TY - JOUR A1 - Bühling, Benjamin A1 - Maack, Stefan A1 - Strangfeld, Christoph T1 - Fluidic Ultrasound Generation for Non‐Destructive Testing N2 - AbstractAir‐coupled ultrasonic testing (ACU) is a pioneering technique in non‐destructive testing (NDT). While contact testing and fluid immersion testing are standard methods in many applications, the adoption of ACU is progressing slowly, especially in the low ultrasonic frequency range. A main reason for this development is the difficulty of generating high amplitude ultrasonic bursts with equipment that is robust enough to be applied outside a laboratory environment. This paper presents the fluidic ultrasonic transducer as a solution to this challenge. This novel aeroacoustic source uses the flow instability of a sonic jet in a bistable fluidic switch to generate ultrasonic bursts up to 60 kHz with a mean peak pressure of 320 Pa. The robust design allows operation in adverse environments, independent of the operating fluid. Non‐contact through‐transmission experiments are conducted on four materials and compared with the results of conventional transducers. For the first time, it is shown that the novel fluidic ultrasonic transducer provides a suitable acoustic signal for NDT tasks and has potential of furthering the implementation of ACU in industrial applications.This article is protected by copyright. All rights reserved KW - Aeroacoustics KW - Air-coupled ultrasound KW - Fluidics KW - Harsh environment KW - Laser Doppler vibrometer KW - Non-destructive testing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594273 DO - https://doi.org/10.1002/adma.202311724 SN - 0935-9648 SP - 1 EP - 14 PB - Wiley AN - OPUS4-59427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grohmann, Maria A1 - Niederleithinger, Ernst A1 - Maack, Stefan A1 - Buske, Stefan T1 - Application of iterative elastic SH reverse time migration to synthetic ultrasonic echo data N2 - The ultrasonic echo technique is widely used in non-destructive testing (NDT) of concrete objects for thickness measurements, geometry determinations and localization of built-in components. To improve ultrasonic imaging of complex concrete structures, we transferred a seismic imaging technique, the Reverse Time Migration (RTM), to NDT in civil engineering. RTM, in contrast to the conventionally used synthetic aperture focusing technique (SAFT) algorithms, considers all wavefield types and thus, can handle complex wave propagations in any direction with no limit on velocity variations and reflector dip. In this paper, we focused on the development, application and evaluation of a two-dimensional elastic RTM algorithm considering horizontally polarized shear (SH) waves only. We applied the elastic SH RTM routine to synthetic ultrasonic echo SH-wave data generated with a concrete model incorporating several steps and circular cavities. As these features can often be found in real-world NDT use cases, their imaging is extremely important. By using elastic SH RTM, we were able to clearly reproduce almost all reflectors inside the concrete model including the vertical step edges and the cross sections of the cavities.We were also capable to show that more features could be mapped compared to SAFT, and that imaging of complex reflectors could be sharpened compared to elastic P-SV (compressional-vertically polarized shear) RTM. Our promising results illustrate that elastic SH RTM has the potential to significantly enhance the reconstruction of challenging concrete structures, representing an important step forward for precise, high-quality ultrasonic NDT in civil engineering. KW - Ultrasonic echo technique KW - Concrete structures KW - Elastic reverse time migration KW - Synthetic aperture focusing technique KW - Horizontally polarized shear waves PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-591716 DO - https://doi.org/10.1007/s10921-023-01010-3 SN - 1573-4862 VL - 43 SP - 1 EP - 16 PB - Springer Science and Business Media CY - Dordrecht AN - OPUS4-59171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Witte, Julien A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Stresses in repair welding of high-strength steels—part 1: restraint and cold cracking risk N2 - AbstractThe sustainable and resource-efficient production of wind energy plants requires the use of modern high-strength fine-grain structural steels. This applies to both foundation and erection structures, like mobile or ship cranes. During the assembly of steel structures, unacceptable defects can occasionally be found in the weld area. In most cases, the economical solution would be local thermal gouging of the affected areas and re-welding. Due to the high shrinkage restraint of the joint groove in the overall structure, the superposition of global and local welding-induced stresses may lead to crack formation and component failure, particularly in interaction with the degradation of the microstructure and mechanical properties of high-strength steels during the repair process. However, manufacturers hardly have any information about these issues and there is a lack of recommendations and guidelines to take these safety-relevant aspects into account in adequate repair concepts. The aim of this research is to derive recommendations for repair concepts appropriate to the stresses and materials involved providing a basis for standards and guidelines to avoid cold cracking, damage and expensive reworking especially for high-strength steels. Part 1 of this study involves systematic investigations of influences of shrinkage restraint during repair welding of two high-strength steels S500MLO for offshore application and S960QL for mobile crane structures. The quantification of the shrinkage restraint of repair weld joints was achieved by means of experimental and numerical restraint intensity analysis. In welding experiments with self-restrained slot specimens, restraint intensity and introduction of hydrogen via the welding arc using anti spatter spray were varied systematically to analyse the effect on welding result, residual stresses and cold cracking. It could be shown that increasing restraint intensities result in significantly higher transverse residual stress levels. In the case of hydrogen introduction S500MLO showed no cold cracking independent of the restraint conditions. However, S960QL was found to be considerably cold cracking sensitive if hydrogen is introduced. With increasing restraint intensity length and number of cold cracks increases significantly. Part 2 [1] of this study is focussed on microstructure and residual stresses due to gouging and stress optimization via adequate heat control parameters in repair welding. KW - Metals and Alloys KW - Mechanical Engineering KW - Mechanics of Materials PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595212 DO - https://doi.org/10.1007/s40194-024-01691-y SN - 0043-2288 SP - 1 EP - 13 PB - Springer Science and Business Media LLC AN - OPUS4-59521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Konert, Florian A1 - Wieder, Frank A1 - Nietzke, Jonathan A1 - Meinel, Dietmar A1 - Böllinghaus, Thomas A1 - Sobol, Oded T1 - Evaluation of the impact of gaseous hydrogen on pipeline steels utilizing hollow specimen technique and μCT N2 - The high potential of hydrogen as a key factor on the pathway towards a climate neutral economy, leads to rising demand in technical applications, where gaseous hydrogen is used. For several metals, hydrogen-metal interactions could cause a degradation of the material properties. This is especially valid for low carbon and highstrength structural steels, as they are commonly used in natural gas pipelines and analyzed in this work. This work provides an insight to the impact of hydrogen on the mechanical properties of an API 5L X65 pipeline steel tested in 60 bar gaseous hydrogen atmosphere. The analyses were performed using the hollow specimen technique with slow strain rate testing (SSRT). The nature of the crack was visualized thereafter utilizing μCT imaging of the sample pressurized with gaseous hydrogen in comparison to one tested in an inert atmosphere. The combination of the results from non-conventional mechanical testing procedures and nondestructive imaging techniques has shown unambiguously how the exposure to hydrogen under realistic service pressure influences the mechanical properties of the material and the appearance of failure. KW - Energy Engineering and Power Technology KW - Condensed Matter Physics KW - Fuel Technology KW - Renewable Energy, Sustainability and the Environment KW - µCT KW - Hollow Specimen Technique KW - Hydrogen Embrittlement PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595077 DO - https://doi.org/10.1016/j.ijhydene.2024.02.005 SN - 0360-3199 VL - 59 SP - 874 EP - 879 PB - Elsevier B.V. AN - OPUS4-59507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Glienke, R. A1 - Kalkowsky, F. A1 - Hobbacher, A. F. A1 - Holch, A. A1 - Thiele, Marc A1 - Marten, F. A1 - Kersten, R. A1 - Henkel, K.-M. T1 - Evaluation of the fatigue resistance of butt‑welded joints in towers of wind turbines - A comparison of experimental studies with small scale and component tests as well as numerical based approaches with local concepts N2 - Wind turbines are exposed to a high number of load cycles during their service lifetime. Therefore, the fatigue strength verification plays an important role in their design. In general, the nominal stress method is used for the fatigue verification of the most common used butt-welded joints. The Eurocode 3 part 1–9 is the current design standard for this field of application. This paper presents recent results of fatigue tests on small-scaled specimens and large components with transverse butt welds to discuss the validity of the FAT-class. Furthermore, results from numerical simulations for the verification with the effective notch stress and the crack propagation approach are used for comparison. Based on the consistency between the numerical results and the fatigue tests, the influence of the seam geometry on the fatigue resistance was investigated. Finally, a prediction of the fatigue strength of butt-welded joints with plate thicknesses up to 80 mm was carried out. KW - Transverse butt weld KW - Weld imperfections KW - Wind turbine tower KW - Fatigue strength KW - Local approaches KW - Large components KW - Wind energy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596648 DO - https://doi.org/10.1007/s40194-023-01630-3 SN - 1878-6669 SP - 1 EP - 26 PB - Springer CY - Berlin AN - OPUS4-59664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tambara, R. F. A1 - Durlo Tambara, Luis Urbano A1 - Venquiaruto, S. D. A1 - Pereira da Costa, F. B. T1 - Evaluation of the mechanical performance and capillary absorption of concretes with incorporation of crystallizing admixtures and subjected to damage at early ages T1 - Avaliação do desempenho mecânico e absorção capilar de concretos com incorporação de aditivos cristalizante submetidos a danos nas primeiras idades N2 - This study assessed the self-healing phenomenon in the mechanical properties and capillary absorption of structural concretes. Two crystalline powder additives were evaluated, dosed according to the manufacturers’ recommendations. Crystalline additives increase the density of the C-S-H gel and form insoluble crystals, effectively blocking fissures. Three concrete mixes were produced: a reference mix, additive-X with 0.8%, and additive-Y with 2.0%, relative to the mass of cement. 75% of the rupture load was applied at 3- and 14-days to induce microfissures for comparison with the reference mix. Subsequently, self-healing was assessed at 28- and 76-days. The property of axial compressive strength was determined at 28-days, revealing that crystalline additives contributed to an average increase of 12% in this property. While the age of loading did not significantly impact axial compressive strength, there were significant variations among the types of additives studied, as indicated by ANOVA. Water absorption properties through capillarity were evaluated at 28- and 76-days, showing an average reduction of 42% in water absorption due to the use of crystalline additives. In conclusion, the inclusion of crystalline additives positively contributed to the self-healing of the studied concretes, suggesting a partial recovery of microfissures. N2 - Esta pesquisa avaliou o fenômeno de autocicatrização nas propriedades mecânicas e absorção capilar de concretos estruturais. Foram avaliados dois aditivos cristalizantes em pó, dosados de acordo com o teor recomendado pelos fabricantes. Aditivos cristalizantes aumentam a densidade do gel C-S-H e formam cristais insolúveis, bloqueando fissuras. Três traços de concreto foram produzidos: referência, aditivo-X com 0,8% e aditivo-Y com 2,0% em relação a massa do cimento. Aplicou-se 75% da carga de ruptura aos 3- e 14-dias para gerar microfissuras e comparar com a referência. Posteriormente, a autocicatrização foi avaliada aos 28- e 76-dias. A propriedade de resistência à compressão axial foi determinada aos 28-dias, revelando que os aditivos cristalizantes contribuíram para um aumento médio de 12% desta propriedade. A idade do carregamento dos concretos não apresentou um impacto significativo na resistência à compressão axial, mas apontou resultados significativos entre os tipos de aditivos estudados, conforme ANOVA. As propriedades de absorção de água por capilaridade foram avaliadas aos 28- e 76-dias, indicando uma redução de absorção de água média de 42% devido ao uso dos aditivos cristalizantes. Em conclusão, a incorporação dos aditivos cristalizantes contribuiu de maneira positiva para a autocicatrização dos concretos estudados, indicando uma recuperação parcial das microfissuras. KW - Self-healing KW - Crystalline admixture KW - Concrete KW - Cracks PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599140 DO - https://doi.org/10.1590/1517-7076-RMAT-2023-0355 SN - 1517-7076 VL - 29 IS - 1 SP - 1 EP - 20 CY - Rio de Janeiro AN - OPUS4-59914 LA - por AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jovičević-Klug, Matic A1 - Souza Filho, Isnaldi R. A1 - Springer, Hauke A1 - Adam, Christian A1 - Raabe, Dierk T1 - Green steel from red mud through climate-neutral hydrogen plasma reduction N2 - AbstractRed mud is the waste of bauxite refinement into alumina, the feedstock for aluminium production1. With about 180 million tonnes produced per year1, red mud has amassed to one of the largest environmentally hazardous waste products, with the staggering amount of 4 billion tonnes accumulated on a global scale1. Here we present how this red mud can be turned into valuable and sustainable feedstock for ironmaking using fossil-free hydrogen-plasma-based reduction, thus mitigating a part of the steel-related carbon dioxide emissions by making it available for the production of several hundred million tonnes of green steel. The process proceeds through rapid liquid-state reduction, chemical partitioning, as well as density-driven and viscosity-driven separation between metal and oxides. We show the underlying chemical reactions, pH-neutralization processes and phase transformations during this surprisingly simple and fast reduction method. The approach establishes a sustainable toxic-waste treatment from aluminium production through using red mud as feedstock to mitigate greenhouse gas emissions from steelmaking. KW - Multidisciplinary PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594424 DO - https://doi.org/10.1038/s41586-023-06901-z SN - 0028-0836 VL - 625 IS - 7996 SP - 703 EP - 709 PB - Springer Science and Business Media LLC AN - OPUS4-59442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fantin, Andrea A1 - Manzoni, Anna Maria A1 - Springer, H. A1 - Darvishi Kamachali, Reza A1 - Maaß, Robert T1 - Local lattice distortions and chemical short-range order in MoNbTaW N2 - Extended X-ray absorption fine structure (EXAFS) conducted on an equiatomic MoNbTaW bcc medium-entropy alloy that was annealed at 2273 K reveals unexpectedly small 1st and 2nd shell element-specific lattice distortions. An experimental size-mismatch parameter, δexp, is determined to be ca. 50% lower than the corresponding calculated value. Around W, short-range order (SRO) preferring 4d elements in the 1st and 2nd shells persists. A Nb-W ordering is found, which is reminiscent of ordering emerging at lower temperatures in the B2(Mo,W;Ta,Nb)- and B32(Nb,W)-phases. With high-temperature ordering preferences in fcc also foreshadowing low-temperature phase, these findings suggest a general feature of high-temperature SRO. KW - High Entropy Alloys KW - Short-range order KW - Lattice distortions KW - EXAFS PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598164 DO - https://doi.org/10.1080/21663831.2024.2326014 SN - 2166-3831 VL - 12 IS - 5 SP - 346 EP - 354 PB - Taylor & Francis AN - OPUS4-59816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Darvishi Kamachali, Reza A1 - Wallis, Theophilius A1 - Ikeda, Yuki A1 - Saikia, U. A1 - Ahmadian, A. A1 - Liebscher, C. A1 - Hickel, Tilmann A1 - Maaß, Robert T1 - Giant segregation transition as origin of liquid metal embrittlement in the Fe-Zn system N2 - A giant Zn segregation transition is revealed using CALPHAD-integrated density-based modeling of segregation into Fe grain boundaries (GBs). The results show that above a threshold of only a few atomic percent Zn in the alloy, a substantial amount of up to 60 at.% Zn can segregate to the GB. We found that the amount of segregation abruptly increases with decreasing temperature, while the Zn content in the alloy required for triggering the segregation transition decreases. Direct evidence of the Zn segregation transition is obtained using high-resolution scanning transmission electron microscopy. Base on the model, we trace the origin of the segregation transition back to the low cohesive energy of Zn and a miscibility gap in Fe-Zn GB, arising from the magnetic ordering effect, which is confirmed by ab-initio calculations. We also show that the massive Zn segregation resulting from the segregation transition greatly assists with liquid wetting and reduces the work of separation along the GB. The current predictions suggest that control over Zn segregation, by both alloy design and optimizing the galvanization and welding processes, may offer preventive strategies against liquid metal embrittlement. KW - CALPHAD KW - Microstructure Design KW - Grain boundary engineering KW - Steels KW - Density-based Model KW - Segregation Engineering PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-584292 DO - https://doi.org/10.1016/j.scriptamat.2023.115758 SN - 1359-6462 SN - 1872-8456 VL - 238 SP - 1 EP - 5 PB - Elsevier CY - Amsterdam AN - OPUS4-58429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Polycondensation of poly(L-lactide) alkyl esters combined with disproportionation and symproportionation of the chain lengths N2 - Ring-opening polymerizations (ROPs) of l-lactide (LA) were performed with ethyl l-lactate or 11-bromoundecanol as initiators (In) and tin(II) ethyl hexanoate (SnOct2) as catalyst (Cat) using four different LA/In ratios (20/1, 40/1, 60/1, and 100/1). One series of ROPs was conducted in bulk at 120 °C, yielding PLAs with low dispersities (Ð ~ 1.2–1.4), and a second series was conducted in bulk at 160 °C, yielding higher dispersities (Ð ~ 1.3–1.9). Samples from both series were annealed for 1 or 14 days at 140 °C in the presence of SnOct2. Both polycondensation and disproportionation reactions occurred, so that all four samples tended to form the same type of molar mass distribution below 10,000 Da, regardless of their initially different number average molar masses (Mn). Both initiators gave nearly identical results. The thermodynamic control of all reversible transesterification processes favored the formation of crystallites composed of chains with a Mn around 3500–3700, corresponding to a crystal thickness of 10–13 nm. KW - Polylactide KW - MALDI-TOF MS KW - Crystalinity PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600081 DO - https://doi.org/10.1002/pol.20240118 SN - 2642-4150 SP - 1 EP - 12 PB - Wiley AN - OPUS4-60008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bayerlein, Bernd A1 - Schilling, Markus A1 - von Hartrott, Philipp A1 - Waitelonis, Jörg T1 - Semantic integration of diverse data in materials science: Assessing Orowan strengthening N2 - AbstractThis study applies Semantic Web technologies to advance Materials Science and Engineering (MSE) through the integration of diverse datasets. Focusing on a 2000 series age-hardenable aluminum alloy, we correlate mechanical and microstructural properties derived from tensile tests and dark-field transmission electron microscopy across varied aging times. An expandable knowledge graph, constructed using the Tensile Test and Precipitate Geometry Ontologies aligned with the PMD Core Ontology, facilitates this integration. This approach adheres to FAIR principles and enables sophisticated analysis via SPARQL queries, revealing correlations consistent with the Orowan mechanism. The study highlights the potential of semantic data integration in MSE, offering a new approach for data-centric research and enhanced analytical capabilities. KW - Semantic Interoperability KW - Knowledge Graph KW - Orowan Mechanism KW - Aluminum Alloy Aging KW - Ontology KW - Semantic Data Integration PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599780 DO - https://doi.org/10.1038/s41597-024-03169-4 VL - 11 IS - 1 SP - 1 EP - 12 PB - Springer Science and Business Media LLC AN - OPUS4-59978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Temgoua, Ranil C.T. A1 - Dontsi, Fabiola T. A1 - Lebègue, Estelle A1 - Thobie-Gautier, Christine A1 - Tonlé, Ignas K. A1 - Boujtita, Mohammed T1 - Understanding the behavior of phenylurazole-tyrosine-click electrochemical reaction using hybrid electroanalytical techniques N2 - In this work, the electrochemical behavior of 4-phenylurazole (Ph-Ur) was studied and the latter was used as a molecular anchor for the electrochemical bioconjugation of tyrosine (Y). Cyclic voltammetry (CV) and controlled potential coulometry (CPC) allowed the in-situ generation of the PTAD (4-phenyl-3 H-1,2,4-triazole-3,5(4 H)-dione) species from phenylurazole on demand for tyrosine electrolabeling. The chemoselectivity of the reaction was studied with another amino acid (lysine, Lys) and no changes in Lys were observed. To evaluate the performance of tyrosine electrolabeling, coulometric analyses at controlled potentials were performed on solutions of phenylurazole and the phenylurazole-tyrosine mixture in different proportions (2:1, 1:1, and 1:2). The electrolysis of the phenylurazole-tyrosine mixture in the ratio (1:2) produced a charge of 2.07 C, very close to the theoretical value (1.93 C), with high reaction kinetics, a result obtained here for the first time. The products obtained were identified and characterized by liquid chromatography coupled to high-resolution electrospray ionization mass spectrometry (LC-HRMS and LC- HRMS2). Two products were formed from the click reactions, one of which was the majority. Another part of this work was to study the electrochemical degradation of the molecular anchor 4-phenylazole (Ph-Ur). Four stable degradation products of phenylurazole were identified (C7H9N2O, C6H8N, C6H8NO, C14H13N4O2) based on chromatographic profiles and mass spectrometry results. The charge generated during the electrolysis of phenylurazole (two-electron process) (2.85 C) is inconsistent with the theoretical or calculated charge (1.93 C), indicating that secondary/parasitic reactions occurred during the electrolysis of the latter. In conclusion, the electrochemically promoted click phenylurazole-tyrosine reactions give rise to click products with high reaction kinetics and yields in the (1:2) phenylurazole-tyrosine ratios, and the presence of side reactions is likely to affect the yield of the click phenylurazole-tyrosine reaction. KW - Clinical Biochemistry KW - Spectroscopy KW - Drug Discovery KW - Pharmaceutical Science KW - Analytical Chemistry PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599267 DO - https://doi.org/10.1016/j.jpba.2024.116147 VL - 245 SP - 1 EP - 8 PB - Elsevier BV AN - OPUS4-59926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strobl, Dominic A1 - Unger, Jörg F. A1 - Ghnatios, C. A1 - Klawoon, Alexander A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Robens-Radermacher, Annika T1 - Efficient bead-on-plate weld model for parameter estimation towards effective wire arc additive manufacturing simulation N2 - Despite the advances in hardware and software techniques, standard numerical methods fail in providing real-time simulations, especially for complex processes such as additive manufacturing applications. A real-time simulation enables process control through the combination of process monitoring and automated feedback, which increases the flexibility and quality of a process. Typically, before producing a whole additive manufacturing structure, a simplified experiment in the form of a beadon-plate experiment is performed to get a first insight into the process and to set parameters suitably. In this work, a reduced order model for the transient thermal problem of the bead-on-plate weld simulation is developed, allowing an efficient model calibration and control of the process. The proposed approach applies the proper generalized decomposition (PGD) method, a popular model order reduction technique, to decrease the computational effort of each model evaluation required multiple times in parameter estimation, control, and optimization. The welding torch is modeled by a moving heat source, which leads to difficulties separating space and time, a key ingredient in PGD simulations. A novel approach for separating space and time is applied and extended to 3D problems allowing the derivation of an efficient separated representation of the temperature. The results are verified against a standard finite element model showing excellent agreement. The reduced order model is also leveraged in a Bayesian model parameter estimation setup, speeding up calibrations and ultimately leading to an optimized real-time simulation approach for welding experiment using synthetic as well as real measurement data. KW - Proper generalized decomposition KW - Model order reduction KW - Hardly separable problem KW - Additive manufacturing KW - Model calibration KW - Wire arc additive manufacturing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596502 DO - https://doi.org/10.1007/s40194-024-01700-0 SN - 0043-2288 SP - 1 EP - 18 PB - Springer AN - OPUS4-59650 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strobl, Dominic A1 - Unger, Jörg F. A1 - Ghnatios, C. A1 - Robens-Radermacher, Annika T1 - PGD in thermal transient problems with a moving heat source: A sensitivity study on factors affecting accuracy and efficiency N2 - Thermal transient problems, essential for modeling applications like welding and additive metal manufacturing, are characterized by a dynamic evolution of temperature. Accurately simulating these phenomena is often computationally expensive, thus limiting their applications, for example for model parameter estimation or online process control. Model order reduction, a solution to preserve the accuracy while reducing the computation time, is explored. This article addresses challenges in developing reduced order models using the proper generalized decomposition (PGD) for transient thermal problems with a specific treatment of the moving heat source within the reduced model. Factors affecting accuracy, convergence, and computational cost, such as discretization methods (finite element and finite difference), a dimensionless formulation, the size of the heat source, and the inclusion of material parameters as additional PGD variables are examined across progressively complex examples. The results demonstrate the influence of these factors on the PGD model’s performance and emphasize the importance of their consideration when implementing such models. For thermal example, it is demonstrated that a PGD model with a finite difference discretization in time, a dimensionless representation, a mapping for a moving heat source, and a spatial domain non-separation yields the best approximation to the full order model. KW - Additive manufacturing KW - Mapping for unseparable load KW - Model order reduction (MOR) KW - Thermal transient problem KW - Sensitivity analysis KW - Proper generalized decomposition (PGD) PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598001 DO - https://doi.org/10.1002/eng2.12887 IS - e12887 SP - 1 EP - 22 PB - John Wiley & Sons Ltd. CY - Berlin AN - OPUS4-59800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feng, W. A1 - Gemming, T. A1 - Giebeler, L. A1 - Qu, J. A1 - Weinel, Kristina A1 - Agudo Jácome, Leonardo A1 - Büchner, B. A1 - Gonzalez-Martinez, I. T1 - Influence of magnetic field on electron beam-induced Coulomb explosion of gold microparticles in transmission electron microscopy N2 - In this work we instigated the fragmentation of Au microparticles supported on a thin amorphous carbon film by irradiating them with a gradually convergent electron beam inside the Transmission Electron Microscope. This phenomenon has been generically labeled as ‘‘electron beam-induced fragmentation’’ or EBIF and its physical origin remains contested. On the one hand, EBIF has been primarily characterized as a consequence of beam-induced heating. On the other, EBIF has been attributed to beam-induced charging eventually leading to Coulomb explosion. To test the feasibility of the charging framework for EBIF, we instigated the fragmentation of Au particles under two different experimental conditions. First, with the magnetic objective lens of the microscope operating at full capacity, i.e. background magnetic field 𝐵 = 2 T, and with the magnetic objective lens switched off (Lorenz mode), i.e. 𝐵 = 0 T. We observe that the presence or absence of the magnetic field noticeably affects the critical current density at which EBIF occurs. This strongly suggests that magnetic field effects play a crucial role in instigating EBIF on the microparticles. The dependence of the value of the critical current density on the absence or presence of an ambient magnetic field cannot be accounted for by the beam-induced heating model. Consequently, this work presents robust experimental evidence suggesting that Coulomb explosion driven by electrostatic charging is the root cause of EBIF. KW - Electron beam-induced fragmentation KW - Coulomb explosion KW - X-ray diffraction KW - Lorenz transmission electron microscopy KW - Electron beam-induced charging PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600170 DO - https://doi.org/10.1016/j.ultramic.2024.113978 VL - 262 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-60017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feng, Wen A1 - Gemming, Thomas A1 - Giebeler, Lars A1 - Qu, Jiang A1 - Weinel, Kristina A1 - Agudo Jácome, Leonardo A1 - Büchner, Bernd A1 - González-Martínez, Ignacio T1 - Influence of magnetic field on electron beam-induced Coulomb explosion of gold microparticles in transmission electron microscopy N2 - In this work we instigated the fragmentation of Au microparticles supported on a thin amorphous carbon film by irradiating them with a gradually convergent electron beam inside the Transmission Electron Microscope. This phenomenon has been generically labeled as “electron beam-induced fragmentation” or EBIF and its physical origin remains contested. On the one hand, EBIF has been primarily characterized as a consequence of beam-induced heating. On the other, EBIF has been attributed to beam-induced charging eventually leading to Coulomb explosion. To test the feasibility of the charging framework for EBIF, we instigated the fragmentation of Au particles under two different experimental conditions. First, with the magnetic objective lens of the microscope operating at full capacity, i.e. background magnetic field B = 2 T, and with the magnetic objective lens switched off (Lorenz mode), i.e. B = 0 T. We observe that the presence or absence of the magnetic field noticeably affects the critical current density at which EBIF occurs. This strongly suggests that magnetic field effects play a crucial role in instigating EBIF on the microparticles. The dependence of the value of the critical current density on the absence or presence of an ambient magnetic field cannot be accounted for by the beam-induced heating model. Consequently, this work presents robust experimental evidence suggesting that Coulomb explosion driven by electrostatic charging is the root cause of EBIF. KW - Electron beam-induced fragmentation KW - Coulomb explosion KW - X-ray diffraction KW - Lorenz transmission electron microscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600247 DO - https://doi.org/10.1016/j.ultramic.2024.113978 SN - 0304-3991 VL - 262 SP - 1 EP - 8 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-60024 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ratkovac, Mirjana A1 - Gerards-Wünsche, Paul A1 - Thiele, Marc A1 - Brackrock, Daniel A1 - Stamm, Michael T1 - Detection and monitoring of the fatigue crack growth on welds – Application-oriented use of NDT methods N2 - Early detection of fatigue cracks and accurate measurements of the crack growth play an important role in the maintenance and repair strategies of steel structures exposed to cyclic loads during their service life. Observation of welded connections is especially of high relevance due to their higher susceptibility to fatigue damage. The aim of this contribution was to monitor fatigue crack growth in thick welded specimens during fatigue tests as holistically as possible, by implementing multiple NDT methods simultaneously in order to record the crack initiation and propagation until the final fracture. In addition to well-known methods such as strain gauges, thermography, and ultrasound, the crack luminescence method developed at the Bundesanstalt für Materialforschung und -prüfung (BAM), which makes cracks on the surface particularly visible, was also used. For data acquisition, a first data fusion concept was developed and applied in order to synchronize the data of the different methods and to evaluate them to a large extent automatically. The resulting database can ultimately also be used to access, view, and analyze the experimental data for various NDT methods. During the conducted fatigue tests, the simultaneous measurements of the same cracking process enabled a comprehensive comparison of the methods, highlighting their individual strengths and limitations. More importantly, they showed how a synergetic combination of different NDT methods can be beneficial for implementation in large-scale fatigue testing but also in monitoring and inspection programs of in-service structures - such as the support structures of offshore wind turbines. T2 - Fatigue Design 2023 (FatDes 2023) CY - Senlis, France DA - 29.11.2023 KW - Fatigue KW - Welded KW - NDT KW - Crack growth PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600238 DO - https://doi.org/10.1016/j.prostr.2024.03.062 VL - 57 SP - 560 EP - 568 PB - Elsevier B.V. AN - OPUS4-60023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Herter, Sven-Oliver A1 - Koch, Matthias A1 - Haase, Hajo T1 - First Synthesis of Ergotamine-13CD3 and Ergotaminine-13CD3 from Unlabeled Ergotamine N2 - Ergot alkaloids (EAs) formed by Claviceps fungi are one of the most common food contaminants worldwide, affecting cereals such as rye, wheat, and barley. To accurately determine the level of contamination and to monitor EAs maximum levels set by the European Union, the six most common EAs (so-called priority EAs) and their corresponding epimers are quantified using high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). The quantification of EAs in complex food matrices without appropriate internal tandards is challenging but currently carried out in the standard method EN 7425:2021 due to their commercial unavailability. To address the need for isotopically labeled EAs, we focus on two semi-synthetic approaches for the synthesis of these reference standards. Therefore, we investigate the feasibility of the N6-demethylation of native ergotamine to yield norergotamine, which can subsequently be remethylated with an isotopically labeled methylating reagent, such as iodomethane (13CD3-I), to yield isotopically labeled ergotamine and its C8-epimer ergotaminine. Testing the isotopically labeled ergotamine/-inine against native ergotamine/-inine with HPLC coupled to high-resolution HR-MS/MS proved the structure of ergotamine-13CD3 and ergotaminine-13CD3. Thus, for the first time, we can describe their synthesis from unlabeled, native ergotamine. Furthermore, this approach is promising as a universal way to synthesize other isotopically labeled EAs. KW - Reference Material KW - HPLC-MS/MS KW - Mycotoxins KW - Standards KW - Organic Synthesis KW - Isotope PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600167 DO - https://doi.org/10.3390/toxins16040199 VL - 16 IS - 4 SP - 1 EP - 12 PB - MDPI AN - OPUS4-60016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dalgic, Mete-Sungur A1 - Weidner, Steffen T1 - Solvent-free sample preparation for matrix-assisted laserdesorption/ionization time-of-flight mass spectrometry ofpolymer blends N2 - Solvent-free sample preparation offers some advantages over solvent-based techniques, such as improved accuracy, reproducibility and sensitivity, for matrix-assisted laser desorption/ionization (MALDI) analysis. However, little or no information is available on the application of solvent-free techniques for the MALDI analysis of polymer blends. Solvent-free sample preparation by ball milling was applied with varying sample-to-matrix ratios for MALDI time-of-flight mass spectrometry analysis of various polymers, including polystyrenes, poly(methyl methacrylate)s and poly(ethylene glycol)s. The peak intensity ratios were compared with those obtained after using the conventional dried droplet sample preparation method. In addition, solvent-assisted milling was also applied to improve sample homogeneities. Depending on the sample preparation method used, different peak intensity ratios were found, showing varying degrees of suppression of the signal intensities of higher mass polymers. Ball milling for up to 30 min was required to achieve constant intensity ratios indicating homogeneous mixtures. The use of wet-assisted grinding to improve the homogeneity of the blends was found to be disadvantageous as it caused partial degradation and mass-dependent segregation of the polymers in the vials.The results clearly show that solvent-free sample preparation must be carefully considered when applied to synthetic polymer blends, as it may cause additional problems with regard to homogeneity and stability of the blends. KW - MALDI TOF MS KW - Sample preparation KW - Polymer blends KW - Solvent-free PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598570 DO - https://doi.org/10.1002/rcm.9756 SN - 0951-4198 VL - 38 IS - 12 SP - 1 EP - 9 PB - Wiley online library AN - OPUS4-59857 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von Törne, Wipert Jannik A1 - Steinhäuser, Lorin A1 - Klyk-Seitz, Urszula-Anna A1 - Piechotta, Christian T1 - High-resolution mass spectrometric elucidation of electron ionization induced fragmentation pathways of methylated warfarin and selected hydroxylated species N2 - The plant secondary metabolite families of coumarin and 4-hydroxy coumarin have a broad pharmacological spectrum ranging from antibacterial to anticancer properties. One prominent member of this substance class is the synthetic but naturally inspired anticoagulant drug and rodenticide warfarin (coumadin). A vast number of publications focus on the identification of warfarin and its major cytochrome P450-mediated phase I metabolites by liquid chromatography (LC) with mass spectrometry (MS) and tandem mass spectrometric (MS/MS) detection techniques. For the first time, electron ionization (EI) induced high-resolution quadrupole time-of-flight mass spectrometric (HR-qToF-MS) data of in-liner derivatized warfarin and selected hydroxylated species is provided in this study as an alternative to LC-MS/MS approaches. Furthermore, the characteristic fragments and fragmentation pathways of the analyzed methyl ethers are concluded. The obtained data of analytical standards, specific deuterated and 13C-labeled compounds prove inductive cleavage of the acyl or acetonyl side chain, methyl migration, and H-migration, along with consequential inductive cleavage as predominant fragmentation routes. Based on the HR-spectral data, commonalities and differences between the analyzed compounds and fragment groups were evaluated with future applicability in structure elucidation and spectra prediction of related compounds. KW - High-resolution mass spectrometry KW - Warfarin KW - Hydroxy warfarin KW - Fragmentation pathway PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596025 DO - https://doi.org/10.1016/j.ijms.2024.117220 SN - 1387-3806 VL - 499 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-59602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - von Hartrott, Philipp A1 - Waitelonis, Jörg A1 - Birkholz, Henk A1 - Portella, Pedro Dolabella A1 - Skrotzki, Birgit T1 - FAIR and Structured Data: A Domain Ontology Aligned with Standard‐Compliant Tensile Testing N2 - The digitalization of materials science and engineering (MSE) is currently leading to remarkable advancements in materials research, design, and optimization, fueled by computer‐driven simulations, artificial intelligence, and machine learning. While these developments promise to accelerate materials innovation, challenges in quality assurance, data interoperability, and data management have to be addressed. In response, the adoption of semantic web technologies has emerged as a powerful solution in MSE. Ontologies provide structured and machine‐actionable knowledge representations that enable data integration, harmonization, and improved research collaboration. This study focuses on the tensile test ontology (TTO), which semantically represents the mechanical tensile test method and is developed within the project Plattform MaterialDigital (PMD) in connection with the PMD Core Ontology. Based on ISO 6892‐1, the test standard‐compliant TTO offers a structured vocabulary for tensile test data, ensuring data interoperability, transparency, and reproducibility. By categorizing measurement data and metadata, it facilitates comprehensive data analysis, interpretation, and systematic search in databases. The path from developing an ontology in accordance with an associated test standard, converting selected tensile test data into the interoperable resource description framework format, up to connecting the ontology and data is presented. Such a semantic connection using a data mapping procedure leads to an enhanced ability of querying. The TTO provides a valuable resource for materials researchers and engineers, promoting data and metadata standardization and sharing. Its usage ensures the generation of finable, accessible, interoperable, and reusable data while maintaining both human and machine actionability. KW - Data Interoperability KW - Domain Ontology Development KW - FAIR Data Management KW - Knowledge Representation KW - Tensile Test Ontology KW - Semantic Web Technologies PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598142 DO - https://doi.org/10.1002/adem.202400138 SN - 1438-1656 SP - 1 EP - 19 PB - Wiley VHC-Verlag AN - OPUS4-59814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fardan, Ahmed A1 - Fazi, Andrea A1 - Peng, Ru Lin A1 - Mishurova, Tatiana A1 - Thuvander, Mattias A1 - Bruno, Giovanni A1 - Brodin, Håkan A1 - Hryha, Eduard T1 - Fine-Tuning Melt Pools and Microstructures: Taming Cracks in Powder Bed Fusion—Laser Beam of a non-weldable Ni-base Superalloy N2 - Powder Bed Fusion – Laser Beam (PBF-LB) of high γ’ strengthened Ni-base superalloys, such as CM247LC, is of great interest for high temperature applications in gas turbines. However, PBF-LB of CM247LC is challenging due to the high cracking susceptibility during PBF-LB processing (solidification cracking) and heat treatment (strain age cracking, mostly caused by residual stresses). This study focuses on understanding the impact of process parameters on microstructure, residual stresses and solidification cracking. Laser power (P), speed (v) and hatch spacing (h) were varied while the layer thickness (t) was fixed. The melt pool size and shape were found to be key factors in minimizing solidification cracking. Narrower and shallower melt pools, achieved using a low line energy density (LED = P/v ≤ 0.1 J/mm), gave low crack densities (0.7 mm/mm2). A tight hatch spacing (h = 0.03 mm) resulted in reduced lack of fusion porosity. Electron backscatter diffraction investigations revealed that parameters giving finer microstructure with 〈100〉crystallographic texture had low crack densities provided they were processed with a low LED. Atom probe tomography elucidated early stages of spinodal decomposition in the as-built condition, where Cr and Al cluster separately. The extent of spinodal decomposition was found to be affected by the LED and the hatch spacing. Samples with low LED and small hatch spacing showed higher degrees of spinodal decomposition. X-ray diffraction residual stress investigations revealed that the residual stress is proportional to the volumetric energy density (VED = P/(v. h. t)). Although low residual stresses can be achieved by using low VED, there is a high risk of lack of fusion. Hence, other parameters such as modified scan strategy, build plate pre-heating and pulsed laser mode, must be further explored to minimize the residual stresses to reduce the strain age cracking susceptibility. KW - Additive manufacturing KW - X-ray CT KW - Non-weldable superalloy KW - Solidification cracking PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597340 DO - https://doi.org/10.1016/j.mtla.2024.102059 SN - 2589-1529 VL - 34 IS - 102059 SP - 1 EP - 16 PB - Elsevier B.V. AN - OPUS4-59734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Moritz A1 - Stawarczyk, Bogna A1 - Günster, Jens A1 - Zocca, Andrea T1 - Influence of additives and binder on the physical properties of dental silicate glass-ceramic feedstock for additive manufacturing N2 - Objectives The aim of the study was to investigate the impact of organic additives (binder, plasticizer, and the cross-linking ink) in the formulation of water-based feedstocks on the properties of a dental feldspathic glass-ceramic material developed for the slurry-based additive manufacturing technology “LSD-print.” Material and methods Three water-based feldspathic feedstocks were produced to study the effects of polyvinyl alcohol (AC1) and poly (sodium 4-styrenesulfonate) (AC2) as binder systems. A feedstock without organic additives was tested as the control group (CG). Disc-shaped (n = 15) and bar (n = 7) specimens were slip-cast and characterized in the green and fired states. In the green state, density and flexural strength were measured. In the fired state, density, shrinkage, flexural strength (FS), Weibull modulus, fracture toughness (KIC), Martens parameters, and microstructure were analyzed. Disc-shaped and bar specimens were also cut from commercially available CAD/CAM blocks and used as a target reference (TR) for the fired state. Results In the green state, CG showed the highest bulk density but the lowest FS, while the highest FS in the green state was achieved with the addition of a cross-linking ink. After firing, no significant differences in density and a similar microstructure were observed for all slip-cast groups, indicating that almost complete densification could be achieved. The CAD/CAM specimens showed the highest mean FS, Weibull modulus, and KIC, with significant differences between some of the slip-cast groups. Significance These results suggest that the investigated feedstocks are promising candidates for the slurry-based additive manufacturing of restorations meeting the class 1a requirements according to DIN EN ISO 6871:2019–01. KW - Firing KW - 3D-printing KW - Silicate glass-ceramics KW - Debinding PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600516 DO - https://doi.org/10.1016/j.jmbbm.2024.106563 SN - 1751-6161 VL - 155 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-60051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fareed, Adnan A1 - Rosalie, Julian M. A1 - Kar, Satyakam A1 - Fähler, Sebastian A1 - Maaß, Robert T1 - Small-scale functional fatigue of a Ni-Mn-Ga Heusler alloy N2 - Functional fatigue of shape-memory alloys is a considerable threat to the reliable service of actuation devices. Here, we demonstrate the essentially degradation-free cyclic phase-transformation behavior of Ni-Mn-Ga microcrystals up to one million stress-driven superelastic cycles. Cyclic dissipation amounts to about 1/5 of the bulk counterpart and remains unaffected during cycling, even after the introduction of dislocation structures via plastic straining. Plastic yielding and the transformation stress largely exceed the known bulk values. However, the transformation-stress is found to depend on plastic pre-straining, which suggests that the size-affected transformation stress is sensitive to the initial defect structure and that it can be tuned by a targeted introduction of dislocations. These findings demonstrate the high suitability of Ni-Mn-Ga as a robust shape-memory alloy in small-scale functional device engineering. KW - Superelasticity KW - Shape-memory alloys KW - Functional fatigue KW - Ni-Mn-Ga PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600695 DO - https://doi.org/10.1016/j.actamat.2024.119988 VL - 274 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-60069 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Yi A1 - Danischewski, Julia A1 - Molnar, Brian A1 - Riedel, Jens A1 - Shelley, Jacob T1 - Manipulation of Gaseous Ions with Acoustic Fields at Atmospheric Pressure N2 - The ability to controllably move gaseous ions is an essential aspect of ion-based spectrometry (e.g., mass spectrometry and ion mobility spectrometry) as well as materials processing. At higher pressures, ion motion is largely governed by diffusion and multiple collisions with neutral gas molecules. Thus, high-pressure ion optics based on electrostatics require large fields, radio frequency drives, complicated geometries, and/or partially transmissive grids that become contaminated. Here, we demonstrate that low-power standing acoustic waves can be used to guide, block, focus, and separate beams of ions akin to electrostatic ion optics. Ions preferentially travel through the static-pressure regions (“nodes”) while neutral gas does not appear to be impacted by the acoustic field structure and continues along a straight trajectory. This acoustic ion manipulation (AIM) approach has broad implications for ion manipulation techniques at high pressure, while expanding our fundamental understanding of the behavior of ions in gases. KW - Ion mobility spectrometry KW - Acoustic KW - Mass spectrometry PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600704 DO - https://doi.org/10.1021/jacs.4c01224 SP - 1 EP - 6 PB - ACS Publications AN - OPUS4-60070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maulas, Kryzzyl M. A1 - Paredes, Charla S. A1 - Tabelin, Carlito Baltazar A1 - Jose, Mark Anthony A1 - Opiso, Einstine M. A1 - Arima, Takahiko A1 - Park, Ilhwan A1 - Mufalo, Walubita A1 - Ito, Mayumi A1 - Igarashi, Toshifumi A1 - Phengsaart, Theerayut A1 - Villas, Edrhea A1 - Dagondon, Sheila L. A1 - Metillo, Ephrime B. A1 - Uy, Mylene M. A1 - Manua, Al James A. A1 - Villacorte-Tabelin, Mylah T1 - Isolation and Characterization of Indigenous Ureolytic Bacteria from Mindanao, Philippines: Prospects for Microbially Induced Carbonate Precipitation (MICP) N2 - Microbially induced carbonate precipitation (MICP), a widespread phenomenon in nature, is gaining attention as a low-carbon alternative to ordinary Portland cement (OPC) in geotechnical engineering and the construction industry for sustainable development. In the Philippines, however, very few works have been conducted to isolate and identify indigenous, urease-producing (ureolytic) bacteria suitable for MICP. In this study, we isolated seven, ureolytic and potentially useful bacteria for MICP from marine sediments in Iligan City. DNA barcoding using 16s rDNA identified six of them as Pseudomonas stutzeri, Pseudomonas pseudoalcaligenes, Bacillus paralicheniformis, Bacillus altitudinis, Bacillus aryabhattai, and Stutzerimonas stutzeri but the seventh was not identified since it was a bacterial consortium. Bio-cementation assay experiments showed negligible precipitation in the control (without bacteria) at pH 7, 8, and 9. However, precipitates were formed in all seven bacterial isolates, especially between pH 7 and 8 (0.7–4 g). Among the six identified bacterial species, more extensive precipitation (2.3–4 g) and higher final pH were observed in S. stutzeri, and B. aryabhattai, which indicate better urease production and decomposition, higher CO2 generation, and more favorable CaCO3 formation. Characterization of the precipitates by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) and attenuated total reflectance Fourier transform spectroscopy (ATR-FTIR) confirmed the formation of three carbonate minerals: calcite, aragonite, and vaterite. Based on these results, all six identified indigenous, ureolytic bacterial species from Iligan City are suitable for MICP provided that the pH is controlled between 7 and 8. To the best of our knowledge, this is the first report of the urease-producing ability and potential for MICP of P. stutzeri, P. pseudoalcaligenes, S. stutzeri, and B. aryabhattai. KW - Calcium carbonate KW - Microbially induced carbonate precipitation (MICP) KW - Ureolytic bacteria PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600888 DO - https://doi.org/10.3390/min14040339 VL - 14 IS - 4 SP - 1 EP - 15 PB - MDPI AN - OPUS4-60088 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hartwig, Philipp A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Scheunemann, Lisa A1 - Schröder, Jörg A1 - Rethmeier, Michael T1 - A Physically Motivated Heat Source Model for Laser Beam Welding N2 - In this contribution, we present a physically motivated heat source model for the numerical modeling of laser beam welding processes. Since the calibration of existing heat source models, such as the conic or Goldak model, is difficult, the representation of the heat source using so-called Lamé curves has been established, relying on prior Computational Fluid Dynamics (CFD) simulations. Lamé curves, which describe the melting isotherm, are used in a subsequent finite-element (FE) simulation to define a moving Dirichlet boundary condition, which prescribes a constant temperature in the melt pool. As an alternative to this approach, we developed a physically motivated heat source model, which prescribes the heat input as a body load directly. The new model also relies on prior CFD simulations to identify the melting isotherm. We demonstrate numerical results of the new heat source model on boundary-value problems from the field of laser beam welding and compare it with the prior CFD simulation and the results of the Lamé curve model and experimental data. KW - Welding simulation KW - Heat source models KW - Laser beam welding KW - Thermal analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600899 DO - https://doi.org/10.3390/met14040430 VL - 14 IS - 4 SP - 1 EP - 26 PB - MDPI CY - Basel AN - OPUS4-60089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schlögl, Johanna A1 - Goldammer, Ole A1 - Bader, Julia A1 - Emmerling, Franziska A1 - Riedel, Sebastian T1 - Introducing AFS ([Al(SO3F)3]x) – a thermally stable, readily available, and catalytically active solid Lewis superacid N2 - This paper introduces the thermally stable, solid Lewis superacid aluminium tris(fluorosulfate) (AFS), that is easy-to-synthesize from commercially available starting materials. Its applicability, e.g. in catalytic C–F bond activations, is shown. KW - Lewis Acid KW - C-F activation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601001 DO - https://doi.org/10.1039/D4SC01753F SN - 2041-6520 SP - 1 EP - 7 PB - Royal Society of Chemistry (RSC) AN - OPUS4-60100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fiedler, Saskia A1 - Frenzel, Florian A1 - Würth, Christian A1 - Tavernaro, Isabella A1 - Grüne, M. A1 - Schweizer, S. A1 - Engel, A. A1 - Resch-Genger, Ute T1 - Interlaboratory Comparison on Absolute Photoluminescence Quantum Yield Measurements of Solid Light Converting Phosphors with Three Commercial Integrating Sphere Setups N2 - Scattering luminescent materials dispersed in liquid and solid matrices and luminescent powders are increasingly relevant for fundamental research and industry. Examples are luminescent nano- and microparticles and phosphors of different compositions in various matrices or incorporated into ceramics with applications in energy conversion, solid-state lighting, medical diagnostics, and security barcoding. The key parameter to characterize the performance of these materials is the photoluminescence/fluorescence quantum yield (Φf), i.e., the number of emitted photons per number of absorbed photons. To identify and quantify the sources of uncertainty of absolute measurements of Φf of scattering samples, the first interlaboratory comparison (ILC) of three laboratories from academia and industry was performed by following identical measurement protocols. Thereby, two types ofcommercial stand-alone integrating sphere setups with different illumination and detection geometries were utilized for measuring the Φf of transparent and scattering dye solutions and solid phosphors, namely, YAG:Ce optoceramics of varying surface roughness, used as converter materials for blue light emitting diodes. Special emphasis was dedicated to the influence of the measurement geometry, the optical properties of the blank utilized to determine the number of photons of the incident excitation light absorbed by the sample, and the sample-specific surface roughness. While the Φf values of the liquid samples matched between instruments, Φf measurements of the optoceramics with different blanks revealed substantial differences. The ILC results underline the importance of the measurement geometry, sample position, and blank for reliable Φf data of scattering the YAG:Ce optoceramics, with the blank’s optical properties accounting for uncertainties exceeding 20%. KW - Nano KW - Fluorescence KW - Reference material KW - Luminescence KW - Quantitative spectroscopy KW - Particle KW - Quantum yield KW - Quality assurance KW - Phosphor KW - Converter material KW - Lifetime KW - Interlaboratory comparison KW - Method KW - Uncertainty PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600945 DO - https://doi.org/10.1021/acs.analchem.4c00372 SN - 0003-2700 SP - 6730 EP - 6737 PB - ACS Publications AN - OPUS4-60094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmitt, M. A1 - Casperson, Ralf A1 - Baensch, F. A1 - Müller, D. T1 - Nationale, europäische und internationale Normung in der zerstörungsfreien Prüfung N2 - Normung und Standardisierung in der zerstörungsfreien Prüfung finden auf nationaler, europäischer und internationaler Ebene statt. Die Übernahme von Leitungsfunktionen in diesen Gremien erzeugt die Möglichkeit der Steuerung von Themen und Inhalten der relevanten Normen. Das persönliche Engagement der Fachexpert*innen in den nationalen Gremien und den europäischen und internationalen Arbeitsgruppen ist ein zusätzlicher Faktor für die inhaltliche Korrektheit und die inhaltliche Ausrichtung der Norm. Denn wer nicht normt, wird genormt und muss letztlich Normen anwenden, die andere entsprechend ihrer eigenen Interessen gestaltet haben. Voraussetzung für die Teilnahme in europäischen und internationalen Normungsgremien ist die Mitwirkung in den entsprechenden DINSpiegelgremien, welche die europäischen (CEN) und internationalen (ISO) Aktivitäten spiegeln und die Fachexpert*innen für die Mitarbeit autorisieren. Auf internationaler Ebene findet die Normungsarbeit in den technischen Komitees ISO/TC 135 “Non-destructive testing” und ISO/TC 44/SC 5 “Testing and inspection of welds” und ihren Arbeitsgruppen statt. Das europäische Pendant ist das CEN/TC 138 “Zerstörungsfreie Prüfverfahren” mit seinen Arbeitsgremien. Die DINSpiegelgremien sind für die deutsche Mitarbeit in diesen Gremien und die inhaltliche Bewertung der Norm-Entwürfe zuständig. T2 - DGZfP Jahrestagung 2024 CY - Osnabrück, Germany DA - 05.05.2024 KW - Normung KW - Zerstörungsfreie Prüfung KW - Qualifizierung KW - Qualitätssicherung PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600726 DO - https://doi.org/10.58286/29496 IS - 5 SP - 1 EP - 6 AN - OPUS4-60072 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Camplese, Davide A1 - Scarponi, Giordano Emrys A1 - Chianese, Carmela A1 - Hajhariri, Aliasghar A1 - Eberwein, Robert A1 - Otremba, Frank A1 - Cozzani, Valerio T1 - Modeling the performance of multilayer insulation in cryogenic tanks undergoing external fire scenarios N2 - Multilayer Insulation (MLI) is frequently used in vacuum conditions for the thermal insulation of cryogenic storage tanks. The severe consequences of the degradation of such materials in engulfing fire scenarios were recently evidenced by several large-scale experimental tests. In the present study, an innovative modelling approach was developed to assess the performance of heat transfer in polyester-based MLI materials for cryogenic applications under fire conditions. A specific layer-by-layer approach was integrated with an apparent kinetic thermal degradation model based on thermogravimetric analysis results. The modeling results provided a realistic simulation of the experimental data obtained by High-Temperature Thermal Vacuum Chamber tests reproducing fire exposure conditions. The model was then applied to assess the behavior of MLI systems for liquid hydrogen tanks in realistic fire scenarios. The results show that in intense fire scenarios degradation occurs rapidly, compromising the thermal insulation performances of the system within a few minutes. KW - Multilayer Insulation KW - Cryogenic Vessels KW - Liquefied Hydrogen KW - Liquefied Natural Gas KW - Safety KW - Fire PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599418 DO - https://doi.org/10.1016/j.psep.2024.04.061 SN - 0957-5820 VL - 186 SP - 1169 EP - 1182 PB - Elsevier B.V. AN - OPUS4-59941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Taghavi Kalajahi, Sara A1 - Misra, Archismita A1 - Koerdt, Andrea T1 - Nanotechnology to mitigate microbiologically influenced corrosion (MIC) N2 - Microbiologically influenced corrosion (MIC) is a crucial issue for industry and infrastructure. Biofilms are known to form on different kinds of surfaces such as metal, concrete, and medical equipment. However, in some cases the effect of microorganisms on the material can be negative for the consistency and integrity of the material. Thus, to overcome the issues raised by MIC on a system, different physical, chemical, and biological strategies have been considered; all having their own advantages, limitations, and sometimes even unwanted disadvantages. Among all the methods, biocide treatments and antifouling coatings are more common for controlling MIC, though they face some challenges. They lack specificity for MIC microorganisms, leading to cross-resistance and requiring higher concentrations. Moreover, they pose environmental risks and harm non-target organisms. Hence, the demand for eco-friendly, long-term solutions is increasing as regulations tighten. Recently, attentions have been directed to the application of nanomaterials to mitigate or control MIC due to their significant antimicrobial efficiency and their potential for lower environmental risk compared to the conventional biocides or coatings. Use of nanomaterials to inhibit MIC is very new and there is a lack of literature review on this topic. To address this issue, we present a review of the nanomaterials examined as a biocide or in a form of a coating on a surface to mitigate MIC. This review will help consolidate the existing knowledge and research on the use of nanomaterials for MIC mitigation. It will further contribute to a better understanding of the potential applications and challenges associated with using nanomaterials for MIC prevention and control. KW - Microbiologically influenced corrosion (MIC) KW - Biofilm KW - Biofouling KW - Nanobiocide KW - Nanocoating PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599335 DO - https://doi.org/10.3389/fnano.2024.1340352 VL - 6 SP - 1 EP - 25 AN - OPUS4-59933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittmar, Stefan A1 - Ruhl, Aki S. A1 - Altmann, Korinna A1 - Jekel, Martin T1 - Settling Velocities of Small Microplastic Fragments and Fibers N2 - There is only sparse empirical data on the settling velocity of small, non-buoyant microplastics thus far, although it is an important parameter governing their vertical transport within aquatic environments. This study reports the settling velocities of 4031 exemplary microplastic particles. Focusing on the environmentally most prevalent particle shapes, irregular microplastic fragments of four different polymer types (9–289 µm) as well as five discrete length fractions (50–600 µm) of common nylon and polyester fibers were investigated, respectively. All settling experiments were carried out in quiescent water using a specialized optical imaging setup. The method has been previously validated in order to minimize disruptive factors, e.g. thermal convection or particle interactions, and thus enable the precise measurements of the velocities of individual microplastic particles (0.003–9.094 mm/s). Based on the obtained data, ten existing models for predicting a particle’s terminal settling velocity were assessed. It is concluded that models, which were specifically deduced from empirical data on larger microplastics, fail to provide accurate predictions for small microplastics. Instead, a different approach is highlighted as a viable option for computing settling velocities across the microplastics continuum in terms of size, density and shape. KW - Microplastics KW - Microplastic fibers KW - Settling velocity KW - Sinking velocity KW - Sedimentation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597455 DO - https://doi.org/10.1021/acs.est.3c09602 SN - 0013-936X VL - 58 IS - 14 SP - 6359 EP - 6369 PB - American Chemical Society (ACS) AN - OPUS4-59745 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Casperson, Ralf A1 - Friedrich, Alexander A1 - Heckel, Thomas A1 - Zhang, Tianyun T1 - Verwendung von DICONDE bei der Eisenbahn-Schienenprüfung N2 - Bei der zerstörungsfreien Prüfung verlegter Eisenbahnschienen werden die Rohdaten derzeit in proprietären Datenformaten gespeichert und auf Datenträgern zwischen den Prüfzügen und den auswertenden Stellen versendet. Die proprietären Datenformate sind in der Regel nur den Herstellern der Prüfsysteme bekannt und deren Dokumentation nicht allgemein zugänglich. Die „Standard Practice for Digital Imaging and Communication in Nondestructive Evaluation“ (DICONDE), basierend auf dem medizinischen Standard „Digital Imaging and Communication in Medicine“ (DICOM), ermöglicht es, sowohl Prüfdaten als auch Prüfergebnisse und Streckeninformationen in einem standardisierten Format zu speichern und zwischen verschiedenen Endpunkten zu übertragen. Das Poster gibt zunächst einen kurzen Überblick über die hierarchische Struktur von DICONDE und zeigt dann, wie DICONDE bei der Prüfung verlegter Eisenbahnschienen verwendet werden kann. Die geometrischen Besonderheiten (mehrere Kilometer Länge pro Prüffahrt, kurviger Streckenverlauf) stellen dabei eine besondere Herausforderung dar. Im Rahmen des mFUND-geförderten Projektes „Arteficial Intelligence for Railway Inspection (AIFRI)“, Förderkennzeichen 19FS2014C, wurde ein Vorschlag für eine Erweiterung des DICONDE-Standards für die Schienenprüfung erarbeitet und bei der ASTM eingereicht. T2 - DGZfP Jahrestagung 2024 CY - Osnabrück, Germany DA - 05.05.2024 KW - DICONDE KW - Eisenbahn KW - Schienenprüfung PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600204 DO - https://doi.org/10.58286/29500 SP - 1 EP - 5 PB - NDT.net AN - OPUS4-60020 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieg, Holger A1 - Schaar, Caroline A1 - Fouquet, Nicole A1 - Böhmert, Linda A1 - Thünemann, Andreas A1 - Braeuning, Albert T1 - Particulate iron oxide food colorants (E 172) during artificial digestion and their uptake and impact on intestinal cells N2 - Iron oxide of various structures is frequently used as food colorant (E 172). The spectrum of colors ranges from yellow over orange, red, and brown to black, depending on the chemical structure of the material. E 172 is mostly sold as solid powder. Recent studies have demonstrated the presence of nanoscaled particles in E 172 samples, often to a very high extent. This makes it necessary to investigate the fate of these particles after oral uptake. In this study, 7 differently structured commercially available E 172 food colorants (2 x Yellow FeO(OH), 2 x Red Fe2O3, 1 x Orange Fe2O3 + FeO(OH) and 2 x Black Fe3O4) were investigated for particle dissolution, ion release, cellular uptake, crossing of the intestinal barrier and toxicological impact on intestinal cells. Dissolution was analyzed in water, cell culture medium and artificial digestion fluids. Small-angle X-ray scattering (SAXS) was employed for determination of the specific surface area of the colorants in the digestion fluids. Cellular uptake, transport and toxicological effects were studied using human differentiated Caco-2 cells as an in vitro model of the intestinal barrier. For all materials, a strong interaction with the intestinal cells was observed, albeit there was only a limited dissolution, and no toxic in vitro effects on human cells were recorded. KW - Toxicology KW - Nanoparticles KW - Small-angle X-ray scattering KW - SAXS PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593935 DO - https://doi.org/10.1016/j.tiv.2024.105772 VL - 96 SP - 1 EP - 12 PB - Elsevier BV AN - OPUS4-59393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heyn, A. A1 - Meist, M. A1 - Michael, O. A1 - Babutzka, M. A1 - Valet, Svenja A1 - Ebell, Gino T1 - Electrochemical characterization of surfaces of galvanized steels under different exposure conditions using gel electrolytes N2 - The corrosion behavior of galvanized steels and zinc components under atmospheric exposure depends mostly on the corrosion product‐based cover layer formation under the prevailing conditions. The use of agar‐based gel electrolytes makes it possible to use electrochemical methods to obtain a characteristic value from these cover layers that describe their current and future protective capacity. It is shown here that different states of galvanized steel can be distinguished very well under laboratory conditions and that this method is also suitable for use under practical conditions. Based on the characteristic values and assuming future time of wetness, it is very easy to draw up a forecast for the future corrosion rate, which provides plausible values. KW - Materials Chemistry KW - Metals and Alloys KW - Surfaces, Coatings and Films KW - Mechanical Engineering KW - Mechanics of Materials KW - Environmental Chemistry KW - Corrosion KW - Znc PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599234 DO - https://doi.org/10.1002/maco.202414389 SP - 1 EP - 16 PB - Wiley VHC-Verlag AN - OPUS4-59923 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Maxi B. A1 - Böhmert, Linda A1 - Thünemann, Andreas A1 - Loeschner, Katrin A1 - Givelet, Lucas A1 - Fahrenson, Christoph A1 - Braeuning, Albert A1 - Sieg, Holger T1 - Influence of artificial digestion on characteristics and intestinal cellular effects of micro-, submicro- and nanoplastics N2 - The production of plastics is rising since they have been invented. Micro, submicro- and nanoplastics are produced intentionally or generated by environmental processes, and constitute ubiquitous contaminants which are ingested orally by consumers. Reported health concerns include intestinal translocation, inflammatory response, oxidative stress and cytotoxicity. Every digestive milieu in the gastrointestinal tract does have an influence on the properties of particles and can cause changes in their effect on biological systems. In this study, we subjected plastic particles of different materials (polylactic acid, polymethylmethacrylate, melamine formaldehyde) and sizes (micro- to nano-range) to a complex artificial digestion model consisting of three intestinal fluid simulants (saliva, gastric and intestinal juice). We monitored the impact of the digestion process on the particles by performing Dynamic Light Scattering, Scanning Electron Microscopy and Asymmetric Flow Field-Flow Fractionation. An in vitro model of the intestinal epithelial barrier was used to monitor cellular effects and translocation behavior of (un)digested particles. In conclusion, artificial digestion decreased cellular interaction and slightly increased transport of all particles across the intestinal barrier. The interaction with organic matter resulted in clear differences in the agglomeration behavior. Moreover, we provide evidence for polymer-, size- and surface-dependent cellular effects of the test particles. KW - Toxicology KW - General Medicine KW - Food Science KW - Nanoplastics KW - Nanoparticle KW - Dynamic Light Scattering KW - DLS PY - 2024 DO - https://doi.org/10.1016/j.fct.2023.114423 VL - 184 SP - 1 EP - 16 PB - Elsevier AN - OPUS4-59298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gluth, Gregor A1 - Mundra, Shishir A1 - Henning, Ricky T1 - Chloride binding by layered double hydroxides (LDH/AFm phases) and alkali-activated slag pastes: an experimental study by RILEM TC 283-CAM N2 - Chloride binding by the hydrate phases of cementitious materials influences the rate of chloride ingress into these materials and, thus, the time at which chloride reaches the steel reinforcement in concrete structures. Chloride binding isotherms of individual hydrate phases would be required to model chloride ingress but are only scarcely available and partly conflicting. The present study by RILEM TC 283-CAM ‘Chloride transport in alkali-activated materials’ significantly extends the available database and resolves some of the apparent contradictions by determining the chloride binding isotherms of layered double hydroxides (LDH), including AFm phases (monosulfate, strätlingite, hydrotalcite, and meixnerite), and of alkali-activated slags (AAS) produced with four different activators (Na2SiO3, Na2O·1.87SiO2, Na2CO3, and Na2SO4), in NaOH/NaCl solutions at various liquid/solid ratios. Selected solids after chloride binding were analysed by X-ray diffraction, and thermodynamic modelling was applied to simulate the phase changes occurring during chloride binding by the AFm phases. The results of the present study show that the chloride binding isotherms of LDH/AFm phases depend strongly on the liquid/solid ratio during the experiments. This is attributed to kinetic restrictions, which are, however, currently poorly understood. Chloride binding by AAS pastes is only moderately influenced by the employed activator. A steep increase of the chloride binding by AAS occurs at free chloride concentrations above approx. 1.0 M, which is possibly related to chloride binding by the C–(N–)A–S–H gel in the AAS. KW - Chloride binding KW - Sorption isotherm KW - Layered double hydroxide KW - AFm phase KW - Alkali-activated materials PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599370 DO - https://doi.org/10.1617/s11527-024-02311-3 SN - 1359-5997 SN - 1871-6873 VL - 57 IS - 4 SP - 1 EP - 17 PB - Springer Nature AN - OPUS4-59937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kindrachuk, Vitaliy A1 - Darvishi Kamachali, Reza T1 - Mean-field modeling and phase-field simulation of grain growth under directional driving forces N2 - Directional grain growth is a common phenomenon in the synthetic and natural evolution of various polycrystals. It occurs in the presence of an external driving force, such as a temperature gradient, along which grains show a preferred, yet competitive, growth. Novel additive manufacturing processes, with intense, localized energy deposition, are prominent examples of when directional grain growth can occur, beneath the melting pool. In this work, we derive a phenomenological mean-field model and perform 3D phase-field simulations to investigate the directional grain growth and its underlying physical mechanisms. The effect of the intensity of driving force is simulated and systematically analyzed at the evolving growth front as well as various cross-sections perpendicular to the direction of the driving force. We found that although the directional growth significantly deviates from normal grain growth, it is still governed by a power law relation α tⁿ with an exponent n ~ 0.6–0.7. The exponent n exhibits a nontrivial dependence on the magnitude of the directional driving force, such that the lowest growth exponent is observed for intermediate driving forces. We elaborate that this can originate from the fact that the forces at grain boundary junctions evolve out of balance under the influence of the directional driving force. With increasing the driving forces, the growth exponent asymptotically approaches a value of n ≈ 0.63, imposed by the largest possible grain aspect ratio for given grain boundary energies. The current combined mean-field and phase-field framework pave the way for future exploration in broader contexts such as the evolution of complex additively manufactured microstructures. KW - Additive manufacturing KW - Phase-field simulation KW - Grain growth KW - Mean-field modelling KW - Directional grain growth PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593210 DO - https://doi.org/10.1016/j.mtla.2023.101989 SN - 2589-1529 VL - 33 SP - 1 EP - 10 PB - Elsevier AN - OPUS4-59321 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Maxi B. A1 - Böhmert, Linda A1 - Thünemann, Andreas A1 - Loeschner, Katrin A1 - Givelet, Lucas A1 - Fahrenson, Christoph A1 - Braeuning, Albert A1 - Sieg, Holger T1 - Influence of artificial digestion on characteristics and intestinal cellular effects of micro-, submicro- and nanoplastics N2 - The production of plastics is rising since they have been invented. Micro, submicro- and nanoplastics are produced intentionally or generated by environmental processes, and constitute ubiquitous contaminants which are ingested orally by consumers. Reported health concerns include intestinal translocation, inflammatory response, oxidative stress and cytotoxicity. Every digestive milieu in the gastrointestinal tract does have an influence on the properties of particles and can cause changes in their effect on biological systems. In this study, we subjected plastic particles of different materials (polylactic acid, polymethylmethacrylate, melamine formaldehyde) and sizes (micro- to nano-range) to a complex artificial digestion model consisting of three intestinal fluid simulants (saliva, gastric and intestinal juice). We monitored the impact of the digestion process on the particles by performing Dynamic Light Scattering, Scanning Electron Microscopy and Asymmetric Flow Field-Flow Fractionation. An in vitro model of the intestinal epithelial barrier was used to monitor cellular effects and translocation behavior of (un)digested particles. In conclusion, artificial digestion decreased cellular interaction and slightly increased transport of all particles across the intestinal barrier. The interaction with organic matter resulted in clear differences in the agglomeration behavior. Moreover, we provide evidence for polymer-, size- and surface-dependent cellular effects of the test particles. KW - Toxicology KW - Nanoparticles KW - Dynamic Light Scattering KW - Nanoplastics KW - Microplastics KW - Reference Method KW - Reference Material PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593947 DO - https://doi.org/10.1016/j.fct.2023.114423 VL - 184 SP - 1 EP - 16 PB - Elsevier BV AN - OPUS4-59394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geißler, Daniel A1 - Wegner, Karl David A1 - Fischer, C. A1 - Resch-Genger, Ute T1 - Exploring Simple Particle-Based Signal Amplification Strategies in a Heterogeneous Sandwich Immunoassay with Optical Detection N2 - Heterogeneous sandwich immunoassays are widely used for biomarker detection in bioanalysis and medical diagnostics. The high analyte sensitivity of the current “gold standard” enzyme-linked immunosorbent assay (ELISA) originates from the signal-generating enzymatic amplification step, yielding a high number of optically detectable reporter molecules. For future point-of-care testing (POCT) and point-of-need applications, there is an increasing interest in more simple detection strategies that circumvent time-consuming and temperature-dependent enzymatic reactions. A common concept to aim for detection limits comparable to those of enzymatic amplification reactions is the usage of polymer nanoparticles (NP) stained with a large number of chromophores. We explored different simple NP-based signal amplification strategies for heterogeneous sandwich immunoassays that rely on an extraction-triggered release step of different types of optically detectable reporters. Therefore, streptavidinfunctionalized polystyrene particles (PSP) are utilized as carriers for (i) the fluorescent dye coumarin 153 (C153) and (ii) hemin (hem) molecules catalyzing the luminol reaction enabling chemiluminescence (CL) detection. Additionally, (iii) NP labeling with hemin-based microperoxidase MP11 was assessed. For each amplification approach, the PSP was first systematically optimized regarding size, loading concentration, and surface chemistry. Then, for an immunoassay for the inflammation marker C- eactive protein (CRP), the analyte sensitivity achievable with optimized PSP ystems was compared with the established ELISA concept for photometric and CL detection. Careful optimization led to a limit of detection (LOD) of 0.1 ng/mL for MP11-labeled PSP and CL detection, performing similarly well to a photometric ELISA (0.13 ng/mL), which demonstrates the huge potential of our novel assay concept. KW - Nanoparticle KW - Fluorescence KW - Immunoassay KW - Quality assurance KW - Antibody KW - Polymer KW - Dye KW - Signal enhancement KW - CRP KW - Biosensing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597853 DO - https://doi.org/10.1021/acs.analchem.3c03691 SN - 1520-6882 VL - 96 IS - 13 SP - 5078 EP - 5085 PB - American Chemical Society CY - Columbus, Ohio AN - OPUS4-59785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wegner, Karl David A1 - Resch-Genger, Ute T1 - The 2023 Nobel Prize in Chemistry: Quantum dots N2 - The 2023 Nobel Prize in Chemistry was awarded to Aleksey I. Ekimov (prize share 1/3), Louis E. Brus (prize share 1/3), and Moungi G. Bawendi (prize share 1/3) for groundbreaking inventions in the field of nanotechnology, i.e., for the discovery and synthesis of semiconductor nanocrystals, also termed quantum dots, that exhibit size-dependent physicochemical properties enabled by quantum size effects. This feature article summarizes the main milestones of the discoveries and developments of quantum dots that paved the road to their versatile applications in solid-state lighting, display technology, energy conversion, medical diagnostics, bioimaging, and image-guided surgery. KW - Quantum dots KW - Semiconductor nanocrystals KW - Luminescence KW - Quantitative spectroscopy KW - Quantum yield KW - Advanced nanomaterials KW - Quality assurance KW - Energy transfer PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597843 DO - https://doi.org/10.1007/s00216-024-05225-9 VL - 2024 SP - 1 EP - 11 PB - Springer CY - Cham AN - OPUS4-59784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silvestroni, L. A1 - Kupsch, Andreas A1 - Müller, B. R. A1 - Ulbricht, Alexander A1 - Wieder, Frank A1 - Fritsch, Tobias A1 - Sciti, D. A1 - Bruno, Giovanni T1 - Determination of short carbon fiber orientation in zirconium diboride ceramic matrix composites N2 - In fiber-reinforced components, the fiber alignment and orientation have paramount influence on the thermomechanical properties of the resulting composite, for both short and continuous fiber. Here we present the case of an ultra-refractory matrix intended for extreme environment applications, ZrB2, reinforced with 20 vol% and 50 vol% short carbon fibers. In both cases, fibers tend to align perpendicular to the uniaxial pressure applied during shaping and sintering of a pellet, although the fiber tilt across the pellet thickness is difficult to determine. Moreover, for high volume fractions of reinforcement, the spatial distribution of the fibers is heterogeneous and tends to have domains of preferential orientations. We compare the information on the fiber distribution as collected by scanning electron microscopy images, X-ray computed tomography and synchrotron X-ray refraction radiography (SXRR). The three techniques prove to be complementary. Importantly, we demonstrate that SXRR yields the most statistically significant information due to the largest field of view, yet with a sensitivity down to the nanometer, and that can be successfully applied also to heavy matrix materials, such as zirconium boride. KW - Ceramic matrix composites KW - Synchrotron X-ray refraction radiography KW - X-ray computed tomography KW - Scanning electron microscopy KW - High-temperature ceramics PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597712 DO - https://doi.org/10.1016/j.jeurceramsoc.2024.02.048 SN - 0955-2219 VL - 44 IS - 8 SP - 4853 EP - 4862 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-59771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans R. A1 - Weidner, Steffen T1 - Ring-ring equilibration (RRE) of cyclic poly(L-lactide)s by means of cyclic tin catalysts N2 - With 2,2-dibutyl-2-stanna-1,3-dithiolane (DSTL) and 2-stanna-1,3-dioxa-4,5,6,7-dibenzoxepane (SnBiPh) as catalysts ring-expansion polymerizations (REP) were performed either in 2 M solution using three different solvents and two different temperatures or in bulk at 140 and 120 ◦C. A kinetically controlled rapid REP up to weight average molecular masses (Mẃs) above 300 000 was followed by a slower degradation of the molecular masses at 140 ◦C, but not at 120 ◦C Furthermore, a low molecular mass cyclic poly(L-lactide) (cPLA) with a Mn around 16 000 was prepared by polymerization in dilute solution and used as starting material for ring-ring equilibration at 140 ◦C in 2 M solutions. Again, a decrease of the molecular mass was detectable, suggesting that the equilibrium Mn is below 5 000. The degradation of the molecular masses via RRE was surprisingly more effective in solid cyclic PLA than in solution, and a specific transesterification mechanism involving loops on the surface of crystallites is proposed. This degradation favored the formation of extended-ring crystallites, which were detectable by a “saw-tooth pattern” in their MALDI mass spectra. KW - Organic Chemistry KW - Polymers and Plastics KW - MALDI-TOF MS KW - Materials Chemistry PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593819 DO - https://doi.org/10.1016/j.eurpolymj.2024.112765 SN - 0014-3057 VL - 206 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-59381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Potopnyk, M. A1 - Mech-Piskorz, J. A1 - Angulo, G. A1 - Ceborska, M. A1 - Luboradzki, R. A1 - Andresen, Elina A1 - Gajek, A. A1 - Wisniewska, A. A1 - Resch-Genger, Ute T1 - Aggregation/Crystallization-Induced Emission in Naphthyridine-Based Carbazolyl-Modified Donor-Acceptor Boron Dyes Tunable by Fluorine Atoms N2 - Four donor-acceptor boron difluoride complexes based on the carbazole electron donor and the [1,3,5,2]oxadiazaborinino[3,4-a][1,8]naphthyridine acceptor were designed, synthesized, and systematically spectroscopically investigated in solutions, in the solid states, and dye-doped polymer films. The dyes exhibit an intense blue to red solid-state emission with photoluminescence quantum yields of up to 56% in pure dye samples and 86% in poly(methyl methacrylate) films. All boron complexes show aggregation-induced emission and reversible mechanofluorochromism. The optical properties of these dyes and their solid state luminescence can be tuned by substitution pattern, i.e., the substituents at the naphthyridine unit. Exchange of CH3- for CF3-groups does not only increase the intramolecular charge transfer character, but also provides a crystallization-induced emission enhancement. KW - Spectroscopy KW - Dye KW - Luminescence KW - Sensor KW - Fluorescence KW - Quantum yield KW - Lifetime KW - Quality assurance KW - Synthesis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597426 DO - https://doi.org/10.1002/chem.202400004 SN - 0947-6539 SP - 1 EP - 12 PB - Wiley VHC-Verlag AN - OPUS4-59742 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Minenkov, Alexey A1 - Hollweger, Sophia A1 - Duchoslav, Jiri A1 - Erdene-Ochir, Otgonbayar A1 - Weise, Matthias A1 - Ermilova, Elena A1 - Hertwig, Andreas A1 - Schiek, Manuela T1 - Monitoring the Electrochemical Failure of Indium Tin Oxide Electrodes via Operando Ellipsometry Complemented by Electron Microscopy and Spectroscopy N2 - Transparent conductive oxides such as indium tin oxide (ITO) are standards for thin film electrodes, providing a synergy of high optical transparency and electrical conductivity. In an electrolytic environment, the determination of an inert electrochemical potential window is crucial to maintain a stable material performance during device operation. We introduce operando ellipsometry, combining cyclic voltammetry (CV) with spectroscopic ellipsometry, as a versatile tool to monitor the evolution of both complete optical (i.e., complex refractive index) and electrical properties under wet electrochemical operational conditions. In particular, we trace the degradation of ITO electrodes caused by electrochemical reduction in a pH-neutral, water-based electrolyte environment during electrochemical cycling. With the onset of hydrogen evolution at negative bias voltages, indium and tin are irreversibly reduced to the metallic state, causing an advancing darkening, i.e., a gradual loss of transparency, with every CV cycle, while the conductivity is mostly conserved over multiple CV cycles. Post-operando analysis reveals the reductive (loss of oxygen) formation of metallic nanodroplets on the surface. The reductive disruption of the ITO electrode happens at the solid–liquid interface and proceeds gradually from the surface to the bottom of the layer, which is evidenced by cross-sectional transmission electron microscopy imaging and complemented by energy-dispersive X-ray spectroscopy mapping. As long as a continuous part of the ITO layer remains at the bottom, the conductivity is largely retained, allowing repeated CV cycling. We consider operando ellipsometry a sensitive and nondestructive tool to monitor early stage material and property changes, either by tracing failure points, controlling intentional processes, or for sensing purposes, making it suitable for various research fields involving solid–liquid interfaces and electrochemical activity. KW - General Materials Science PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597625 DO - https://doi.org/10.1021/acsami.3c17923 SN - 1944-8252 VL - 16 IS - 7 SP - 9517 EP - 9531 PB - American Chemical Society (ACS) AN - OPUS4-59762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peters, Stefan A1 - Bartling, Stephan A1 - Parlinska-Wojtan, Magdalena A1 - Wotzka, Alexander A1 - Guilherme Buzanich, Ana A1 - Wohlrab, Sebastian A1 - Abdel-Mageed, Ali M. T1 - Stabilization of intermediate Mo oxidation states by Nb doping enhancing methane aromatization on Mo/HZSM-5 catalysts N2 - The dehydroaromatization of methane is a promising process to produce aromatics and ultra-pure hydrogen. Increased yields and stability of Mo/HZSM-5 against irreversible deactivation were achieved via a redox interaction by doping with otherwise inert Nb. KW - General Materials Science KW - Sustainability and the Environment KW - General Chemistry KW - Renewable Energy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597670 DO - https://doi.org/10.1039/D3TA07532J SN - 2050-7488 SP - 1 EP - 16 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roveda, Ilaria A1 - Mishurova, Tatiana A1 - Evans, Alexander A1 - Fitch, Andrew N. A1 - Haubrich, Jan A1 - Requena, Guillermo A1 - Bruno, Giovanni A1 - Serrano‐Munoz, Itziar T1 - Evolution of interphase stress over a crack propagation plane as a function of stress relief heat treatments in a PBF‐LB/M AlSi10Mg alloy N2 - AbstractIn this study, we compare the residual stress state in a laser powder bed fusion (PBF‐LB/M) AlSi10Mg alloy in the as‐built (AB) condition with that after two different heat treatments (265 °C for 1 h, HT1; and 300 °C for 2 h, HT2). The bulk residual stress (RS) is determined using synchrotron X‐ray diffraction (SXRD), and near‐surface profiles are determined using laboratory energy‐dispersive X‐ray diffraction (EDXRD). The EDXRD results do not reveal any notable difference between the conditions at a depth of 350 μm, suggesting that the machining process yields a comparable residual stress state in the near‐surface regions. On the other hand, the SXRD results show that HT1 is more effective in relieving the bulk RS. It is observed that HT1 reduces the RS state in both the aluminium matrix and the silicon network. In addtion, HT2 does not have a significant impact on relaxing the RS as‐built state of the matrix, although it does induce a reduction in the RS magnitudes of the Si phase. It is concluded that the heat treatment stress relieving is effective as long as the Si‐network is not disaggregated. KW - Interphase residual stress KW - Laboratory energy-dispersive X-ray diffraction (EDXRD) KW - PBFLB/M AlSi10Mg alloy KW - Stress-relief heat-treatments KW - Synchrotron X-ray diffraction (SXRD) PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597591 DO - https://doi.org/10.1111/str.12475 SP - 1 EP - 13 PB - John Wiley & Sons Ltd. AN - OPUS4-59759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cabo Rios, Alberto A1 - Mishurova, Tatiana A1 - Cordova, Laura A1 - Persson, Mats A1 - Bruno, Giovanni A1 - Olevsky, Eugene A1 - Hryha, Eduard T1 - Ex-situ characterization and simulation of density fluctuations evolution during sintering of binder jetted 316L N2 - Efficient density evolution during sintering of the as-printed component is vital to reach full densification and required properties of binder jet (BJT) components. However, due to the high porosity and brittle nature of the green compact, analysis of the microstructure development during sintering is very difficult, resulting in lack of understanding of the densification process. Density development from green state (57 ± 1.6 %) up to full density (99 ± 0.3 %) was characterized by high-resolution synchrotron X-Ray computed tomography (SXCT) on BJT 316L samples from ex-situ interrupted sintering tests. Periodicity of density fluctuations along the building direction was revealed for the first time and was related to the layer thickness of ~ 42 μm during printing that decreased down to ~ 33 μm during sintering. Sintering simulations, utilizing a continuum sintering model developed for BJT, allowed to replicate the density evolution during sintering with a mean error of 2 % and its fluctuation evolution from green (1.66 %) to sintered (0.56 %) state. Additionally, simulation of extreme particle size segregation (1 μm to 130 μm) suggested that non-optimized printing could lead to undesirable density fluctuation amplitude rapid increase (~10 %) during sintering. This might trigger the nucleation of defects (e.g., layer delamination, cracking, or excessive residual porosity) during the sintering process. KW - Additive manufacturing KW - Synchrotron X-ray CT KW - Binder Jetting KW - Sintering KW - FEM Simulation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594389 DO - https://doi.org/10.1016/j.matdes.2024.112690 SN - 0264-1275 VL - 238 SP - 1 EP - 18 PB - Elsevier AN - OPUS4-59438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Theiler, Géraldine A1 - Cano Murillo, Natalia A1 - Halder, Karabi A1 - Balasooriya, Winoj A1 - Hausberger, Andreas A1 - Kaiser, Andreas T1 - Effect of high-pressure hydrogen environment on the physical and mechanical properties of elastomers N2 - This study presents the influence of high-pressure hydrogen environment on the physical and mechanical properties of two types of cross-linked hydrogenated acrylonitrile butadiene rubbers. Based on the CSA/ANSI standard, static exposures in hydrogen experiments were performed up to 100 MPa at 120 °C. Characterization before and after exposure was conducted by means of density and hardness measurements, dynamic mechanical analysis (DMA), tensile tests, compression set, FT-IR and AFM analyses to assess effects after decompression. While the effect of high-pressure exposure is significant immediately after exposure, most of the physical and mechanical properties recover after 48 hours. FT-IR, AFM, SEM and compression set results indicate, however, permanent effects. KW - Hydrogen KW - Mechanical properties KW - Elastomers KW - High-pressure hydrogen environment PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597102 DO - https://doi.org/10.1016/j.ijhydene.2024.01.148 SN - 0360-3199 VL - 58 SP - 389 EP - 399 PB - Elsevier Ltd. AN - OPUS4-59710 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -