified and co-combusted bagasse with P-rich chicken manure. The resulting ash was thermochemically post-treated with alkali additives (Na2SO4 and K2SO4) to increase the availability of P to plants. We aimed to: (i) investigate the effect of thermochemical post-treatment of co-gasification residue and co-combustion ash on P availability to soybeans, (ii) explore the potential of chemical extraction methods (citric acid, neutral ammonium citrate, formic acid, and Mehlich-I) and diffusive gradients in thin films (DGT) to predict the availability of P to soybeans, and (iii) identify the responsible P-phases using X-ray diffraction . We evaluated P availability to soybeans growing in Brazilian Oxisol soil in two independent greenhouse pot experiments. The positive effect of thermochemical treatment on P availability from gasification residue was confirmed through the observation of increased P uptake and biomass in soybean plants. These findings were confirmed by chemical extraction methods and DGT. The gasification residue contained whitlockite as its main P-bearing phase. Thermochemical post-treatment converted whitlockite into highly soluble CaNaPO4. In contrast, co-combustion ash already contained highly soluble Ca(Na,K)PO4 as its main P-bearing phase, making thermochemical post-treatment unnecessary for increasing P availability. In conclusion, increased extractability and availability of P for soybeans were closely connected to the formation of calcium alkali phosphate. Our findings indicate that this combined methodology allows for the prediction of P-fertilization effects of ash. KW - Sugar cane bagasse KW - Chicken manure ash KW - Thermochemical treatment KW - Nutrient KW - Plant availability PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509735 DO - https://doi.org/10.3390/agronomy10060895 VL - 10 SP - 895 EP - 6 PB - MDPI AN - OPUS4-50973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Pfüger, Mika A1 - Velasco-Vélez, Juan-Jesús A1 - Sahre, Mario A1 - Radnik, Jörg A1 - Bernicke, Michael A1 - Bernsmeier, Denis A1 - Hodoroaba, Vasile-Dan A1 - Krumrey, Michael A1 - Strasser, Peter A1 - Kraehnert, Ralph A1 - Hertwig, Andreas T1 - Assessing optical and electrical properties of highly active IrOx catalysts for the electrochemical oxygen evolution reaction via spectroscopic ellipsometry N2 - Efficient water electrolysis requires highly active electrodes. The activity of corresponding catalytic coatings strongly depends on material properties such as film thickness, crystallinity, electrical conductivity, and chemical surface speciation. Measuring these properties with high accuracy in vacuum-free and nondestructive methods facilitates the elucidation of structure−activity relationships in realistic environments. Here, we report a novel approach to analyze the optical and electrical properties of highly active oxygen evolution reaction (OER) catalysts via spectroscopic ellipsometry (SE). Using a series of differently calcined, mesoporous, templated iridium oxide films as an example, we assess the film thickness, porosity, electrical resistivity, electron concentration, electron mobility, and interband and intraband transition energies by modeling of the optical spectra. Independently performed analyses using scanning electron microscopy, energy-dispersive X-ray spectroscopy, ellipsometric porosimetry, X-ray reflectometry, and absorption spectroscopy indicate a high accuracy of the deduced material properties. A comparison of the derived analytical data from SE, resonant photoemission spectroscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy with activity measurements of the OER suggests that the intrinsic activity of iridium oxides scales with a shift of the Ir 5d t2g sub-level and an increase of p−d interband transition energies caused by a transition of μ1-OH to μ3-O species. KW - Spectroscopic ellipsometry KW - Electrocatalysis KW - Oxygen evolution reaction KW - Mesoporous iridium oxide films KW - Non-destructive ambient analysis KW - Intrinsic OER activity KW - Complementary methodology and metrology PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516288 DO - https://doi.org/10.1021/acscatal.0c03800 SN - 2155-5435 VL - 10 IS - 23 SP - 14210 EP - 14223 PB - American Chemical Society AN - OPUS4-51628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weigert, Florian A1 - Müller, A. A1 - Häusler, I. A1 - Geißler, Daniel A1 - Skroblin, D. A1 - Unger, Wolfgang A1 - Radnik, Jörg A1 - Resch-Genger, Ute T1 - Combining HR‑TEM and XPS to elucidate the core–shell structure of ultrabright CdSe/CdS semiconductor quantum dots N2 - Controlling thickness and tightness of surface passivation shells is crucial for many applications of core–shell nanoparticles (NP). Usually, to determine shell thickness, core and core/shell particle are measured individually requiring the availability of both nanoobjects. This is often not fulfilled for functional nanomaterials such as many photoluminescent semiconductor quantum dots (QD) used for bioimaging, solid state lighting, and display technologies as the core does not show the applicationrelevant functionality like a high photoluminescence (PL) quantum yield, calling for a whole nanoobject approach. By combining high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS), a novel whole nanoobject approach is developed representatively for an ultrabright oleic acid-stabilized, thick shell CdSe/CdS QD with a PL quantum yield close to unity. The size of this spectroscopically assessed QD, is in the range of the information depth of usual laboratory XPS. Information on particle size and monodispersity were validated with dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) and compared to data derived from optical measurements. In addition to demonstrating the potential of this novel whole nanoobject approach for determining architectures of small nanoparticles, the presented results also highlight challenges faced by different sizing and structural analysis methods and method-inherent uncertainties. KW - Photoluminescence KW - Single particle KW - Microscopy KW - Particle architecture KW - Thickness KW - SAXS KW - Shell KW - XPS KW - TEM KW - Semiconductor KW - Quantum dot KW - Photophysics KW - Quantum yield PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517911 DO - https://doi.org/10.1038/s41598-020-77530-z VL - 10 IS - 1 SP - 20712 PB - Springer Nature AN - OPUS4-51791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Bernsmeier, D. A1 - Schmack, R. A1 - Häusler, I. A1 - Hertwig, Andreas A1 - Kraffert, K. A1 - Nissen, J. A1 - Kraehnert, R. T1 - Colloidal bimetallic platinum–ruthenium nanoparticles in ordered mesoporous carbon films as highly active electrocatalysts for the hydrogen evolution reaction N2 - Hydrogen features a very high specific energy density and is therefore a promising candidate for clean fuel from renewable resources. Water electrolysis can convert electrical energy into storable and transportable hydrogen gas. Under acidic conditions, platinum is the most active and stable monometallic catalyst for the hydrogen evolution reaction (HER). Yet, platinum is rare and needs to be used efficiently. Here, we report a synthesis concept for colloidal bimetallic platinum–ruthenium and rhodium–ruthenium nanoparticles (PtRuNP, RhRuNP) and their incorporation into ordered mesoporous carbon (OMC) films. The films exhibit high surface area, good electrical conductivity and well-dispersed nanoparticles inside the mesopores. The nanoparticles retain their size, crystallinity and composition during carbonization. In the hydrogen evolution reaction (HER), PtRuNP/OMC catalyst films show up to five times higher activity per Pt than Pt/C/Nafion® and PtRu/C/Nafion® reference catalysts. KW - Ordered mesoporous carbon KW - Bimetallic noble metal nanoparticles KW - Platinum-ruthenium colloid KW - Electrolysis KW - Hydrogen evolution reaction PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506868 DO - https://doi.org/10.1039/C9CY02285F SN - 2044-4753 VL - 10 IS - 7 SP - 2057 EP - 2068 PB - Royal Society of Chemistry AN - OPUS4-50686 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Almalla, A. A1 - Hertwig, Andreas A1 - Fischer, Daniel A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia T1 - Development of layer-by-layer assembled thin coatings on aluminium alloy AA2024-T3 for high resolution studies of local corrosion processes N2 - The aim of this study is to develop nanometer-thin epoxy-based films on aluminium alloy AA2024-T3 as a model coating system for high resolution corrosion studies. Spin coating was used for the layer-by-layer (LbL) deposition of poly-(ethylenimine) (PEI) and poly([o-cresyl glycidyl ether]-co-formaldehyde) (CNER) bilayers. The film chemistry and the cross-linking process were characterized by means of Fourier-transform infrared spectroscopy (FTIR). Ellipsometric data confirmed the linear increase of film thickness. The potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) results indicate the improvement of the film barrier properties with increasing film thickness. Mapping of the topography and the volta potential was performed by means of scanning Kelvin probe force microscopy (SKPFM). The results indicate the presence of a homogeneous film structure, while the intermetallic phases can still be identified below the coating. The SKPFM Analysis confirmed that the model films are suitable for investigation of corrosion processes at the coating/metal interface. KW - Spectroscopy KW - Coatings KW - Electrochemistry KW - Microscopy KW - Resins PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514627 DO - https://doi.org/10.1002/app.49826 SN - 0021-8995 VL - 137 IS - 48 SP - e49826-1 EP - e49826-9 PB - Wiley CY - New York, NY AN - OPUS4-51462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Florian, Camilo A1 - Déziel, J.-L. A1 - Kirner, Sabrina V. A1 - Siegel, J. A1 - Bonse, Jörn T1 - The role of the laser-induced oxide layer in the formation of laser-induced periodic surface structures N2 - Laser-induced periodic surface structures (LIPSS) are often present when processing solid targets with linearly polarized ultrashort laser pulses. The different irradiation parameters to produce them on metals, semiconductors and dielectrics have been studied extensively, identifying suitable regimes to tailor its properties for applications in the fields of optics, medicine, fluidics and tribology, to name a few. One important parameter widely present when exposing the samples to the high intensities provided by these laser pulses in air environment, that generally is not considered, is the formation of a superficial laser-induced oxide layer. In this paper, we fabricate LIPSS on a layer of the oxidation prone hard-coating material chromium nitride in order to investigate the impact of the laser-induced oxide layer on its formation. A variety of complementary surface analytic techniques were employed, revealing morphological, chemical and structural characteristics of well-known high-spatial frequency LIPSS (HSFL) together with a new type of low-spatial frequency LIPSS (LSFL) with an anomalous orientation parallel to the laser polarization. Based on this input, we performed finite-difference time-domain calculations considering a layered system resembling the geometry of the HSFL along with the presence of a laser-induced oxide layer. The simulations support a scenario that the new type of LSFL is formed at the interface between the laser-induced oxide layer and the non-altered material underneath. These findings suggest that LSFL structures parallel to the polarization can be easily induced in materials that are prone to oxidation. KW - Laser-induced oxide layer KW - Laser-induced periodic surface structures (LIPSS) KW - Surface chemistry KW - Femtosecond laser processing KW - Nanostructuring PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502530 DO - https://doi.org/10.3390/nano10010147 SN - 2079-4991 VL - 10(1) IS - Special issue "Laser-generated periodic nanostructures" SP - 147-1 EP - 147-18 PB - MDPI CY - Basel AN - OPUS4-50253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cubero, A. A1 - Martínez, E. A1 - Angurel, L.A. A1 - de la Fuente, G.F. A1 - Navarro, R. A1 - Legall, Herbert A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Effects of laser-induced periodic surface structures on the superconducting properties of Niobium N2 - It is well known that the use of ultrashort (fs) pulsed lasers can induce the generation of (quasi-) periodic nanostructures (LIPSS, ripples) on the surface of many materials. Such nanostructures have also been observed in sample’s surfaces irradiated with UV lasers with a pulse duration of 300 ps. In this work, we compare the characteristics of these nanostructures on 1-mm and on 25-μm thick niobium sheets induced by 30 fs n-IR and 300 ps UV pulsed lasers. In addition to conventional continuous or burst mode processing configurations, two-dimensional laser beam and line scanning modes have been investigated in this work. The latter allows the processing of large areas with a more uniform distribution of nanostructures at the surface. The influence of the generated nanostructures on the superconducting properties of niobium has also been explored. For this aim, magnetic hysteresis loops have been measured at different cryogenic temperatures to analyse how these laser treatments affect the flux pinning behaviour and, in consequence, the superconductor’s critical current values. It was observed that laser treatments are able to modify the superconducting properties of niobium samples. T2 - E-MRS Spring Meeting 2019 CY - Nice, France DA - 27.05.2019 KW - Superconductivity KW - Laser-induced periodic surface structures (LIPSS) KW - Niobium PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502541 DO - https://doi.org/10.1016/j.apsusc.2019.145140 SN - 0169-4332 SN - 1873-5584 VL - 508 IS - 1 SP - 145140-1 EP - 145140-7 PB - Elsevier CY - Amsterdam AN - OPUS4-50254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mezera, Marek A1 - Alamri, S. A1 - Hendriks, W. A. P. M. A1 - Hertwig, Andreas A1 - Elert, Anna Maria A1 - Bonse, Jörn A1 - Kunze, T. A1 - Lasagni, A. F. A1 - Römer, G. R. B. E. T1 - Hierarchical micro-/nano-structures on polycarbonate via UV pulsed laser processing N2 - Hierarchical micro/-nanostructures were produced on polycarbonate polymer surfaces by employing a two-step UV-laser processing strategy based on the combination of Direct Laser Interference Patterning (DLIP) of gratings and pillars on the microscale (3 ns, 266 nm, 2 kHz) and subsequently superimposing Laser-induced Periodic Surface Structures (LIPSS; 7–10 ps, 350 nm, 100 kHz) which adds nanoscale surface features. Particular emphasis was laid on the influence of the direction of the laser beam polarization on the morphology of resulting hierarchical surfaces. Scanning electron and atomic force microscopy methods were used for the characterization of the hybrid surface structures. Finite-difference time-domain (FDTD) calculations of the laser intensity distribution on the DLIP structures allowed to address the specific polarization dependence of the LIPSS formation observed in the second processing step. Complementary chemical analyzes by micro-Raman spectroscopy and attenuated total reflection Fourier-transform infrared spectroscopy provided in-depth information on the chemical and structural material modifications and material degradation imposed by the laser processing. It was found that when the linear laser polarization was set perpendicular to the DLIP ridges, LIPSS could be formed on top of various DLIP structures. FDTD calculations showed enhanced optical intensity at the topographic maxima, which can explain the dependency of the morphology of LIPSS on the polarization with respect to the orientation of the DLIP structures. It was also found that the degradation of the polymer was enhanced for increasing accumulated fluence levels. KW - Direct laser interference patterning KW - Laser-induced periodic surface structures (LIPSS) KW - Polycarbonate KW - Hierarchical structures KW - Surface functionalization PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509101 DO - https://doi.org/10.3390/nano10061184 SN - 2079-4991 VL - 10(6) IS - Special issue "Laser-generated periodic nanostructures" SP - 1184-1 EP - 1184-19 PB - MDPI CY - Basel AN - OPUS4-50910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Smales, Glen Jacob A1 - Seitz, H. A1 - Solomun, Tihomir A1 - Sturm, Heinz T1 - Ectoine interaction with DNA: Influence on ultraviolet radiation damage N2 - Ectoine is a small zwitterionic osmolyte and compatible solute, which does not interfere with cell metabolism even at molar concentrations. Plasmid DNA (pUC19) was irradiated with ultraviolet radiation (UV-C at 266 nm) under quasi physiological conditions (PBS) and in pure water in the presence and absence of ectoine (THP(B)) and hydroxyectoine (THP(A)). Different types of UV induced DNA damage were analysed: DNA single-strand breaks (SSBs), abasic sites and cyclobutane pyrimidine dimers (CPDs). A complex interplay between these factors was observed with respect to the nature and occurrence of DNA damage with 266 nm photons. In PBS, the cosolutes showed efficient protection against base damage, whilst in pure water, a dramatic shift from SSB damage to base damage was observed when cosolutes were added. To test whether these effects are caused by ectoine binding to DNA, further experiments were conducted: small-angle X-ray scattering (SAXS), surface-plasmon resonance (SPR) measurements and Raman spectroscopy. The results show, for the first time, a close interaction between ectoine and DNA. This is in stark contrast to the assumption made by preferential exclusion models, which are often used to interpret the behaviour of compatible solutes within cells and with biomolecules. It is tentatively proposed that the alterations of UV damage to DNA are attributed to ectoine influence on nucleobases through the direct interaction between ectoine and DNA. KW - Ectoine KW - DNA KW - Radiation damage KW - Radiation protection KW - SSB KW - DNA damage KW - DNA protection KW - Compatible solute KW - Zwitterion KW - Hydroxyectoine KW - Salt KW - PBS KW - UV absorption KW - DNA strand-break KW - DNA base damage KW - Ectoine UV absorption KW - Ectoine DNA protection KW - Excited states KW - UV irradiation KW - UV-A KW - UV-B KW - UV-C KW - 266nm KW - UV photons KW - Ectoine-DNA binding KW - Raman spectroscopy KW - UV-Vis KW - Radical scavenger KW - OH scavenger KW - Hydroxyl radicals KW - CPD KW - Abasic site KW - Agarose gel electrophorese KW - SYBR gold KW - DNA melting temperature KW - Counterions KW - Preferential exclusion KW - Cancer KW - Therapy KW - UV protection KW - Sunscreen PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505772 DO - https://doi.org/10.1039/d0cp00092b SN - 1463-9076 SN - 1463-9084 VL - 22 IS - 13 SP - 6984 EP - 6992 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-50577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Florian, Camilo A1 - Wonneberger, R. A1 - Undisz, A. A1 - Kirner, Sabrina V. A1 - Wasmuth, Karsten A1 - Spaltmann, Dirk A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Chemical effects during the formation of various types of femtosecond laser-generated surface structures on titanium alloy N2 - In this contribution, chemical, structural, and mechanical alterations in various types of femtosecond laser-generated surface structures, i.e., laser-induced periodic surface structures (LIPSS, ripples), Grooves, and Spikes on titanium alloy, are characterized by various surface analytical techniques, including X-ray diffraction and glow-discharge optical emission spectroscopy. The formation of oxide layers of the different laser-based structures inherently influences the friction and wear performance as demonstrated in oil-lubricated reciprocating sliding tribological tests (RSTTs) along with subsequent elemental mapping by energy-dispersive X-ray analysis. It is revealed that the fs-laser scan processing (790 nm, 30 fs, 1 kHz) of near-wavelength-sized LIPSS leads to the formation of a graded oxide layer extending a few hundreds of nanometers into depth, consisting mainly of amorphous oxides. Other superficial fs-laser-generated structures such as periodic Grooves and irregular Spikes produced at higher fluences and effective number of pulses per unit area present even thicker graded oxide layers that are also suitable for friction reduction and wear resistance. Ultimately, these femtosecond laser-induced nanostructured surface layers efficiently prevent a direct metal-to-metal contact in the RSTT and may act as an anchor layer for specific wear-reducing additives contained in the used engine oil. KW - Laser-induced oxide layer KW - Laser-induced periodic surface strctures (LIPSS) KW - Femtosecond laser processing KW - Tribology KW - Surface processing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505660 DO - https://doi.org/10.1007/s00339-020-3434-7 SN - 0947-8396 SN - 1432-0630 VL - 126 IS - 4 SP - 266 PB - Springer Nature Switzerland AG AN - OPUS4-50566 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lone, S. A. A1 - Muck, M. A1 - Fosodeder, P. A1 - Mardare, C.C. A1 - Florian, Camilo A1 - Weth, A. A1 - Krüger, Jörg A1 - Steinwender, C. A1 - Baumgartner, W. A1 - Bonse, Jörn A1 - Heitz, J. A1 - Hassel, A.W. T1 - Impact of Femtosecond Laser Treatment Accompanied with Anodization of Titanium Alloy on Fibroblast Cell Growth N2 - Herein, Ti6Al4V alloy is surface modified by femtosecond laser ablation. The microstructure image obtained by secondary electron microscopy reveals a combination of micrometer spikes or cones superimposed by nanoripples (laser‐induced periodic surface structures). To make the surface hydrophilic, anodization is performed resulting in further smoothness of microstructure and a final thickness of 35 ± 4 nm is estimated for oxide produced after anodization at 10 V (scan rate = 0.1 V s−1) versus standard hydrogen electrode. The obtained electrochemically active surface area (ECSA) is approximately 8 times larger compared with flat mirror polished Ti6Al4V surface. Combined chemical analysis by Pourbaix diagram and X‐ray photoelectron spectroscopy (XPS) analyses reveal that titanium and aluminum are passivating into TiO2 and Al2O3, but the dissolution of aluminum in the form of solvated ion is inevitable. Finally, cell seeding experiments on anodized and laser‐treated titanium alloy samples show that the growth of murine fibroblast cells is significantly suppressed due to unique surface texture of the laser‐treated and anodized titanium alloy sample. KW - Anodization KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures, LIPSS KW - Ti6Al4V alloys KW - X-ray photoelectron spectroscopy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510263 DO - https://doi.org/https://doi.org/10.1002/pssa.201900838 SN - 1862-6300 SN - 1862-6319 VL - 217 IS - 13 SP - 1900838-1 EP - 1900838-9 PB - WILEY-VCH Verlag CY - Weinheim, Germany AN - OPUS4-51026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fosodeder, P. A1 - Baumgartner, W. A1 - Steinwender, C. A1 - Hassel, A. W. A1 - Florian, Camilo A1 - Bonse, Jörn A1 - Heitz, J. T1 - Repellent rings at titanium cylinders against overgrowth by fibroblasts N2 - The invention of new miniaturized and smart medical implants continues in all medical fields, including miniaturized heart pacemakers. These implants often come with a titanium (Ti) casing, which may have to be removed after several months or years and shall therefore not be completely overgrown by cells or scar tissue after implantation. Scar tissue is mainly formed by fibroblast cells and extracellular matrix proteins like collagen produced by them. Suppression of fibroblast growth at Ti surfaces could be achieved by 800 nm femtosecond laser-ablation creating self-organized sharp spikes with dimensions in the 10 μm-range which are superposed by fine sub-μm parallel ripples. On flat Ti control samples, the best results regarding suppression of cell growth were obtained on spike-structures which were additionally electrochemically anodized under acidic conditions. When Ti cylinders with a diameter of 8 mm (similar as the pacemakers) were placed upright in a culture of murine fibroblasts, a multi-layer cell growth up to a height of at least 1.5 mm occurred within 19–22 days. We have demonstrated that a laser-structured and anodized ring around the Ti cylinder surface is an effective way to create a barrier that murine fibroblasts were not able to overgrow within this time. KW - Cell-repellent surfaces KW - Femtosecond laser-processing KW - Electrochemical treatment KW - Laser-induced micro- and nanostructures KW - Medical implants PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509966 DO - https://doi.org/10.1515/aot-2019-0070 SN - 2193-8576 SN - 2193-8584 VL - 9 IS - 3 (Topical issue: Laser micro- and nano-material processing - Part 2) SP - 113 EP - 120 PB - De Gruyter CY - Berlin AN - OPUS4-50996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam A1 - Silbernagl, Dorothee A1 - Rautenberg, Max A1 - Schmid, Thomas A1 - Feiler, Torvid A1 - Reimann, K. A1 - Ghalgaoui, A. A1 - Sturm, Heinz A1 - Paulus, B. A1 - Emmerling, Franziska T1 - A Mechanistic Perspective on Plastically Flexible Coordination Polymers N2 - Mechanical flexibility in single crystals of covalently bound materials is a fascinating and poorly understood phenomenon. We present here the first example of a plastically flexible one-dimensional (1D) coordination polymer. The compound [Zn(m-Cl)2(3,5-dichloropyridine)2]n is flexible over two crystallographic faces. Remarkably, the single crystal remains intact when bent to 1808. A combination of microscopy, diffraction, and spectroscopic studies have been used to probe the structural response of the crystal lattice to mechanical bending. Deformation of the covalent polymer chains does not appear to be responsible for the observed macroscopic bending. Instead, our results suggest that mechanical bending occurs by displacement of the coordination polymer chains. Based on experimental and theoretical evidence, we propose a new model for mechanical flexibility in 1D coordination polymers. Moreover, our calculations propose a cause of the different mechanical properties of this compound and a structurally similar elastic material KW - Coordination polymer KW - Flexible crystals KW - Mechanical properties KW - Plastic deformation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504755 DO - https://doi.org/10.1002/anie.201914798 VL - 59 IS - 14 SP - 5557 EP - 5561 PB - Wiley-VCH AN - OPUS4-50475 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Solomun, Tihomir A1 - Hahn, Marc Benjamin A1 - Smiatek, J. T1 - Raman spectroscopic signature of ectoine conformations in bulk solution and crystalline state N2 - Recent crystallographic results revealed conformational changes of zwitterionic ectoine upon hydration. By means of confocal Raman spectroscopy and density functional theory calculations, we present a detailed study of this transformation process as part of a Fermi resonance analysis. The corresponding findings highlight that all resonant couplings are lifted upon exposure to water vapor as a consequence of molecular binding processes. The importance of the involved molecular groups for water binding and conformational changes upon hydration is discussed. Our approach further Shows that the underlying rapid process can be reversed by carbon dioxide saturated atmospheres. For the first time, we also confirm that the conformational state of ectoine in aqueous bulk solution coincides with crystalline ectoine in its dihydrate state, thereby highlighting the important role of a few bound water molecules. KW - Fermi resonance KW - Ectoine hydration KW - DFT calculations of Raman spectra KW - Position of carboxylate group PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509855 DO - https://doi.org/10.1002/cphc.202000457 SN - 1439-4235 SN - 1439-7641 VL - 21 IS - 17 SP - 1945 EP - 1950 PB - Wiley-VCH CY - Weinheim AN - OPUS4-50985 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - X-ray radiation protection aspects during ultrashort laser processing N2 - Ultrashort pulse laser processing of materials allows for precise machining with high accuracy. By increasing the repetition rate to several 100 kHz, laser machining becomes quick and cost-effective. Ultrafast laser processing at high repetition rates and peak intensities above 10^13 W/cm^2 can cause a potential hazard by generation of unwanted x-ray radiation. Therefore, radiation protection must be considered. For 925 fs pulse duration at a center wavelength of 1030 nm, the x-ray emission in air at a repetition rate of 400 kHz was investigated up to a peak intensity of 2.6 × 10^14 W/cm^2. Based on the presented measurements, the properties of potential shielding materials will be discussed. By extending our previous works, a scaling of the x-ray radiation emission to higher peak intensities up to 10^15 W/cm^2 is described, and emitted x-ray doses are predicted. KW - Laser ablation KW - Ultrashort pulse laser processing KW - Laser-induced x-ray emission KW - Radiation protection PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505677 DO - https://doi.org/10.2351/1.5134778 VL - 32 IS - 2 SP - 022004 AN - OPUS4-50567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Spaltmann, Dirk T1 - Editorial: Special issue "Laser-induced periodic surface nano- and microstructures for tribological applications" N2 - Laser material processing is an emerging technology that generates surface functionalities on the basis of optical, mechanical, or chemical properties. In the form of laser surface texturing (LST), it has attracted a remarkable amount of research to tailor surface properties towards various tribological applications. The main advantages of this single-step, laser-based technology are the contactless machining, featuring a high flexibility, efficiency, and speed, along with the excellent quality of the processed products. LST can be applied precisely localized to sub-micrometric areas, but, via laser beam scanning, it is also feasible for structuring large surface areas at the square meter size. This Special Issue focuses on the latest developments concerning the tribological performance of laser-generated periodic surface nano- and microstructures and their applications. This includes the laser-based processing of different surface patterns, such as “self-organized” laser-induced periodic surface structures (LIPSS, ripples), grooves, micro-spikes, hierarchical hybrid nano-/micro-structures, microfeatures generated by direct laser interference patterning (DLIP), or even dimples or other topographic geometries shaped by direct laser modification or ablation. The applications of these periodically nano- and micro-patterned surfaces may improve the lubricated or non-lubricated tribological performance of surfaces in conformal and even non-conformal contact through a reduction of wear, a variation of the coefficient of friction, altered load carrying capacity, etc., resulting in energy saving, improved reliability, increased lifetimes as well as durability, leading in turn to extended maintenance intervals/reduced down-time. This can be beneficial in terms of bearings, gears, engines, seals, cutting tools, or other tribological components. Fundamental aspects addressed may involve the investigation of the relevant physical and chemical effects accompanying the laser-generated nano- and microscale topographies, such as alterations of the material structures, the hardness, superficial oxidation, the role of additives contained in lubricants, surface wettability, micro-hydrodynamic effects, etc. For this Special Issue we aim to attract both academic and industrial researchers and would like to provide a bridge between research in the fields of tribology and laser material processing in order to foster the current knowledge and present new ideas for future applications and new technologies. KW - Laser-induced periodic surface structures (LIPSS) KW - Tribology KW - Applications KW - Wear KW - Friction PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505948 DO - https://doi.org/10.3390/lubricants8030034 SN - 2075-4442 VL - 8 IS - 3 SP - 34, 1 EP - 34, 3 PB - MDPI CY - Basel AN - OPUS4-50594 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Gräf, S. T1 - Maxwell Meets Marangoni — A Review of Theories on Laser‐Induced Periodic Surface Structures N2 - Surface nanostructuring enables the manipulation of many essential surface properties. With the recent rapid advancements in laser technology, a contactless large‐area processing at rates of up to m2 s−1 becomes feasible that allows new industrial applications in medicine, optics, tribology, biology, etc. On the other hand, the last two decades enable extremely successful and intense research in the field of so‐called laser‐induced periodic surface structures (LIPSS, ripples). Different types of these structures featuring periods of hundreds of nanometers only—far beyond the optical diffraction limit—up to several micrometers are easily manufactured in a single‐step process and can be widely controlled by a proper choice of the laser processing conditions. From a theoretical point of view, however, a vivid and very controversial debate emerges, whether LIPSS originate from electromagnetic effects or are caused by matter reorganization. This article aims to close a gap in the available literature on LIPSS by reviewing the currently existent theories of LIPSS along with their numerical implementations and by providing a comparison and critical assessment of these approaches. KW - Laser-induced periodic surface structures (LIPSS) KW - Electromagnetic theories KW - Matter reorganization theories KW - Surface plasmon polaritons KW - Self-organization PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514089 DO - https://doi.org/10.1002/lpor.202000215 SN - 1863-8899 VL - 14 IS - 10 SP - 2000215-1 EP - 2000215-25 PB - Wiley CY - Berlin AN - OPUS4-51408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fortini, Renata A1 - Meyer-Plath, A. A1 - Kehren, D. A1 - Gernert, U. A1 - Agudo Jácome, Leonardo A1 - Sturm, Heinz T1 - Measurement of flexural rigidity of multi-walled carbon nanotubes by Dynamic Scanning Electron Microscopy N2 - In this work the flexural rigidity of individual large diameter multi-walled carbon nanotubes (MWCNTs) was investigated. The bending modulus were obtained by detecting the resonance frequencies of mechanically excited cantilevered carbon nanotubes using the so-called dynamic scanning electron microscopy technique, and applying the Euler–Bernoulli beam theory. For the nanotubes studied, we determined a modulus of up to 160 GPa. This agrees with values reported by other authors for MWCNTs produced by catalytic chemical vapor deposition, however, it is 6-8 times smaller than values reported for single and multi-walled carbon nanotubes produced by arc-discharge synthesis. Toxicological studies with carbon nanotubes have been showing that inhaled airborne nanofibers that reach the deep airways of the respiratory system may lead to serious, asbestos-like lung diseases. These studies suggested that their toxicity critically depends on the fiber flexural rigidity, with high rigidity causing cell lesions. To complement the correlation between observed toxicological effects and fiber rigidities, reliable and routinely applicable measurement techniques for the flexural rigidity of nanofibers are required. KW - Flexural rigidity KW - Bending modulus KW - Resonance frequency KW - Carbon nanotubes KW - Fiber toxicology PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514190 DO - https://doi.org/10.3390/fib8050031 SN - 2079-6439 VL - 8 IS - 5 SP - 31 PB - MDPI AN - OPUS4-51419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn T1 - Quo vadis LIPSS? - Recent and future trends on laser-induced periodic surface structures N2 - Nanotechnology and lasers are among the most successful and active fields of research and technology that have boomed during the past two decades. Many improvements are based on the controlled manufacturing of nanostructures that enable tailored material functionalization for a wide range of industrial applications, electronics, medicine, etc., and have already found entry into our daily life. One appealing approach for manufacturing such nanostructures in a flexible, robust, rapid, and contactless one-step process is based on the generation of laser-induced periodic surface structures (LIPSS). This Perspectives article analyzes the footprint of the research area of LIPSS on the basis of a detailed literature search, provides a brief overview on its current trends, describes the European funding strategies within the Horizon 2020 programme, and outlines promising future directions. KW - Laser-induced periodic surface structures (LIPSS) KW - Direct laser interference patterning (DLIP) KW - Surface functionalization KW - Literature survey KW - European funding strategies PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513530 DO - https://doi.org/10.3390/nano10101950 SN - 2079-4991 VL - 10 IS - 10 SP - 1950-1 EP - 1950-19 PB - MDPI CY - Basel AN - OPUS4-51353 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cubero, A. A1 - Martínez, E. A1 - Angurel, L.A. A1 - de la Fuente, G.F. A1 - Navarro, R. A1 - Legall, Herbert A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Surface superconductivity changes of niobium sheets by femtosecond laser-induced periodic nanostructures N2 - Irradiation with ultra-short (femtosecond) laser beams enables the generation of sub-wavelength laser-induced periodic surface structures (LIPSS) over large areas with controlled spatial periodicity, orientation, and depths affecting only a material layer on the sub-micrometer scale. This study reports on how fs-laser irradiation of commercially available Nb foil samples affects their superconducting behavior. DC magnetization and AC susceptibility measurements at cryogenic temperatures and with magnetic fields of different amplitude and orientation are thus analyzed and reported. This study pays special attention to the surface superconducting layer that persists above the upper critical magnetic field strength Hc2, and disappears at a higher nucleation field strength Hc3. Characteristic changes were distinguished between the surface properties of the laser-irradiated samples, as compared to the corresponding reference samples (non-irradiated). Clear correlations have been observed between the surface nanostructures and the nucleation field Hc3, which depends on the relative orientation of the magnetic field and the surface patterns developed by the laser irradiation. KW - Niobium KW - Surface superconductivity KW - Laser-induced periodic surface structures (LIPSS) KW - Nanostructures PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518462 DO - https://doi.org/10.3390/nano10122525 SN - 2079-4991 VL - 10(12) IS - Special issue "Laser-generated periodic nanostructures" SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-51846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sänger, Johanna Christiane A1 - Pauw, Brian Richard A1 - Sturm, Heinz A1 - Günster, Jens T1 - First time additively manufactured advanced ceramics by using two-photon polymerization for powder processing N2 - Methods and materials are presented here, which enable the manufacturing of fine structures using a 3D-printing method known as two-photon polymerization (2PP). As traditional photolithography methods for structuring ceramic slurries do not function with 2PP, due to light scattering on ceramic particles, a novel water-based photoresist with high ceramic loading of extremely well dispersed ceramic nano particles was developed. This photoresist is basically a ceramic slurry containing a photocurable agent and a photoinitiator to be crosslinkable with the 780 nm wavelength femtosecond laser light source of the 2PP machine. It is demonstrated that it is possible to gain a highly transparent and low viscous slurry suitable for 2PP processing. This work shows the development of the slurry, first printing results and the post-printing processes required to form three dimensional ceramic microstructures consisting of alumina toughened zirconia (ATZ). KW - 3D-printing KW - Two-photon polymerization KW - 2PP KW - Ceramic nano particles KW - Slurry KW - Alumina toughened zirconia KW - ATZ KW - Additive manufacturing KW - SchwarzP cells KW - Nano-ceramic-additive-manufacturing photoresin KW - NanoCAM PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517441 DO - https://doi.org/10.1016/j.oceram.2020.100040 VL - 4 SP - 100040 PB - Elsevier Ltd. AN - OPUS4-51744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zirnstein, Benjamin A1 - Schulze, Dietmar A1 - Schartel, Bernhard T1 - Combination of phosphorous flame retardants and aluminum trihydrate in multicomponent EPDM composites N2 - Ethylene propylene diene monomer (EPDM) Rubbers with the flame retardants tris(2-ethylhexyl)phosphate, ammonium polyphosphate, polyaniline, and aluminum trihydroxide were prepared and analyzed in this study. The homogenous dispersion of the fillers in the rubber matrix was confirmed by scanning electron microscope. To investigate the interplay of the different flame retardants, the flame retardants were varied systematically. The comprehensive study sought combinations of flame retardants that allow high loadings of flame retardants without deterioration of the physical and mechanical properties of the EPDM rubber. The eight EPDM rubbers were investigated via thermogravimetric analysis and pyrolysis gas chromatography coupled with a mass spectrometer (Py GC/MS) to investigate the potential synergistic effects. In the Py-GC/MS experiments, 27 pyrolysis products were identified. Furthermore, UL 94, limiting oxygen index, FMVSS 302, glow wire tests, and cone calorimeter tests were carried out. In the cone calorimeter test the EPDM rubbers R-1AP and R-1/2P achieved an increase in residue at flameout of 76% and a reduction in total heat evolved of about 35%. Furthermore, the compounds R-1AP and R-1/2P achieved a reduction in MARHE to about 150 kW m−1, a reduction of over 50% compared to the unprotected rubber R. KW - EPDM KW - Rubber KW - Aluminum hydroxide (ATH) KW - Phosphorous flame retardant PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502859 DO - https://doi.org/10.1002/pen.25280 SN - 1548-2634 VL - 60 IS - 2 SP - 267 EP - 280 PB - Wiley AN - OPUS4-50285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cao, L. A1 - Thome, P. A1 - Agudo Jácome, Leonardo A1 - Somsen, C. A1 - Cailletaud, G. A1 - Eggeler, G. T1 - On the influence of crystallography on creep of circular notched single crystal superalloy specimens N2 - The present work contributes to a better understanding of the effect of stress multiaxiality on the creep behavior of single crystal Ni-base superalloys. For this purpose we studied the creep deformation and rupture behavior of double notched miniature creep tensile specimens loaded in three crystallographic directions [100], [110] and [111] (creep conditions: 950 °C and 400 MPa net section stress). Crystal plasticity finite element method (CPFEM) was used to analyze the creep stress and strain distributions during creep. Double notched specimens have the advantage that when one notch fails, the other is still intact and allows to study a material state which is close to rupture. No notch root cracking was observed, while microstructural damage (pores and micro cracks) were frequently observed in the center of the notch root region. This is in agreement with the FEM results (high axial stress and high hydrostatic stress in the center of the notched specimen). Twinning was observed in the notch regions of [110] and [111] specimens, and <112> {111} twins were detected and analyzed using orientation imaging scanning electron microscopy. The present work shows that high lattice rotations can be detected in SXs after creep fracture, but they are associated with the high strains accumulated in the final rupture event. KW - Single crystal Ni-Base superalloys KW - Double notched creep specimen KW - Stress distribution KW - Lattice rotation KW - Cracks PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506060 DO - https://doi.org/10.1016/j.msea.2020.139255 SN - 0921-5093 VL - 782 SP - 139255 PB - Elsevier B. V. AN - OPUS4-50606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Schönauer-Kamin, D. A1 - Moos, R. A1 - Reimann, T. A1 - Giovannelli, F. A1 - Rabe, Torsten T1 - Influence of pressure and dwell time on pressure‐assisted sintering of calcium cobaltite N2 - Calcium cobaltite Ca3Co4O9, abbreviated Co349, is a promising thermoelectric material for high‐temperature applications in air. Its anisotropic properties can be assigned to polycrystalline parts by texturing. Tape casting and pressure‐assisted sintering (PAS) are a possible future way for a cost‐effective mass‐production of thermoelectric generators. This study examines the influence of pressure and dwell time during PAS at 900°C of tape‐cast Co349 on texture and thermoelectric properties. Tape casting aligns lentoid Co349. PAS results in a textured Co349 microstructure with the thermoelectrically favorable ab‐direction perpendicular to the pressing direction. By pressure variation during sintering, the microstructure of Co349 can be tailored either toward a maximum figure of merit as required for energy harvesting or toward a maximum power factor as required for energy harvesting. Moderate pressure of 2.5 MPa results in 25% porosity and a textured microstructure with a figure of merit of 0.13 at 700°C, two times higher than the dry‐pressed, pressureless‐sintered reference. A pressure of 7.5 MPa leads to 94% density and a high power factor of 326 µW/mK2 at 800°C, which is 11 times higher than the dry‐pressed reference (30 MPa) from the same powder. KW - Hot pressing KW - Texture KW - Thermoelectric properties PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515973 DO - https://doi.org/https://doi.org/10.1111/jace.17541 SN - 0002-7820 VL - 104 IS - 2 SP - 917 EP - 927 PB - Wiley Periodicals LLC AN - OPUS4-51597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tomiak, F. A1 - Schartel, Bernhard A1 - Wolf, M. A1 - Drummer, D. T1 - Particle Size Related Effects of Multi-Component Flame-Retardant Systems in poly(butadiene terephthalate) N2 - Aluminum tris (diethylphosphinate) (AlPi) is known to have an efficient flame-retardant effect when used in poly(butadiene terephthalates) (PBT). Additionally, better flame-retardant effects can be achieved through the partial substitution of AlPi by boehmite in multi-component systems, which have been shown to be an effective synergist due to cooling effects and residue formation. Although the potential of beneficial effects is generally well known, the influence of particle sizes and behavior in synergistic compositions are still unknown. Within this paper, it is shown that the synergistic effects in flammability measured by limiting oxygen index (LOI) can vary depending on the particle size distribution used in PBT. In conducting thermogravimetric analysis (TGA) measurements, it was observed that smaller boehmite particles result in slightly increased char yields, most probably due to increased reactivity of the metal oxides formed, and they react slightly earlier than larger boehmite particles. This leads to an earlier release of water into the system enhancing the hydrolysis of PBT. Supported by Fourier transformation infrared spectroscopy (FTIR), we propose that the later reactions of the larger boehmite particles decrease the portion of highly flammable tetrahydrofuran in the gas phase within early burning stages. Therefore, the LOI index increased by 4 vol.% when lager boehmite particles were used for the synergistic mixture. KW - Flame retardants KW - Aluminum diethylphosphinate KW - Boehmite KW - Poly(butadiene terephthalates) (PBT) KW - Mechanical properties PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509286 DO - https://doi.org/10.3390/polym12061315 SN - 2073-4360 VL - 12 IS - 6 SP - 1315 PB - MDPI AN - OPUS4-50928 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Günther, Martin A1 - Levchik, S. V. A1 - Schartel, Bernhard T1 - Bubbles and collapses: Fire phenomena of flame-retarded flexible polyurethane foams N2 - Flexible polyurethane foams (FPUF) are easy to ignite and exhibit rapid flame spread. In this paper, the fire phenomena of two standard foam formulations containing tris (1,3-dichloro-2-propyl) phosphate (FR-2) and a halogen-freepoly (ethyl ethylene phosphate) (PNX), respectively, as flame retardants are compared. A multimethodological approach is proposed which combines standard fire tests as well as new investigatory approaches. The thermophysical properties of the foams were determined by thermogravimetric analysis (TG), reaction to small flames was studied by means of the limiting oxygen index (LOI) and UL 94 HBF test, and the burning behavior was investigated with the cone calorimeter. Further, temperature development in burning cone calorimeter samples was monitored using thermocouples, and rheological measurements were performed on pyrolyzed material, delivering insight into the dripping behavior of the foams. This paper gives comprehensive insight into the fire phenomena of flame-retarded FPUFs that are driven by the two-step decomposition behavior of the foams. LOI and UL 94 HBF tests showed a reduced flammability and reduced tendency to drip for the flame-retarded foams. TG and cone calorimeter measurements revealed that the two-step decomposition behavior causes two stages during combustion, namely structural collapse and pool fire. The flame-retardant mode of action was identified to take place primarily during the foam collapse and be based mainly on flame inhibition. However, some condensed-phase action was been measured, leading to significantly increased melt viscosity and improved dripping behavior for foams containing PNX. KW - Burning behavior KW - Flame retardant KW - Flexible PU foam PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512145 DO - https://doi.org/10.1002/pat.4939 SN - 1042-7147 SN - 1099-1581 VL - 31 IS - 10 SP - 2185 EP - 2198 PB - Wiley Online Libary AN - OPUS4-51214 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pu, Y. A1 - Lawrence, M. J. A1 - Celorrio, V. A1 - Wang, Q. A1 - Gu, M. A1 - Sun, Z. A1 - Agudo Jácome, Leonardo A1 - Russell, A. E. A1 - Huang, L. A1 - Rodriguez, P. T1 - Nickel confined in 2D earth-abundant oxide layers for highly efficient and durable oxygen evolution catalysts N2 - Low cost, high-efficiency catalysts towards water splitting are urgently required to fulfil the increasing demand for energy. In this work, low-loading (<20 wt%) Ni-confined in layered metal oxide anode catalysts (birnessite and lepidocrocite titanate) have been synthesized by facile ion exchange methodology and subjected to systematic electrochemical studies. It was found that Ni-intercalated on K-rich birnessite (Ni-KMO) presents an onset overpotential (ηonset) as low as 100 mV and overpotential at 10 mA cm−2 (η10) of 206 mV in pH = 14 electrolyte. By combining electrochemical methods and X-ray absorption and emission spectroscopies (XAS and XES), we demonstrate Ni sites are the active sites for OER catalysis and that the Mn3+ sites facilitate Ni intercalation during the ion-exchange process, but display no observable contribution towards OER activity. The effect of the pH and the nature of the supporting electrolyte on the electrochemical performance was also evaluated. KW - Confined catalyst KW - Low-loading KW - Layered manganese oxide KW - Oxygen evolution reaction KW - Transmission electron microscopy (TEM) PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515027 DO - https://doi.org/10.1039/D0TA04031B SN - 2050-7496 SN - 2050-7488 VL - 8 IS - 26 SP - 13340 EP - 13350 PB - Royal Society of Chemistry CY - London AN - OPUS4-51502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roesch, Philipp A1 - Vogel, Christian A1 - Simon, Franz-Georg T1 - Reductive Defluorination and Mechanochemical Decomposition of Per- and Polyfluoroalkyl Substances (PFASs): From Present Knowledge to Future Remediation Concepts N2 - Over the past two decades, per- and polyfluoroalkyl substances (PFASs) have emerged as worldwide environmental contaminants, calling out for sophisticated treatment, decomposition and remediation strategies. In order to mineralize PFAS pollutants, the incineration of contaminated material is a state-of-the-art process, but more cost-effective and sustainable technologies are inevitable for the future. Within this review, various methods for the reductive defluorination of PFASs were inspected. In addition to this, the role of mechanochemistry is highlighted with regard to its major potential in reductive defluorination reactions and degradation of pollutants. In order to get a comprehensive understanding of the involved reactions, their mechanistic pathways are pointed out. Comparisons between existing PFAS decomposition reactions and reductive approaches are discussed in detail, regarding their applicability in possible remediation processes. This article provides a solid overview of the most recent research methods and offers guidelines for future research directions. KW - PFAS KW - Reductive defluorination KW - Reductive decomposition KW - Mechanochemistry KW - Remediation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513811 DO - https://doi.org/10.3390/ijerph17197242 VL - 17 IS - 19 SP - 1 EP - 22 PB - MDPI AG CY - Basel AN - OPUS4-51381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gehrenkemper, Lennart A1 - Simon, Fabian A1 - Roesch, Philipp A1 - Fischer, E. A1 - von der Au, Marcus A1 - Pfeifer, Jens A1 - Cossmer, Antje A1 - Wittwer, Philipp A1 - Vogel, Christian A1 - Simon, Franz-Georg A1 - Meermann, Björn T1 - Determination of organically bound fluorine sum parameters in river water samples - Comparison of combustion ion chromatography (CIC) and high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) N2 - In this study, we compare combustion ion chromatography (CIC) and high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) with respect to their applicability for determining organically Bound fluorine sum parameters. Extractable (EOF) and adsorbable (AOF) organically bound fluorine as well as total fluorine (TF) were measured in samples fromriver Spree in Berlin, Germany, to reveal the advantages and disadvantages of the two techniques used as well as the two established fluorine sum Parameters AOF and EOF. TF concentrations determined via HR-CS-GFMAS and CIC were comparable between 148 and 270 μg/L. On average, AOF concentrations were higher than EOF concentrations, with AOF making up 0.14–0.81% of TF (determined using CIC) and EOF 0.04–0.28% of TF (determined using HR-CSGFMAS). The results obtained by the two independent methods were in good agreement. It turned out that HR-CS-GFMAS is a more sensitive and precise method for fluorine analysis compared to CIC. EOF and AOF are comparable tools in Risk evaluation for the emerging pollutants per- and polyfluorinated alkyl substances; however, EOF is much faster to conduct. KW - High resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) KW - Combustion ion chromatography (CIC) KW - Per- and polyfluorinated alkyl substances (PFASs) KW - Adsorbable organically bound fluorine (AOF) KW - Extractable organically bound fluorine (EOF) KW - Surface waters PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515351 DO - https://doi.org/10.1007/s00216-020-03010-y SN - 1618-2650 VL - 413 IS - 28 SP - 103 EP - 115 PB - Springer CY - Berlin AN - OPUS4-51535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Hoffmann, Marie A1 - Krüger, O. A1 - Murzin, V. A1 - Caliebe, W. A1 - Adam, Christian T1 - Chromium (VI) in phosphorus fertilizers determined with the diffusive gradients in thin-films (DGT) technique N2 - Phosphorus (P) fertilizers from secondary resources became increasingly important in the last years. However, these novel P-fertilizers can also contain toxic pollutants such as chromium in its hexavalent state (Cr(VI)). This hazardous form of chromium is therefore regulated with low limit values for agricultural products even though the correct determination of Cr(VI) in these fertilizers may be hampered by redox processes, leading to false results. Thus, we applied the novel diffusive gradients in thin-films (DGT) technique for Cr(VI) in fertilizers and compared the results with the standard wet chemical extraction method (German norm DIN EN 15192) and Cr K-edge X-ray Absorption near-edge structure (XANES) spectroscopy. We determined an overall good correlation between the wet chemical extraction and the DGT method. DGT was very sensitive and for most tested materials selective for the analysis of Cr(VI) in P-fertilizers. However, hardly soluble Cr(VI) compounds cannot be detected with the DGT method since only mobile Cr(VI) is analyzed. Furthermore, Cr K-edge XANES spectroscopy showed that the DGT binding layer also adsorbs small amounts of mobile Cr(III) so that Cr(VI) values are overestimated. Since certain types of the P fertilizers contain mobile Cr(III) or partly immobile Cr(VI), it is necessary to optimize the DGT binding layers to avoid aforementioned over- or underestimation. Furthermore, our investigations showed that the Cr K-edge XANES spectroscopy technique is unsuitable to determine small amounts of Cr(VI) in fertilizers (below approx. 1% of Cr(VI) in relation to total Cr). KW - Phosphorus fertilizer KW - Sewage sludge ash KW - Diffusive Gradients in thin films (DGT) KW - Chemical extraction KW - XANES spectroscopy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509578 DO - https://doi.org/10.1007/s11356-020-08761-w SN - 0944-1344 VL - 27 SP - 24320 EP - 24328 PB - Springer AN - OPUS4-50957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Varadarajan, A. A1 - Allan, R. A1 - Valentin, J. A1 - Castañeda Ocampo, O. A1 - Somerville, V. A1 - Buhmann, M. A1 - West, J. A1 - Skipp, Paul A1 - van der Mei, H. A1 - Ren, Q. A1 - Schreiber, Frank A1 - Webb, J. A1 - Pietsch, Franziska A1 - Ahrens, C. T1 - An integrated model system to gain mechanistic insights into biofilm-associated antimicrobial resistance in Pseudomonas aeruginosa MPAO1 N2 - Pseudomonas aeruginosa MPAO1 is the parental strain of the widely utilized transposon mutant collection for this important clinical pathogen. Here, we validate a model system to identify genes involved in biofilm growth and biofilm-associated antibiotic resistance. Our model employs a genomics-driven workflow to assemble the complete MPAO1 genome, identify unique and conserved genes by comparative genomics with the PAO1 reference strain and genes missed within existing assemblies by proteogenomics. Among over 200 unique MPAO1 genes, we identified six general essential genes that were overlooked when mapping public Tn-seq data sets against PAO1, including an antitoxin. Genomic data were integrated with phenotypic data from an experimental workflow using a user-friendly, soft lithography-based microfluidic flow chamber for biofilm growth and a screen with the Tn-mutant library in microtiter plates. The screen identified hitherto unknown genes involved in biofilm growth and antibiotic resistance. Experiments conducted with the flow chamber across three laboratories delivered reproducible data on P. aeruginosa biofilms and validated the function of both known genes and genes identified in the Tn-mutant screens. Differential Protein abundance data from planktonic cells versus biofilm confirmed the upregulation of candidates known to affect biofilm formation, of structural and secreted proteins of type VI secretion systems, and provided proteogenomic evidence for some missed MPAO1 genes. This integrated, broadly applicable model promises to improve the mechanistic understanding of biofilm formation, antimicrobial tolerance, and resistance evolution in biofilms. KW - Biofilms PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515108 DO - https://doi.org/10.1038/s41522-020-00154-8 VL - 6 IS - 1 SP - Article number: 46 PB - Springer Nature CY - Singapore AN - OPUS4-51510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pietsch, Franziska A1 - O'Neill, A. J. A1 - Ivask, A. A1 - Jenssen, H. A1 - Inkinen, J. A1 - Kahru, A. A1 - Ahonen, M. A1 - Schreiber, Frank T1 - Selection of resistance by antimicrobial coatings in the healthcare setting N2 - Antimicrobial touch surfaces have been introduced in healthcare settings with the aim of supporting existing hygiene procedures, and to help combat the increasing threat of antimicrobial resistance. However, concerns have been raised over the potential selection pressure exerted by such surfaces, which may drive the evolution and spread of antimicrobial resistance. This review highlights studies that indicate risks associated with resistance on antimicrobial surfaces by different processes, including evolution by de-novo mutation and horizontal gene transfer, and species sorting of inherently resistant bacteria dispersed on to antimicrobial surfaces. The review focuses on antimicrobial surfaces made of copper, silver and antimicrobial peptides because of the practical application of copper and silver, and the promising characteristics of antimicrobial peptides. The available data point to a potential for resistance selection and a subsequent increase in resistant strains via cross-resistance and co-resistance conferred by metal and antibiotic resistance traits. However, translational studies describing the development of resistance to antimicrobial touch surfaces in healthcare-related environments are rare, and will be needed to assess whether and how antimicrobial surfaces lead to resistance selection in These settings. Such studies will need to consider numerous variables, including the antimicrobial concentrations present in coatings, the occurrence of biofilms on surfaces, and the humidity relevant to dry-surface environments. On-site tests on the efficacy of antimicrobial Coatings should routinely evaluate the risk of selection associated with their use. KW - Antimicrobial resistance KW - Antimicrobial coating KW - Touch surfaces KW - Healthcare KW - Infections KW - COST action CA15114 AMICI PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510926 DO - https://doi.org/10.1016/j.jhin.2020.06.006 SN - 0195-6701 VL - 106 IS - 1 SP - 115 EP - 125 PB - Elsevier Ltd AN - OPUS4-51092 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brangsch, J. A1 - Reimann, C. A1 - Kaufmann, Jan Ole A1 - Adams, L. C. A1 - Onthank, D. A1 - Thöne-Reineke, C. A1 - Robinson, S. A1 - Ponader, Marco A1 - Weller, Michael G. A1 - Buchholz, R. A1 - Karst, U. A1 - Botnar, R. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Molecular MR-Imaging for Noninvasive Quantification of the Anti-Inflammatory Effect of Targeting Interleukin-1β in a Mouse Model of Aortic Aneurysm N2 - Background: Molecular-MRI is a promising imaging modality for the assessment of abdominal aortic aneurysms (AAAs). Interleukin-1β (IL-1β) represents a new therapeutic tool for AAA-treatment, since pro-inflammatory cytokines are key-mediators of inflammation. This study investigates the potential of molecular-MRI to evaluate therapeutic effects of an anti-IL-1β-therapy on AAA-formation in a mouse-model. Methods: Osmotic-minipumps were implanted in apolipoprotein-deficient-mice (N = 27). One group (Ang-II+01BSUR group, n = 9) was infused with angiotensin-II (Ang-II) for 4 weeks and received an anti-murine IL-1β-antibody (01BSUR) 3 times. One group (Ang-II-group, n = 9) was infused with Ang-II for 4 weeks but received no treatment. Control-group (n = 9) was infused with saline and received no treatment. MR-imaging was performed using an elastin-specific gadolinium-based-probe (0.2 mmol/kg). Results: Mice of the Ang-II+01BSUR-group showed a lower aortic-diameter compared to mice of the Ang-II-group and control mice (p < 0.05). Using the elastin-specific-probe, a significant decrease in elastin-destruction was observed in mice of the Ang-II+01BSUR-group. In vivo MR-measurements correlated well with histopathology (y = 0.34x-13.81, R2 = 0.84, p < 0.05), ICP-MS (y = 0.02x+2.39; R2 = 0.81, p < 0.05) and LA-ICP-MS. Immunofluorescence and western-blotting confirmed a reduced IL-1β-expression. Conclusions: Molecular-MRI enables the early visualization and quantification of the anti-inflammatory-effects of an IL-1β-inhibitor in a mouse-model of AAAs. Responders and non-responders could be identified early after the initiation of the therapy using molecular-MRI. KW - Cardiovascular KW - Molecular-MRI KW - Magnetic resonance imaging KW - Gadolinium-based contrast agent KW - Elastin-specific contrast agent ESMA KW - Gadovist KW - Gadofosveset KW - MR Angiography KW - Inductively Coupled Mass Spectroscopy KW - Element Specific Bioimaging Using Laser Ablation KW - Visualization PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517150 DO - https://doi.org/10.1177/1536012120961875 N1 - Geburtsname von Ponader, Marco: Wilke, M. - Birth name of Ponader, Marco: Wilke, M. VL - 19 SP - 61875 PB - SAGE AN - OPUS4-51715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goedecke, Caroline A1 - Dittmann, Daniel A1 - Eisentraut, Paul A1 - Wiesner, Yosri A1 - Schartel, Bernhard A1 - Klack, Patrick A1 - Braun, Ulrike T1 - Evaluation of thermoanalytical methods equipped with evolved gas analysis for the detection of microplastic in environmental samples N2 - Microplastic particles are currently detected in almost all environmental compartments. The results of detection vary widely, as a multitude of very different methods are used with very different requirements for analytical validity. In this work four thermoanalytical methods are compared and their advantages and limitations are discussed. One of them is thermal extraction-desorption gas chromatography mass spectrometry (TED-GC/MS), an analysis method for microplastic detection that has become established in recent years. In addition, thermogravimetric analysis coupled with Fourier-transform infrared spectroscopy (TGA-FTIR) and mass spectrometry (TGA-MS) were applied, two methods that are less common in this field but are still used in other research areas. Finally, microscale combustion calorimeter (MCC) was applied, a method not yet used for microplastic detection. The presented results are taken from a recently published interlaboratory comparison test by Becker et al. (2020). Here a reference material consisting of suspended matter and specified added polymer masses was examined, and only the results of the recoveries were presented. In the present paper, however, the results for the individual polymers are discussed in detail and individual perspectives for all instruments are shown. It was found that TED-GC/MS is the most suitable method for samples with unknown matrix and unknown, variable kinds and contents of microplastic. TGA-FTIR is a robust method for samples with known matrix and with defined kinds of microplastic. TGA-MS may offer a solution for the detection of PVC particles in the future. MCC can be used as a very fast and simple screening method for the identification of a potential microplastic load of standard polymers in unknown samples. KW - Microplastic KW - TED-GC/MS KW - TGA-MS KW - TGA-FTIR KW - MCC KW - Thermal analysis PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516687 DO - https://doi.org/10.1016/j.jaap.2020.104961 VL - 152 SP - 104961 PB - Elsevier B.V. AN - OPUS4-51668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stephan-Scherb, Christiane A1 - Menneken, Martina A1 - Weber, Kathrin A1 - Agudo Jácome, Leonardo A1 - Nolze, Gert T1 - Elucidation of orientation relations between Fe-Cr alloys and corrosionproducts after high temperature SO2 corrosion N2 - The early stages of corrosion of Fe-Cr-model alloys (2 and 9 % Cr) were investigated after exposure at 650 °C in0.5 % SO2containing gas by electron backscattered diffraction (EBSD) and transmission electron microscopy(TEM). The impact of the grain orientation of the base alloy on the orientation relations of the corrosion productsis presented. After 2 min–5 min exposure the formation of a multi-layered corrosion zone was discovered. Aclear orientation relationship between ferrite and the (Fe,Cr)3O4 spinel could be demonstrated. The obtainedresults show the importance of the grain orientation on oxidation resistance. KW - Iron KW - TEM KW - SEM KW - High temperature corrosion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508911 DO - https://doi.org/10.1016/j.corsci.2020.108809 VL - 174 SP - 1 EP - 11 PB - Elsevier AN - OPUS4-50891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markwart, J. C. A1 - Battig, Alexander A1 - Urbaniak, T. A1 - Haag, K. A1 - Koschek, K. A1 - Schartel, Bernhard A1 - Wurm, F. R. T1 - Intrinsic flame retardant phosphonate-based vitrimers as a recyclable alternative for commodity polymers in composite materials N2 - Recycling of crosslinked fiber-reinforced polymers is difficult. Moreover, as they are often based on flammable resins, additional additives are needed. So-called “vitrimers” open the possibility of Recycling and reprocessing and repairing with dynamically crosslinked chemistries. To date, vitrimer-based composites still need flame retardant additives, such as organophosphates. An additive-free vitrimer composite has not been reported. Herein, we synthesized an intrinsic flame-retardant vitrimer, relying on vinylogous polyurethanes containing covalently installed phosphonates as flame-retardant units and prepared glassfiber-reinforced composites. We studied recycling and flame retardant properties and compared the data to phosphorus-free vitrimers and conventional epoxy resins (with and without additive flame retardant). Our phosphonate-based vitrimer proved in first tests, a flame retardant effect comparable to commercial flame retardant resins. The bending strength and bending modulus for the phosphorus-vitrimer glass fiber composites were comparable to glass fiber composites with permanently cross-linked epoxies. In summary, we were able to prove that the covalent installation of phosphonates into vitrimers allows the preparation of recyclable and intrinsic flame retardant composites that do not need flame retardant additives. We believe this concept can be expanded to other polymer networks and additives to generate recyclable and sustainable high-performance materials. KW - Vitrimer KW - Flame retardant KW - Recyclable KW - Organophosphonate KW - Polyurethane PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510889 DO - https://doi.org/10.1039/d0py00275e VL - 11 IS - 30 SP - 4933 EP - 4941 AN - OPUS4-51088 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epping, Ruben A1 - Falkenhagen, Jana A1 - Panne, Ulrich A1 - Hiller, W. A1 - Gruendling, T. A1 - Staal, B. A1 - Lang, C. A1 - Lamprou, A. T1 - Simultaneous characterization of poly(acrylic acid) andpolysaccharide polymers and copolymers N2 - Copolymer products that result from grafting acrylic acid and other hydrophilicmonomers onto polysaccharides have recently gained significant interest in researchand industry. Originating from renewable sources, these biodegradable, low toxicity,and polar copolymer products exhibit potential to replace polymers from fossil sourcesin several applications and industries. The methods usually employed to character-ize these copolymers are, however, quite limited, especially for the measurement ofbulk properties. With more sophisticated applications, for example, in pharmaceu-tics requiring a more detailed analysis of the chemical structure, we describe a newapproach for this kind of complex polymers. Our approach utilizes chromatographyin combination with several detection methods to separate and characterize reactionproducts of the copolymerization of acrylic acid and chemically hydrolyzed starch.These samples consisted of a mixture of homopolymer poly (acrylic acid), homopoly-mer hydrolyzed starch, and – in a lower amount – the formed copolymers. Several chro-matographic methods exist that are capable of characterizing either poly (acrylic acid)or hydrolyzed starch. In contrast, our approach offers simultaneous characterization ofboth polymers. The combination of LC and UV/RI offered insight into the compositionand copolymer content of the samples. Size exclusion chromatography experimentsrevealed the molar mass distribution of homopolymers and copolymers. FTIR inves-tigations confirmed the formation of copolymers while ESI-MS gave more details onthe end groups of hydrolyzed starches and poly (acrylic acids). Evidence of copolymerstructures was obtained through NMR measurements. Finally, two-dimensional chro-matography led to the separation of the copolymers from both homopolymers as wellas the additional separation of sodium clusters. The methods described in this work area powerful toolset to characterize copolymerization products of hydrolyzed starch andpoly(acrylic acid). Together, our approach successfully correlates the physicochemicalproperties of such complex mixtures with their actual composition. KW - 2D chromatography KW - LC-MS KW - SEC KW - Renewable copolymers KW - Grafting PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508873 DO - https://doi.org/10.1002/ansa.202000044 SP - 1 EP - 12 PB - Wiley-VCH Verlag-GmbH&Co. KGaA CY - Weinheim AN - OPUS4-50887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -