TY - JOUR A1 - Strommer, Bettina A1 - Schulze, Dietmar A1 - Schartel, Bernhard A1 - Böhning, Martin T1 - The quantification of anisotropy in graphene/natural rubber nanocomposites: Evaluation of the aspect ratio, concentration, and crosslinking N2 - In the processing of nanocomposites, high shear stresses at elevated tempera-tures orient two-dimensional nanoparticles like graphene. This orientationleads to anisotropic mechanical, thermal or barrier properties of the nanocom-posite. This anisotropy is addressed in this study by comparing graphene (few-layer graphene, FLG) with a nanoscaled carbon black (nCB) at a filler contentof 3 phr, by varying the vulcanization, and by comparing different FLG con-tents. Transmission electron microscopy gives insight into the qualitative ori-entation in the nanocomposite with FLG or nCB. The storage moduli paralleland normal to the orientation reveal the direction dependency of reinforce-ment through dynamic mechanical analysis (DMA). Dimensional swellingmeasurements show a restriction of the expansion parallel to the FLG orienta-tion, and an increased expansion normal to the orientation. The vulcanizationsystem and crosslinking determine the respective level of property values, andhigher crosslinking densities increase the anisotropy in DMA resulting invalues of up to 2.9 for the quantified anisotropy factor. With increasing FLGcontent, the anisotropy increases. A comparison of the results reveals swellingmeasurements as the most suitable method for the determination of anisot-ropy. Compared to recent literature, the presented processing induces higheranisotropy, leading to higher reinforcing effects in the direction of orientation KW - Natural rubber KW - Graphene KW - Nanocomposite KW - Mechanical properties KW - Swelling PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571522 DO - https://doi.org/10.1002/app.53753 SN - 1097-4628 VL - 140 IS - 16 SP - 1 EP - 15 PB - Wiley online library CY - Hoboken, New Jersey (USA) AN - OPUS4-57152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Santos de Freitas, M. A1 - Araghi, R. R. A1 - Brandenburg, E. A1 - Leiterer, Jork A1 - Emmerling, Franziska A1 - Folmert, K. A1 - Gerling-Driessen, U. I. M. A1 - Bardiaux, B. A1 - Böttcher, C. A1 - Pagel, K. A1 - Diehl, A. A1 - v. Berlepsch, H. A1 - Oschkinat, H. A1 - Koksch, B. T1 - The protofilament architecture of a de novo designed coiled coil-based amyloidogenic peptide N2 - Amyloid fibrils are polymers formed by proteins under specific conditions and in many cases they are related to pathogenesis, such as Parkinson’s and Alzheimer’s diseases. Their hallmark is the presence of a β-sheet structure. High resolution structural data on these systems as well as information gathered from multiple complementary analytical techniques is needed, from both a fundamental and a pharmaceutical perspective. Here, a previously reported de novo designed, pH-switchable coiled coil-based peptide that undergoes structural transitions resulting in fibril formation under physiological conditions has been exhaustively characterized by transmission electron microscopy (TEM), cryo-TEM, atomic force microscopy (AFM), wide-angle X-ray scattering (WAXS) and solid-state NMR (ssNMR). Overall, a unique 2-dimensional carpet-like assembly composed of large coexisiting ribbon-like, tubular and funnel-like structures with a clearly resolved protofilament substructure is observed. Whereas electron microscopy and scattering data point somewhat more to a hairpin model of β-fibrils, ssNMR data obtained from samples with selectively labelled peptides are in agreement with both, hairpin structures and linear arrangements. KW - Amyloid KW - Elektronenmikroskopie PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-458713 UR - https://www.sciencedirect.com/science/article/pii/S1047847718301333 DO - https://doi.org/10.1016/j.jsb.2018.05.009 SN - 1047-8477 VL - 203 IS - 3 SP - 263 EP - 272 PB - Elsevier AN - OPUS4-45871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weller, Michael G. T1 - The Protocol Gap N2 - Although peer review is considered one of the main pillars of modern science, experimental methods and protocols seem to be not a rigorous subject of this process in many papers. Commercial equipment, test kits, labeling kits, previously published concepts, and standard protocols are often considered to be not worth a detailed description or validation. Even more disturbing is the extremely biased citation behavior in this context, which sometimes leads to surrogate citations to avoid low-impact journals, preprints, or to indicate traditional practices. This article describes some of these surprising habits and suggests some measures to avoid the most unpleasant effects, which in the long term may undermine the credibility of science as a whole. KW - Validation KW - Peer review KW - Experiment KW - Documentation KW - Scientific publication KW - Reproducibility crisis KW - Replication crisis KW - Trust KW - Citation KW - References KW - Surrogate citations KW - Impact PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521440 DO - https://doi.org/10.3390/mps4010012 SN - 2409-9279 VL - 4 IS - 1 SP - 1 EP - 5 PB - MDPI CY - Basel AN - OPUS4-52144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Albarrán Martínez, M. J. A1 - Ghigo, Tea T1 - The practice of writing inside an Egyptian monastic settlement N2 - Over the last few years, the Federal Institute for material research (BAM, Berlin) together with the Centre for the Study of Manuscript Cultures (CSMC, University of Hamburg) have initiated a systematic material investigation of black inks produced from Late Antiquity to the Middle Ages (ca. fourth century CE–fourteenth/fifteenth centuries CE), aimed primarily at extending and complementing findings from previous sporadic studies. Part of this systematic investigation has focused on Egyptian Coptic manuscripts, and the present preliminary study is one of its outputs. It centres on a corpus of 45 Coptic manuscripts—43 papyri and 2 ostraca—preserved at the Palau-Ribes and Roca-Puig collections in Barcelona. The manuscripts come from the Monastery of Apa Apollo at Bawit, one of the largest monastic settlements in Egypt between the Late Antiquity and the Early Islamic Period (sixth–eighth centuries CE). The composition of their black inks was investigated in situ using near-infrared reflectography (NIRR) and X-ray fluorescence (XRF). The analyses determined that the manuscripts were written using different types of ink: pure carbon ink; carbon ink containing iron; mixed inks containing carbon, polyphenols and metallic elements; and iron-gall ink. The variety of inks used for the documentary texts seems to reflect the articulate administrative system of the monastery of Bawit. This study reveals that, in contrast to the documents, written mostly with carbon-based inks, literary biblical texts were written with iron-gall ink. The frequent reuse of papyrus paper for certain categories of documents may suggest that carbon-based inks were used for ephemeral manuscripts, since they were easy to erase by abrasion. KW - Papyrus KW - Ink analysis KW - Coptic manuscripts KW - Bawit KW - Mixed ink KW - Near-infrared refectography KW - X-ray fuorescence PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528833 DO - https://doi.org/10.1186/s40494-021-00541-0 SN - 2050-7445 VL - 9 IS - 1 SP - 1 EP - 15 PB - Springer Open CY - Rome, Italy AN - OPUS4-52883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linberg, Kevin A1 - Szymoniak, Paulina A1 - Schönhals, Andreas A1 - Emmerling, Franziska A1 - Michalchuk, Adam A. L. T1 - The Origin of Delayed Polymorphism in Molecular Crystals Under Mechanochemical Conditions N2 - We show that mechanochemically driven polymorphic transformations can require extremely long induction periods, which can be tuned from hours to days by changing ball milling energy. The robust design and interpretation of ball milling experiments must account for this unexpected kinetics that arises from energetic phenomena unique to the solid state. Detailed thermal analysis, combined with DFT simulations, indicates that these marked induction periods are associated with processes of mechanical activation. Correspondingly, we show that the pre‐activation of reagents can also lead to marked changes in the length of induction periods. Our findings demonstrate a new dimension for exerting control over polymorphic transformations in organic crystals. We expect mechanical activation to have a much broader implication across organic solid‐state mechanochemistry. KW - General Chemistry KW - Catalysis KW - Organic Chemistry PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589219 DO - https://doi.org/10.1002/chem.202302150 SN - 0947-6539 SP - e202302150 PB - Wiley AN - OPUS4-58921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kruschwitz, Sabine A1 - Munsch, Sarah A1 - Telong, Melissa A1 - Schmidt, Wolfram A1 - Bintz, Thilo A1 - Fladt, Matthias A1 - Stelzner, Ludwig T1 - The NMR core analyzing TOMograph: A multi-functional tool for non-destructive testing of building materials N2 - NMR is becoming increasingly popular for the investigation of building materials as it is a non-invasive technology that does not require any sample preparation nor causes damage to the material. Depending on the specific application it can offer insights into properties like porosity and spatial saturation degree as well as pore structure. Moreover it enables the determination of moisture transport properties and the (re-)distribution of internal moisture into different reservoirs or chemical phases upon damage and curing. However, as yet most investigations were carried out using devices originally either designed for geophysical applications or the analysis of rather homogeneous small scale (< 10 mL) samples. This paper describes the capabilities of an NMR tomograph, which has been specifically optimized for the investigation of larger, heterogeneous building material samples (diameters of up to 72 mm, length of up to 700 mm) with a high flexibility due to interchangeable coils allowing for a high SNR and short echo times (50 - 80 m s). KW - Fire spalling KW - Moisture transport KW - Concrete KW - Cement hydration KW - Sensitivity KW - Supplementary cementitous materials KW - Frost salt attack PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573755 DO - https://doi.org/10.1016/j.mrl.2023.03.004 SN - 2097-0048 VL - 3 IS - 3 SP - 207 EP - 219 PB - Elsevier B.V. AN - OPUS4-57375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kardjilov, N A1 - Manke, I A1 - Hilger, A A1 - Arlt, T A1 - Bradbury, R A1 - Markötter, Henning A1 - Woracek, R A1 - Strobel, M A1 - Treimer, W A1 - Banhart, J T1 - The Neutron Imaging Instrument CONRAD — Post‐Operational Review N2 - The neutron imaging instrument CONRAD was operated as a part of the user program of the research reactor BER‐II at Helmholtz‐Zentrum Berlin (HZB) from 2005 to 2020. The Instrument was designed to use the neutron flux from the cold source of the reactor, transported by a curved neutron guide. The pure cold neutron spectrum provided a great advantage in the use of different neutron optical components such as focusing lenses and guides, solid‐state polarizers, Monochromators and phase gratings. The flexible setup of the instrument allowed for implementation of new methods including wavelength‐selective, dark‐field, phase‐contrast and imaging with polarized neutrons. In summary, these developments helped to attract a large number of scientists and industrial customers, who were introduced to neutron imaging and subsequently contributed to the Expansion of the neutron imaging community. KW - Neutron imaging KW - Neutron scattering KW - Neutron instrument KW - Tomography PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-534190 DO - https://doi.org/10.3390/ jimaging7010011 VL - 7 IS - 11 SP - 7010011 PB - MDPI AN - OPUS4-53419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weller, Michael G. T1 - The mystery of homochirality on earth N2 - Homochirality is an obvious feature of life on Earth. On the other hand, extraterrestrial samples contain largely racemic compounds. The same is true for any common organic synthesis. Therefore, it has been a perplexing puzzle for decades how these racemates could have formed enantiomerically enriched fractions as a basis for the origin of homochiral life forms. Numerous hypotheses have been put forward as to how preferentially homochiral molecules could have formed and accumulated on Earth. In this article, it is shown that homochirality of the abiotic organic pool at the time of formation of the first self-replicating molecules is not necessary and not even probable. It is proposed to abandon the notion of a molecular ensemble and to focus on the level of individual molecules. Although the formation of the first self-replicating, most likely homochiral molecule, is a seemingly improbable event, on a closer look, it is almost inevitable that some homochiral molecules have formed simply on a statistical basis. In this case, the non-selective leap to homochirality would be one of the first steps in chemical evolution directly out of a racemic “ocean”. Moreover, most studies focus on the chirality of the primordial monomers with respect to an asymmetric carbon atom. However, any polymer with a minimal size that allows folding to a secondary structure would spontaneously lead to asymmetric higher structures (conformations). Most of the functions of these polymers would be influenced by this inherently asymmetric folding. Furthermore, a concept of physical compartmentalization based on rock nanopores in analogy to nanocavities of digital immunoassays is introduced to suggest that complex cell walls or membranes were also not required for the first steps of chemical evolution. To summarize, simple and universal mechanisms may have led to homochiral self-replicating systems in the context of chemical evolution. A homochiral monomer pool is deemed unnecessary and probably never existed on primordial Earth. N2 - Homochiralität ist ein offensichtliches Merkmal des Lebens auf der Erde. Andererseits enthalten extraterrestrische Proben überwiegend racemische Verbindungen. Dasselbe gilt für jede gängige organische Synthese. Daher war es jahrzehntelang ein Rätsel, wie diese Racemate enantiomeren-angereicherte Fraktionen als Grundlage für den Ursprung homochiraler Lebensformen bilden konnten. Zahlreiche Hypothesen wurden aufgestellt, wie sich bevorzugt homochirale Moleküle auf der Erde gebildet und angereichert haben könnten. In diesem Artikel wird gezeigt, dass Homochiralität des abiotischen organischen Pools zum Zeitpunkt der Bildung der ersten selbstreplizierenden Moleküle nicht notwendig und nicht einmal wahrscheinlich ist. Es wird vorgeschlagen, die Vorstellung eines molekularen Ensembles aufzugeben und sich auf die Ebene der einzelnen Moleküle zu konzentrieren. Obwohl die Bildung des ersten selbstreplizierenden, höchstwahrscheinlich homochiralen Moleküls ein scheinbar unwahrscheinliches Ereignis ist, ist es bei näherer Betrachtung fast unvermeidlich, dass sich einige homochirale Moleküle einfach auf statistischer Basis gebildet haben. In diesem Fall wäre der nichtselektive Sprung zur Homochiralität einer der ersten Schritte der chemischen Evolution direkt aus einem racemischen "Ozean". Darüber hinaus konzentrieren sich die meisten Studien auf die Chiralität der ursprünglichen Monomere in Bezug auf ein asymmetrisches Kohlenstoffatom. Jedes Polymer mit einer Mindestgröße, die eine Faltung zu einer Sekundärstruktur erlaubt, würde jedoch spontan zu asymmetrischen höheren Strukturen (Konformationen) führen. Die meisten Funktionen dieser Polymere würden durch diese inhärent asymmetrische Faltung beeinflusst. Darüber hinaus wird ein Konzept der physikalischen Kompartimentierung auf der Basis von Gesteinsnanoporen in Analogie zu den Nanokavitäten digitaler Immunoassays vorgestellt, das darauf hindeutet, dass auch für die ersten Schritte der chemischen Evolution keine komplexen Zellwände oder Membranen notwendig waren. Zusammenfassend lässt sich sagen, dass einfache und universelle Mechanismen zu homochiralen selbstreplizierenden Systemen im Rahmen der chemischen Evolution geführt haben könnten. Ein homochiraler Monomerpool wird als unnötig angesehen, welcher auf der Urerde wahrscheinlich nie existiert hat. KW - Chemical evolution KW - Enantiomeric excess ee KW - Chirality KW - Racemate KW - Folding chirality KW - Self-assembly KW - self-replication KW - Single molecule KW - Prebiotic chemistry KW - Protein folding KW - Peptide folding KW - Proteinoid KW - Conformation KW - Segregation KW - Compartmentalization KW - Digital immunoassay KW - Porous rock KW - Miller and Urey KW - Primordial soup KW - Murchison meteorite KW - Micrometeorites KW - Tholins PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598349 DO - https://doi.org/10.3390/life14030341 SN - 2075-1729 VL - 14 IS - 3 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-59834 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard T1 - The MOUSE project - A meticulous approach for obtaining traceable, wide-range X-ray scattering information N2 - Herein, we provide a "systems architecture"-like overview and detailed discussions of the methodological and instrumental components that, together, comprise the "MOUSE" project (Methodology Optimization for UltrafineStructure Exploration). The MOUSE project provides scattering information on a wide variety of samples, with traceable dimensions for both the scattering vector (q) and the absolute scattering cross-section (I). The measurable scattering vector-range of 0.012≤ q (nm-1) ≤ 92, allows information across a hierarchy of structures with dimensions ranging from ca. 0.1 to 400 nm. In addition to details that comprise the MOUSE project, such as the organisation and traceable aspects, several representative examples are provided to demonstrate its flexibility. These include measurements on alumina membranes, the tobacco mosaic virus, and dual-source information that overcomes fluorescence limitations on ZIF-8 and iron-oxide-containing carbon catalyst materials. KW - X-ray scattering KW - MOUSE KW - Instrumentation KW - SAXS KW - Methodology KW - Traceability KW - Wide-range KW - Data curation KW - FAIR KW - Uncertainties KW - Nanomaterials KW - Nanometrology PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528669 DO - https://doi.org/10.1088/1748-0221/16/06/P06034 VL - 16 IS - 6 SP - 1 EP - 50 PB - IOP CY - Bristol, UK AN - OPUS4-52866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauw, Brian Richard A1 - Smith, A. J. A1 - Snow, T. A1 - Terril, N. J. A1 - Thünemann, Andreas T1 - The modular small-angle X-ray scattering data correction sequence N2 - Data correction is probably the least favourite activity amongst users experimenting with small-angle X-ray scattering: if it is not done sufficiently well, this may become evident only during the data analysis stage, necessitating the repetition of the data corrections from scratch. A recommended comprehensive sequence of elementary data correction steps is presented here to alleviate the difficulties associated with data correction, both in the laboratory and at the synchrotron. When applied in the proposed order to the raw signals, the resulting absolute scattering cross section will provide a high degree of accuracy for a very wide range of samples, with its values accompanied by uncertainty estimates. The method can be applied without modification to any pinhole-collimated instruments with photon-counting direct-detection area detectors. KW - Small-angle X-ray scattering KW - SAXS KW - Accuracy KW - Methodology KW - Data correction PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-432114 DO - https://doi.org/10.1107/S1600576717015096 SN - 1600-5767 VL - 50 IS - 6 SP - 1800 EP - 1811 PB - International Union of Crystallography AN - OPUS4-43211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Van Den Bossche, T. A1 - Arntzen, M. O. A1 - Becher, D. A1 - Benndorf, D. A1 - Eijsink, V. G. H. A1 - Henry, C. A1 - Jagtap, P. D. A1 - Jehmlich, N. A1 - Juste, C. A1 - Kunath, B. J. A1 - Mesuere, B. A1 - Muth, Thilo A1 - Pope, P. B. A1 - Seifert, J. A1 - Tanca, A. A1 - Uzzau, S. A1 - Wilmes, P. A1 - Hettich, R. L. A1 - Armengaud, J. T1 - The Metaproteomics Initiative: a coordinated approach for propelling the functional characterization of microbiomes N2 - Through connecting genomic and metabolic information, metaproteomics is an essential approach for understanding how microbiomes function in space and time. The international metaproteomics community is delighted to announce the launch of the Metaproteomics Initiative (www.metaproteomics.org), the goal of which is to promote dissemination of metaproteomics fundamentals, advancements, and applications through collaborative networking in microbiome research. The Initiative aims to be the central information hub and open meeting place where newcomers and experts interact to communicate, standardize, and accelerate experimental and bioinformatic methodologies in this feld. We invite the entire microbiome community to join and discuss potential synergies at the interfaces with other disciplines, and to collectively promote innovative approaches to gain deeper insights into microbiome functions and dynamics. KW - Microbiome KW - Metaproteomics KW - Networking KW - Meta-Omics KW - Interactions KW - Education PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542290 DO - https://doi.org/10.1186/s40168-021-01176-w VL - 9 IS - 1 SP - 243 PB - BMC AN - OPUS4-54229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Michalchuk, Adam T1 - The Mechanochemical Excitation of Crystalline LiN3 N2 - Mechanochemical reactions are driven by the direct absorption of mechanical energy by a solid (often crystalline) material. Understanding how this energy is absorbed and ultimately causes a chemical transformation is essential for understanding the elementary stages of mechanochemical transformations. Using as a model system the energetic material LiN3 we here consider how vibrational energy flows through the crystal structure. By considering the compression response of the crystalline material we identify the partitioning of energy into an initial vibrational excitation. Subsequent energy flow is based on concepts of phonon–phonon scattering, which we calculate within a quasi-equilibrium model facilitated by phonon scattering data obtained from Density Functional Theory (DFT). Using this model we demonstrate how the moments (picoseconds) immediately following mechanical impact lead to significant thermal excitation of crystalline LiN3, sufficient to drive marked changes in its electronic structure and hence chemical reactivity. This work paves the way towards an ab initio approach to studying elementary processes in mechanochemical reactions involving crystalline solids. KW - Energetic materials KW - Ab initio simulation KW - DFT KW - Mechanochemistry PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559310 DO - https://doi.org/10.1039/d2fd00112h SP - 1 EP - 20 PB - Royal Society of Chemistry AN - OPUS4-55931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hüsken, Götz A1 - Pirskawetz, Stephan A1 - Hofmann, Detlef A1 - Basedau, Frank A1 - Gründer, Klaus-Peter A1 - Kadoke, Daniel T1 - The load-bearing behaviour of a reinforced concrete beam investigated by optical measuring techniques N2 - Bending beams and slabs are typical examples for structural elements used for reinforced concrete structures such as bridge girders, T-beams and bridge decks. Their strength related failure modes at maximum loading can be divided into bending and shear failure. The failure of beams loaded in bending can occur with or without indication. Therefore, conventional design concepts aim on failure modes with sufficient indication (e.g. large deflections or cracks), as it occurs in the case of secondary flexural compression failure. These indicating factors can also be used for Structural Health Monitoring (SHM) of civil infrastructure systems (e.g. bridges) to identify structural changes. In this context, non-destructive testing (NDT) methods offer different techniques for measuring deflections or crack formation and opening. However, profound knowledge on the determining failure modes of bending beams and their detection by NDT methods is required for the reliable application of SHM. Different NDT methods have been used in this study for analysing the load-bearing behaviour of a reinforced concrete beam in bending. The different measuring techniques are briefly described and their applicability is discussed by means of experimental results. For this purpose, the load-bearing behaviour of a reinforced concrete beam having a span of 2.75 m was investigated in a four-point bending flexural test at laboratory scale. The focus is on the characterization of determining failure modes by optical NDT and the comparison with classical measuring techniques (e.g. deformation measurements by displacement transducers). The bending beam was equipped with two single-mode (SM) sensor fibres. One fibre served as Distributed Optical Fibre Sensor (DOFS), whereas the other fibre contained Fibre Bragg Grating (FBG) sensors. In addition, optical deformation measurements using Digital Image Correlation (DIC) and Stereophotogrammetry (SP) were conducted. KW - Concrete beam KW - Bending KW - Digital image correlation KW - Stereophotogrammetry KW - Distributed fibre optic sensor KW - Fibre bragg grating PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524762 DO - https://doi.org/10.1617/s11527-021-01699-6 VL - 54 IS - 3 SP - Article 102 PB - Springer AN - OPUS4-52476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Valdestilhas, Andre A1 - Bayerlein, Bernd A1 - Moreno Torres, Benjamin A1 - Jan Zia, Ghezal Ahmad A1 - Muth, Thilo T1 - The Intersection Between Semantic Web and Materials Science N2 - The application and benefits of Semantic Web Technologies (SWT) for managing, sharing, and (re-)using of research data are demonstrated in implementations in the field of Materials Science and Engineering (MSE). However, a compilation and classification are needed to fully recognize the scattered published works with its unique added values. Here, the primary use of SWT at the interface with MSE is identified using specifically created categories. This overview highlights promising opportunities for the application of SWT to MSE, such as enhancing the quality of experimental processes, enriching data with contextual information in knowledge graphs, or using ontologies to perform specific queries on semantically structured data. While interdisciplinary work between the two fields is still in its early stages, a great need is identified to facilitate access for nonexperts and develop and provide user-friendly tools and workflows. The full potential of SWT can best be achieved in the long term by the broad acceptance and active participation of the MSE community. In perspective, these technological solutions will advance the field of MSE by making data FAIR. Data-driven approaches will benefit from these data structures and their connections to catalyze knowledge generation in MSE. KW - Linked open data KW - Materials science KW - Ontology KW - Semantic web PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575506 DO - https://doi.org/10.1002/aisy.202300051 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-57550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Xin A1 - Niederleithinger, Ernst A1 - Hindersmann, Iris T1 - The installation of embedded ultrasonic transducers inside a bridge to monitor temperature and load influence using coda wave interferometry technique N2 - This article presents a unique method of installing a special type of embedded ultrasonic transducers inside a 36-m-long section of an old bridge in Germany. A small-scale load test was carried out by a 16 ton truck to study the temperature and load influence on the bridge, as well as the performance of the embedded transducers. Ultrasonic coda wave interferometry technique, which has high sensitivity in detecting subtle changes in a heterogeneous medium, was used for the data evaluation and interpretation. The separation of two main influence factors (load effect and temperature variation) is studied, and future applications of wave velocity variation rate Φ for structural health condition estimation are discussed. As a preliminary research stage, the installation method and the performance of the ultrasonic transducer are recognized. Load- and temperature-induced weak wave velocity variations are successfully detected with a high resolution of 10−4%. The feasibility of the whole system for long-term structural health monitoring is considered, and further research is planned. KW - Ultrasound KW - Bridge KW - Monitoring KW - coda wave interferometry KW - embedded PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527978 DO - https://doi.org/10.1177/14759217211014430 SN - 1475-9217 VL - 21 IS - 3 SP - 913 EP - 927 PB - SAGE AN - OPUS4-52797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waniek, Tassilo A1 - Omar, Hassan A1 - Szymoniak, Paulina A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - The influence of water released from particles in epoxy‐based nanocomposites N2 - AbstractRecent studies have hypothesized that the reinforcing effects of boehmite nanoparticles (BNPs) in polymer nanocomposites (PNCs) are partly related to the particles themselves and partly to the water released from the BNP during curing. In this work, PNCs made from dried BNP (dBNP) with concentrations up to 15 wt% are investigated to differentiate particle and water related effects. The observed trend of the storage modulus in dynamic mechanical thermal analysis measurements was found to be independent of the drying procedure. Stiffness maps from intermodulation atomic force microscopy showed that dBNP leads to a stiffening of the interphase surrounding the particles compared with the unaffected epoxy matrix, while a softer interphase was reported for PNCs with as received BNP. A slight decrease in the glass transition temperature was observed by broadband dielectric spectroscopy related to a lowered crosslink density due to the particles. A significantly higher decrease was reported for PNCs with BNP, attributed to water influencing the curing process. In conclusion, the stiffening of PNC with BNP is related to the particles themselves, while the release of water causes the formation of a soft interphase in the vicinity of the particles and a significant decrease in crosslink density. KW - AFM stiffness of interface KW - Aluminium oxide hydroxide KW - Boehmit nanoparticle KW - Glass transition temperature KW - Broadband dielectric spectroscopy KW - Crosslink density control KW - Structure–property relationship KW - Nanocomposites KW - Thermoset PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-606772 DO - https://doi.org/10.1002/app.55937 SN - 0021-8995 SP - 1 EP - 16 PB - Wiley AN - OPUS4-60677 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Lima Vasconcelos, S. A1 - Sattler, M. A1 - Müller, B. A1 - Plehn, W. A1 - Horn, Wolfgang T1 - The Influence of textile floor coverings on the indoor air quality N2 - Textile floor coverings are often used in offices and residential buildings. Large areas like meeting rooms, cinemas, theaters and hotels are often equipped with such coverings. They contribute to the comfort of the users as they provide high pedaling comfort and sound absorption. The weakness of these building materials is due to the odor emission that is released from the floor covering, which affects the comfort of the users. A bad air quality and the resulting dissatisfaction can lead to lower employee productivity. The research project of the Hochschule für Technik und Wirtschaft Berlin (HTW-Berlin) is promoted by the German Environment Agency (UBA). The project has the following title: Low-emission and low-odor building products for energy-efficient buildings - Development of requirements and concepts for the Blue Angel from a climate protection perspective; investigates the emission and odor behavior of textile floor coverings (Emissions- und geruchsarme Bauprodukte für energieeffiziente Gebäude - Entwicklung von Anforderungen und Konzepten für den Blauen Engel aus Klimaschutzsicht; untersucht das Emissions- und Geruchsverhalten textiler Bodenbeläge). T2 - Clima 2019 Congress CY - Bucharest, Romania DA - 26.05.2019 KW - VOC Emissionen KW - Geruch KW - Bodenbelag KW - AgBB Bewertung PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-487341 DO - https://doi.org/10.1051/e3sconf/201911102051 SN - 2267-1242 VL - 111 SP - 02051-1 EP - 02051-6 PB - EDP Sciences AN - OPUS4-48734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - The influence of processing parameters on X‑ray emission during ultra‑short pulse laser machining N2 - During ultra-short laser material processing at high laser pulse repetition rates unwanted X-ray radiation can be generated in a quantity that may constitute a potential risk for health. An adequate X-ray radiation protection requires a thoroughly understanding of the influence of the laser processing parameters on the generation of X-ray radiation. In the present work, the generated X-ray dose during laser machining was investigated in air for varying beam scanning conditions at a pulse duration of 925 fs, a center wavelength of 1030 nm and a laser peak intensity of 2.6 × 10^14 W/cm^2. The X-ray radiation dose and the corresponding spectral X-ray emission were investigated in dependence on the laser’s pulse repetition rate and on the beam scanning speed. The results show a strong dependence of the X-ray emission on these laser processing parameters. KW - Laser-induced X-ray emission KW - Ultrashort laser material interaction KW - Femtosecond laser KW - Radiation protection PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486441 DO - https://doi.org/10.1007/s00339-019-2827-y SN - 0947-8396 SN - 1432-0630 VL - 125 IS - 8 SP - 570, 1 EP - 8 PB - Springer AN - OPUS4-48644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geoerg, Paul A1 - Schumann, Jette A1 - Holl, Stefan A1 - Holl, Maik A1 - Hofmann-Böllinghaus, Anja T1 - The influence of individual impairments in crowd dynamics N2 - The importance of empirical relations to quantify the movement of pedestrians through a facility has increased during the last decades since performance-based design methods became more common. Bottlenecks are of special interest because of their importance for egress routes and as they result in a reduced capacity. The empirical relations as the density-dependent movement speed or flow rate were derived by studies under laboratory conditions, which were usually conducted with populations of homogeneous characteristics forbetter control of influencing variables. If individual characteristics of a crowd become more heterogeneous, individuals were forced to adapt their individual movement and control individual manoeuvring. These unintended interactions lead to a different shape of the fundamental empirical relations. Here, we present results from a movement study under well-controlled boundary conditions in which participants with and without different characteristics of disabilities participated. To consider the effect of different heterogeneities on the capacity of a facility, fundamental diagrams are generated using the Voronoi method. If participants with visible disabilities (such as using assistive devices) are part of a crowd, significant differences relating to the shape of the empirical Relations and the capacities are found. This indicates that the heterogeneity of a Population leads to an increased interpersonal interaction which results in influenced movement characteristics. KW - Engineering egress data KW - Heterogeneity KW - Human behaviour KW - Movement characteristics KW - Pedestrian dynamics PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508943 DO - https://doi.org/10.1002/fam.2789 SN - 0308-0501 VL - 45 IS - 4 SP - 529 EP - 542 PB - Wiley Online Libary CY - New Jersey, USA AN - OPUS4-50894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shipov, A. A1 - Zaslansky, P. A1 - Riesemeier, Heinrich A1 - Segev, G. A1 - Atkins, A. A1 - Kalish-Achrai, N. A1 - Weiner, S. A1 - Shahar, R. T1 - The influence of estrogen deficiency on the structural and mechanical properties of rat cortical bone N2 - Background. Post-menopausal osteoporosis is a common health problem worldwide, most commonly caused by estrogen deficiency. Most of the information regarding the skeletal effects of this disease relates to trabecular bone, while cortical bone is less studied. The purpose of this study was to evaluate the influence of estrogen deficiency on the structure and mechanical properties of cortical bone. Methods. Eight ovariectomized (OVH) and eight intact (control) Sprague Dawley rats were used. Structural features of femoral cortical bone were studied by light microscopy, scanning electron microscopy and synchrotron-based microcomputer-tomography and their mechanical properties determined by nano-indentation. Results. Cortical bone of both study groups contains two distinct regions: organized circumferential lamellae and disordered bone with highly mineralized cartilaginous islands. Lacunar volume was lower in the OVH group both in the lamellar and disorganized regions (182 ± 75 µm3 vs 232 ± 106 µm3 , P < 0.001 and 195 ± 86 µm3 vs. 247 ± 106 µm3 , P < 0.001, respectively). Lacunar density was also lower in both bone regions of the OVH group (40 ± 18 ×103 lacunae/mm3 vs. 47 ± 9×103 lacunae/mm3 in the lamellar region, P = 0.003 and 63 ± 18×103 lacunae/mm3 vs. 75 ± 13×103 lacunae/mm3 in the disorganized region, P < 0.001). Vascular canal volume was lower in the disorganized region of the bone in the OVH group compared to the same Region in the control group (P < 0.001). Indentation moduli were not different between the study groups in both bone regions. Discussion. Changes to cortical bone associated with estrogen deficiency in rats require high-resolution methods for detection. Caution is required in the application of These results to humans due to major structural differences between human and rat bone. KW - Estrogen KW - Disorganized bone KW - Rat KW - Lacunae KW - Ovariectomy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520798 DO - https://doi.org/10.7717/peerj.10213 VL - 9 SP - e10213 AN - OPUS4-52079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Henning, Ricky A1 - Sturm, Patrick A1 - Geddes, D.A. A1 - Keßler, S. A1 - Walkley, B. A1 - Gluth, Gregor T1 - The influence of curing temperature on the strength and phase assemblage of hybrid cements based on GGBFS/FA blends N2 - Hybrid cements are composites made of Portland cement or Portland clinker and one or more supplementary cementitious materials like slag, fly ash or metakaolin, activated with an alkali salt. To date, their hydration mechanism and the phase formation at various temperatures is insufficiently understood, partly due to the large variability of the raw materials used. In the present study, three hybrid cements based on ground granulated blast furnace slag, fly ash, Portland clinker and sodium sulfate, and an alkali-activated slag/fly ash blend were cured at 10 and 21.5°C, and subsequently analyzed by XRD, 27Al MAS NMR, and TGA. The compressive strength of the hybrid cements was higher by up to 27% after 91-day curing at 10°C, compared to curing at 21.5°C. The experimental results as well as thermodynamic modeling indicate that the differences in compressive strength were related to a different phase assemblage, mainly differing amounts of strätlingite and C-N-A-S-H, and the associated differences of the volume of hydration products. While the strätlingite was amorphous to X-rays, it could be identified by 27Al MAS NMR spectroscopy, TGA and thermodynamic modeling. The microstructural properties of the hybrid cements and the alkali-activated slag/fly ash blend as well as the compatibility between thermodynamic modeling results and experimental data as a function of curing temperature and time are discussed. KW - Hybrid cements KW - Strätlingite KW - Thermodynamic modelling KW - Hydration PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557767 DO - https://doi.org/10.3389/fmats.2022.982568 SN - 2296-8016 VL - 9 SP - 1 EP - 16 PB - Frontiers AN - OPUS4-55776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bühler, M. M. A1 - Hollenbach, P. A1 - Michalski, A. A1 - Meyer, S. A1 - Birle, E. A1 - Off, R. A1 - Lang, Ch. A1 - Schmidt, Wolfram A1 - Cudmani, R. A1 - Fritz, O. A1 - Baltes, G. A1 - Kortmann, G. T1 - The Industrialisation of Sustainable Construction: A Transdisciplinary Approach to the Large-Scale Introduction of Compacted Mineral Mixtures (CMMs) into Building Construction N2 - Abstract: Increasing demand for sustainable, resilient, and low-carbon construction materials has highlighted the potential of Compacted Mineral Mixtures (CMMs), which are formulated from various soil types (sand, silt, clay) and recycled mineral waste. This paper presents a comprehensive inter- and transdisciplinary research concept that aims to industrialise and scale up the adoption of CMM-based construction materials and methods, thereby accelerating the construction industry’s systemic transition towards carbon neutrality. By drawing upon the latest advances in soil mechanics, rheology, and automation, we propose the development of a robust material properties database to inform the design and application of CMM-based materials, taking into account their complex, time-dependent behaviour. Advanced soil mechanical tests would be utilised to ensure optimal performance under various loading and ageing conditions. This research has also recognised the importance of context-specific strategies for CMM adoption. We have explored the implications and limitations of implementing the proposed framework in developing countries, particularly where resources may be constrained. We aim to shed light on socio-economic and regulatory aspects that could influence the adoption of these sustainable construction methods. The proposed concept explores how the automated production of CMM-based wall elements can become a fast, competitive, emission-free, and recyclable alternative to traditional masonry and concrete construction techniques. We advocate for the integration of open-source digital platform technologies to enhance data accessibility, processing, and knowledge acquisition; to boost confidence in CMM-based technologies; and to catalyse their widespread adoption. We believe that the transformative potential of this research necessitates a blend of basic and applied investigation using a comprehensive, holistic, and transfer-oriented methodology. Thus, this paper serves to highlight the viability and multiple benefits of CMMs in construction, emphasising their pivotal role in advancing sustainable development and resilience in the built environment. KW - Decarbonisation KW - Circular economy KW - Recycled materials KW - Demolition wastes KW - Low-carbon construction KW - Building with earth KW - Compressed earth KW - Rammed earth KW - Sustainable construction PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-583260 DO - https://doi.org/10.3390/su151310677 VL - 15 IS - 13 SP - 1 EP - 25 PB - MDPI AN - OPUS4-58326 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano Munoz, Itziar A1 - Evans, Alexander A1 - Mishurova, Tatiana A1 - Sprengel, Maximilian A1 - Pirling, T. A1 - Kromm, Arne A1 - Bruno, Giovanni T1 - The importance of subsurface residual stress in laser powder bed fusion IN718 N2 - The residual stress (RS) in laser powder bed fusion (LPBF) IN718 alloy samples produced using a 67°-rotation scan strategy is investigated via laboratory X-ray diffraction (XRD) and neutron diffraction (ND). The location dependence of the strain-free (d₀) lattice spacing in ND is evaluated using a grid array of coupons extracted from the far-edge of the investigated specimen. No compositional spatial variation is observed in the grid array. The calculated RS fields show considerable non-uniformity, significant stress gradients in the region from 0.6 to 2 mm below the surface, as well as subsurface maxima that cannot be accounted for via XRD. It is concluded that failure to determine such maxima would hamper a quantitative determination of RS fields by means of the stress balance method. KW - Laser powder bed fusion KW - Neutron and X-ray diffraction KW - Residual stress analysis KW - Strain-free lattice references KW - Stress balance PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-532707 DO - https://doi.org/10.1002/adem.202100895 SN - 1615-7508 SN - 1527-2648 VL - 24 IS - 6 SP - 1 EP - 7 PB - Wiley-VCH CY - Weinheim AN - OPUS4-53270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sarhan, R. M. A1 - Koopman, W. A1 - Schuetz, R. A1 - Schmid, Thomas A1 - Liebig, F. A1 - Koetz, J. A1 - Bargheer, M. T1 - The importance of plasmonic heating for the plasmondriven photodimerization of 4-nitrothiophenol N2 - Metal nanoparticles form potent nanoreactors, driven by the optical generation of energetic electrons and nanoscale heat. The relative influence of these two factors on nanoscale chemistry is strongly debated. This article discusses the temperature dependence of the dimerization of 4-nitrothiophenol (4-NTP) into 4,4′-dimercaptoazobenzene (DMAB) adsorbed on gold nanoflowers by Surface-Enhanced Raman Scattering (SERS). Raman thermometry shows a significant optical heating of the particles. The ratio of the Stokes and the anti-Stokes Raman signal moreover demonstrates that the molecular temperature during the reaction rises beyond the average crystal lattice temperature of the plasmonic particles. The product bands have an even higher temperature than reactant bands, which suggests that the reaction proceeds preferentially at thermal hot spots. In addition, kinetic measurements of the reaction during external heating of the reaction environment yield a considerable rise of the reaction rate with temperature. Despite this significant heating effects, a comparison of SERS spectra recorded after heating the sample by an external heater to spectra recorded after prolonged illumination shows that the reaction is strictly photo-driven. While in both cases the temperature increase is comparable, the dimerization occurs only in the presence of light. Intensity dependent measurements at fixed temperatures confirm this finding. KW - Nanoparticles KW - Plasmonic heating KW - Raman spectroscopy PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-475140 DO - https://doi.org/10.1038/s41598-019-38627-2 SN - 2045-2322 VL - 9 IS - 1 SP - 3060, 1 EP - 8 PB - Nature Publishing Group AN - OPUS4-47514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Walke, D. A1 - Micheel, D. A1 - Schallert, K. A1 - Muth, Thilo A1 - Broneske, D. A1 - Saake, G. A1 - Heyer, R. T1 - The importance of graph databases and graph learning for clinical applications N2 - The increasing amount and complexity of clinical data require an appropriate way of storing and analyzing those data. Traditional approaches use a tabular structure (relational databases) for storing data and thereby complicate storing and retrieving interlinked data from the clinical domain. Graph databases provide a great solution for this by storing data in a graph as nodes (vertices) that are connected by edges (links). The underlying graph structure can be used for the subsequent data analysis (graph learning). Graph learning consists of two parts: graph representation learning and graph analytics. Graph representation learning aims to reduce high-dimensional input graphs to low-dimensional representations. Then, graph analytics uses the obtained representations for analytical tasks like visualization, classification, link prediction and clustering which can be used to solve domain-specific problems. In this survey, we review current state-of-the-art graph database management systems, graph learning algorithms and a variety of graph applications in the clinical domain. Furthermore, we provide a comprehensive use case for a clearer understanding of complex graph learning algorithms. KW - Graph databases KW - Graph learning KW - Review KW - RDF PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580858 DO - https://doi.org/10.1093/database/baad045 SN - 1758-0463 SP - 1 EP - 20 AN - OPUS4-58085 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schoknecht, Ute A1 - Mathies, H. T1 - The Impact of Weather Conditions on Biocides in Paints N2 - Weather conditions affect biocides on exposed outer surfaces on constructions. Contact with water causes hydrolysis and leaching of substances. Ultraviolet radiation may induce photolysis. As a result, a mixture of biocidal active substances and transformation products can be emitted into the environment. In a semi-field study, leaching of the biocidal active substances terbutryn, diuron, octylisothiazolinone, carbendazim, and selected transformation products was observed for two paints containing either a white or a red pigment. Painted test panels were exposed to natural weathering for about 1.5 years. Runoff samples were analyzed during the course of the experiment. At the end of the study, residues of biocidal active substances and transformation products were determined in sections of the test panels. Emissions of substances were mainly observed during the first few months of the experiments. Increased emissions of transformation products were observed during periods of increased global radiation and subsequent periods with relatively high amounts of driving rain. Different patterns of transformation products were observed, especially for terbutryn, both for paints containing different pigments and in experiments that were started in different periods of the year, as well as during different periods of the experiments. KW - Substance release KW - Construction products KW - Biocides KW - Transformation KW - Weathering KW - Driving rain KW - Global radiation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560651 DO - https://doi.org/10.3390/ma15207368 VL - 15 IS - 20 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-56065 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waniek, Tassilo A1 - Braun, U. A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - The impact of water released from boehmite nanoparticles during curing in epoxy-based nanocomposites N2 - The enhancing effect on mechanical properties of boehmite (γ-AlOOH) nanoparticles (BNP) in epoxy-based nanocomposites on the macroscopic scale encouraged recent research to investigate the micro- and nanoscopic properties. Several studies presented different aspects relatable to an alteration of the epoxy polymer network formation by the BNP with need for further experiments to identify the mode of action. With FTIR-spectroscopic methods this study identifies interactions of the BNP with the epoxy polymer matrix during the curing process as well as in the cured nanocomposite. The data reveals that not the BNP themselves, but the water released from them strongly influences the curing process by hydrolysis of the anhydride hardener or protonation of the amine accelerator. The changes of the curing processes are discussed in detail. The changes of the curing processes enable new explanation for the changed material properties by BNP discussed in recent research like a lowered glass transition temperature region (Tg) and an interphase formation. KW - Spectroscopy KW - Aluminium oxide hydroxide KW - Glass transition temperature KW - Material chemistry KW - Nanocomposites KW - Structure-property relationship PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527202 DO - https://doi.org/10.1002/app.51006 VL - 138 IS - 39 SP - 51006 PB - Wiley Periodicals LLC CY - Hoboken AN - OPUS4-52720 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khrapov, D A1 - Koptyug, A. A1 - Manabaev, K. A1 - Léonard, Fabien A1 - Mishurova, Tatiana A1 - Bruno, Giovanni A1 - Cheneler, D. A1 - Loza, K. A1 - Epple, M. A1 - Surmenev, R. A1 - Surmeneva, M. T1 - The impact of post manufacturing treatment of functionally graded Ti6Al4V scaffolds on their surface morphology and mechanical strength N2 - An ultrasonic vibration post-treatment procedure was suggested for additively manufac-tured lattices. The aim of the present research was to investigate mechanical properties andthe differences in mechanical behavior and fracture modes of Ti6Al4V scaffolds treated withtraditional powder recovery system (PRS) and ultrasound vibration (USV). Scanning electronmicroscopy (SEM) was used to investigate the strut surface and the fracture surface mor-phology. X-ray computed tomography (CT) was employed to evaluate the inner structure,strut dimensions, pore size, as well as the surface morphology of additively manufacturedporous scaffolds. Uniaxial compression tests were conducted to obtain elastic modulus,compressive ultimate strength and yield stress. Finite element analysis was performedfor a body-centered cubic (BCC) element-based model and for CT-based reconstructiondata, as well as for a two-zone scaffold model to evaluate stress distribution during elasticdeformation. The scaffold with PRS post treatment displayed ductile behavior, while USVtreated scaffold displayed fragile behavior. Double barrel formation of PRS treated scaffoldwas observed during deformation. Finite element analysis for the CT-based reconstructionrevealed the strong impact of surface morphology on the stress distribution in comparisonwith BCC cell model because of partially molten metal particles on the surface of struts,which usually remain unstressed. KW - Additive manufacturing KW - Electron beam melting KW - Computed tomography KW - FEM KW - Lattice structures PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505960 DO - https://doi.org/10.1016/j.jmrt.2019.12.019 SN - 2238-7854 VL - 9 IS - 2 SP - 1866 EP - 1881 PB - Elsevier B.V. AN - OPUS4-50596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chowdhary, S. A1 - Moschner, J. A1 - Mikolajczak, D. J. A1 - Becker, M. A1 - Thünemann, Andreas A1 - Kästner, Claudia A1 - Klemczak, D. A1 - Stegemann, A.-K. A1 - Böttcher, C. A1 - Metrangolo, P. A1 - Netz, R. R. A1 - Koksch, B. T1 - The Impact of Halogenated Phenylalanine Derivatives on NFGAIL Amyloid Formation N2 - The hexapeptide hIAPP22–27 (NFGAIL) is known as a crucial amyloid core sequence of the human islet amyloid polypeptide (hIAPP) whose aggregates can be used to better understand the wild‐type hIAPP′s toxicity to β‐cell death. In amyloid research, the role of hydrophobic and aromatic‐aromatic interactions as potential driving forces during the aggregation process is controversially discussed not only in case of NFGAIL, but also for amyloidogenic peptides in general. We have used halogenation of the aromatic residue as a strategy to modulate hydrophobic and aromatic‐aromatic interactions and prepared a library of NFGAIL variants containing fluorinated and iodinated phenylalanine analogues. We used thioflavin T staining, transmission electron microscopy (TEM) and small‐angle X‐ray scattering (SAXS) to study the impact of side‐chain halogenation on NFGAIL amyloid formation kinetics. Our data revealed a synergy between aggregation behavior and hydrophobicity of the phenylalanine residue. This study introduces systematic fluorination as a toolbox to further investigate the nature of the amyloid self‐assembly process. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle KW - Nanostructure KW - Peptide KW - Amyloid PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518632 DO - https://doi.org/10.1002/cbic.202000373 VL - 21 IS - 24 SP - 3544 EP - 3554 PB - Wiley CY - Weinheim AN - OPUS4-51863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Andreoli, A. F. A1 - Fantin, Andrea A1 - Kasatikov, S. A1 - Bacurau, V. P. A1 - Widom, M. A1 - Gargarella, P. A1 - Mazzer, E. M. A1 - Woodcock, T. G. A1 - Nielsch, K. A1 - Coury, F. G. T1 - The impact of chemical short-range order on the thermophysical properties of medium- and high-entropy alloys N2 - The unusual behavior observed in the coefficient of thermal expansion and specific heat capacity of CrFeNi, CoCrNi, and CoCrFeNi medium/high-entropy alloys is commonly referred to as the K-state effect. It is shown to be independent of the Curie temperature, as demonstrated by temperature-dependent magnetic moment measurements. CoCrFeNi alloy is chosen for detailed characterization; potential reasons for the K-state effect such as texture, recrystallization, and second-phase precipitation are ruled out. An examination of the electronic structure indicates the formation of a pseudo-gap in the Density of States, which suggests a specific chemical interaction between Ni and Cr atoms upon alloying. Hybrid Monte Carlo/Molecular Dynamic (MC/MD) simulations indicate the presence of non-negligible chemical short-range order (CSRO). Local lattice distortions are shown to be negligible, although deviations around Cr and Ni elements from those expected in a fully disordered structure are experimentally observed by X-ray absorption spectroscopy. The determined bonding distances are in good agreement with MC/MD calculations. A mechanism is proposed to explain the anomalies and calorimetric experiments and their results are used to validate the mechanism. KW - Mechanical Engineering KW - Mechanics of Materials KW - General Materials Science PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595869 DO - https://doi.org/10.1016/j.matdes.2024.112724 SN - 0264-1275 VL - 238 SP - 1 EP - 15 PB - Elsevier B.V. AN - OPUS4-59586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yang, K. A1 - Meschut, G. A1 - Seitz, G. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - The Identification of a New Liquid Metal Embrittlement (LME) Type in Resistance Spot Welding of Advanced High Strength Steels on Reduced Flange Widths N2 - Liquid metal embrittlement (LME) cracking is a phenomenon observed during resistance spot welding (RSW) of zinc􀀀coated advanced high􀀀strength steels (AHSS) in automotive manufacturing. In this study, severe cracks are observed at the edge of the sheet under reduced flange widths. These cracks, traversing the AHSS sheet, culminate at the edge with a width of approximately 1.2 mm. Through combined numerical and experimental investigations, and material testing, these cracks are identified and validated as a new type of LME crack. The mechanism behind this crack formation is attributed to unique geometric conditions that, when compared to center welding, amplify radial material flow by ninefold to 0.87 mm. The resultant tangential tensile stresses approximate 760 MPa, which exceed the yield strength of the examined advanced high􀀀strength steel (AHSS) under heightened temperature conditions, and when combined with liquid zinc, promote the formation of this new type of LME crack. KW - Liquid metal embrittlement KW - Crack KW - Advanced high strength steels KW - Resistance spot welding KW - Simulation KW - Flange width PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586940 DO - https://doi.org/10.3390/met13101754 VL - 13 IS - 10 SP - 1 EP - 13 PB - MDPI AN - OPUS4-58694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Anker, A. S. A1 - Annadurai, V. A1 - Balazs, D. M. A1 - Bienert, Ralf A1 - Bouwman, W. G. A1 - Breßler, Ingo A1 - Breternitz, J. A1 - Brok, E. S. A1 - Bryant, G. A1 - Clulow, A. J. A1 - Crater, E. R. A1 - De Geuser, F. A1 - Del Giudice, A. A1 - Deumer, J. A1 - Disch, S. A1 - Dutt, S. A1 - Frank, K. A1 - Fratini, E. A1 - Garcia, P. R. A. F. A1 - Gilbert, E. P. A1 - Hahn, Marc Benjamin A1 - Hallett, J. A1 - Hohenschutz, M. A1 - Hollamby, M. A1 - Huband, S. A1 - Ilavsky, J. A1 - Jochum, J. K. A1 - Juelsholt, M. A1 - Mansel, B. W. A1 - Penttilä, P. A1 - Pittkowski, R. K. A1 - Portale, G. A1 - Pozzo, L. D. A1 - Rochels, L. A1 - Rosalie, Julian M. A1 - Saloga, Patrick E. J. A1 - Seibt, S. A1 - Smith, A. J. A1 - Smith, G. N. A1 - Spiering, G. A. A1 - Stawski, Tomasz M. A1 - Taché, O. A1 - Thünemann, Andreas A1 - Toth, K. A1 - Whitten, A. E. A1 - Wuttke, J. T1 - The human factor - Results of a small-angle scattering data analysis round robin N2 - A round-robin study has been carried out to estimate the impact of the human element in small-angle scattering data analysis. Four corrected datasets were provided to participants ready for analysis. All datasets were measured on samples containing spherical scatterers, with two datasets in dilute dispersions and two from powders. Most of the 46 participants correctly identified the number of populations in the dilute dispersions, with half of the population mean entries within 1.5% and half of the population width entries within 40%. Due to the added complexity of the structure factor, far fewer people submitted answers on the powder datasets. For those that did, half of the entries for the means and widths were within 44 and 86%, respectively. This round-robin experiment highlights several causes for the discrepancies, for which solutions are proposed. KW - Round Robin KW - Data analysis KW - Small-angle scattering KW - Nanomaterials KW - Interlaboratory comparability KW - Nanostructure quantification KW - Methodology KW - MOUSE PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587091 DO - https://doi.org/10.1107/S1600576723008324 SN - 1600-5767 VL - 56 IS - 6 SP - 1618 EP - 1629 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-58709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rohn, H. A1 - Simon, Franz-Georg A1 - Schmidt, M. A1 - Giegrich, J. A1 - Oberender, C. A1 - Denz, W. A1 - Niebaum, A. ED - Ludwig, C. ED - Matasci, C. T1 - The Guideline Series VDI 4800 Resource Efficiency: An Approach for Increasing Resource Efficiency with Aim of Conservation of Natural Resources in the Industrial Sector N2 - In 2011, the Association of German Engineers (VDI) started working on a set of guidelines towards increased resource efficiency. These guidelines represent a framework that defines resource efficiency and outlines considerations for the producing industry. A special guideline for SMEs is included as well as guidelines on methodologies for evaluating resource use indicators, such as the cumulative raw material demand of products and production systems. Resource efficiency, defined here as the relationship between a specific benefit or use and the natural resources that need to be spent or consumed to attain this benefit or use. It can be evaluated by defining a function which expresses the specific benefit and quantifies the resource requirements through a set of indicators (use of raw materials, energy, water, land and ecosystem services including sinks). The results from this also depend on the system boundary parameters and the allocation rules for by-products and waste treatment options. Optimising resource use is possible at all stages of a product’s or production system’s life cycle chain (raw material extraction, production and manufacturing, use and consumption, and the end-of-life stage). VDI guidelines are widely accepted across Germany’s industrial sector and therefore represent an important means of mainstreaming resource efficiency in this target area. As well as providing a methodological framework, the guidelines describe strategies and measures towards increasing resource efficiency, and they enable industrial producers and service providers to identify potential areas of improvement. The full article presents an overview of the methodology and contents of these guidelines and discusses their impact in achieving absolute reductions in the industrial use of natural resources. KW - Resource efficiency KW - Life cycle thinking KW - Products and production systems KW - Standardization PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-426443 UR - https://www.wrforum.org/wrfpublicationspdf/boosting-resource-productivity/ SN - 978-3-9521409-7-0 SP - 125 EP - 132 PB - Paul Scherrer Institute CY - Villigen PSI, Switzerland ET - 1 AN - OPUS4-42644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schuberth, Jens A1 - Ebert, Thomas A1 - Schlegel, Moritz-Caspar A1 - Rödig, Lisa A1 - Jepsen, Dirk A1 - Memelink, Robin A1 - Hauschke, Fynn T1 - The Front-Runner Approach - Facilitating Progressive Product Policy by Using Information from EU Product Databases N2 - The European Commission has recently announced two guiding principles for EU product policy: First, product policy shall ensure that the performance of front-runner products in terms of sustainability becomes the norm, and second, the effectiveness of the current Ecodesign legislative framework is going to be significantly improved. Within this paper, already existing front-runner approaches and recent and ongoing product policy-making processes were reviewed. Based on the results, an EU front-runner approach is outlined. The presented approach (i) refers to performance levels of the best products already available on the market, (ii) aggregates information in existing databases, and (iii) works semi-automated. Together, all three attributes have a high potential to facilitate and accelerate the specification of appropriate minimum requirements for products at the EU level. This way, EU policymakers can deliver on the core objectives of the Ecodesign legislative framework much better. The basic mechanism and its legal entrenchment of the approach are illustrated for the energy efficiency of energy-related products. In addition, the Front-Runner Approach can be applied to any product group in the scope of the upcoming Ecodesign for Sustainable Products Regulation and to a wide range of product-related minimum requirements, such as durability, reparability, or recycled content. The study’s objective is to suggest a tailor-made and dynamic approach to keep the EU product legislation up to date using innovative technology based on the investigation of current regulations and identify the gap. Experiences from three international case studies suggest that a front-runner approach to setting energy-performance standards can drive innovation and reduce energy consumption via promoting energy-efficient products; transparency about available products is one of the key factors and can be established by a database. The EU front-runner approach comprises extending the existing energy label database (or making use of the digital product passport) and introducing a legislative procedure that triggers changes in the energy efficiency requirements in the specific EU regulations if the database shows that a certain threshold value is reached. Challenges such as limited EU staff capacities and opportunities such as increased dynamic are discussed. KW - Ecodesign KW - ESPR KW - Energy labelling KW - EPREL KW - Policy making KW - Front-runner KW - Material efficiency KW - Resource efficiency KW - Energy efficiency PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595132 DO - https://doi.org/10.3390/en17020504 VL - 17 IS - 2 SP - 1 EP - 11 PB - MDPI AN - OPUS4-59513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Turski Silva Diniz, Analice A1 - Schartel, Bernhard T1 - The effects of property variation on the dripping behaviour of polymers during UL94 test simulated by particle finite element method N2 - The dripping behaviour of polymers is often observed experimentally through the UL94 flammability standard test. In this work, polymeric dripping under fire is investigated numerically using particle finite element method. A parametric analysis was carried out to observe the influence of a single property on overall dripping behaviour via a UL94 vertical test model. Surrogates and property ranges were defined for variation of the following parameters: glass transition temperature (Tg), melting temperature (Tm), decomposition temperature (Td), density (ρ), specific heat capacity (Cp), apparent effective heat of combustion of the volatiles, char yield (μ), thermal conductivity (k), and viscosity (η). Polyamide, poly(ether ether ketone), poly(methyl methacrylate), and polysulfone were used as benchmarks. Simulated results showed that specific heat capacity, thermal conductivity, and char yield allied with viscosity were the properties that most influenced dripping behaviour (starting time and occurrence). KW - Dripping KW - PFEM KW - UL 94 KW - Simulation KW - Fire behaviour PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597449 DO - https://doi.org/10.1515/epoly-2023-0194 SN - 1618-7229 VL - 24 IS - 1 PB - De Gruyter AN - OPUS4-59744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Asna Ashari, Parsa A1 - Blind, Knut T1 - The effects of hydrogen research and innovation on international hydrogen trade N2 - Climate change and the pressure to decarbonize, as well as energy security concerns, have drawn the attention of policymakers and the industry to hydrogen energy. To ad-vance the hydrogen economy at a global scale, research and innovation progress is of significant importance, among others. However, previous studies have provided only lim-ited quantitative evidence of the effects of research and innovation on the formation of a global hydrogen market. Instead, they postulate rather than empirically support this rela-tionship. Therefore, this study analyzes the effects of research and innovation measured by scientific publications, patents, and standards on bilateral hydrogen trade flows for 32 countries between 1995 and 2019 in a gravity model of trade, using regression analyses and Poisson Pseudo Maximum Likelihood (PPML) estimation. The main results of the PPML estimation show that research and innovation progress is indeed associated with increased trade, especially with patenting and (international) standardization enhancing hydrogen export volumes. As policy implications, we derive that increased public R&D funding can help increase the competitiveness of hydrogen energy and boost market growth, along with infrastructure support and harmonized standards and regulations. KW - Hydrogen supply KW - Global hydrogen market KW - Research and innovation KW - Push and pull effects KW - Hydrogen policies PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594875 DO - https://doi.org/10.1016/j.enpol.2023.113974 SN - 0301-4215 VL - 186 SP - 1 EP - 15 PB - Elsevier B.V. AN - OPUS4-59487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Churiaque Bermejo, C. A1 - Sánchez-Amaya, J. M. A1 - Porrúa-Lara, M. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - The Effects of HLAW Parameters for One Side T-Joints in 15 mm Thickness Naval Steel N2 - The present contribution is the first research reporting full penetration HLAW joints in 15 mm thick EH36 steel butt T-welds with square grooves on 2F welding position by single-sided welding. The effects of welding parameters were investigated to increase the quality of the joints. Conditions leading to defect-free full penetration welds fulfilling naval regulations includes a laser power of 12.5 kW, a welding speed of 1.6 m/min and the vertical laser offset distance from the flange of 1 mm. Advanced characterization of selected welds included a microstructural identification by optical microscopy, SEM, and XRD, revealing the presence of acicular, polygonal and Widmanstätten ferrite, lath martensite, and some retained austenite at FZ. Hardness and microhardness mapping tests showed values of 155 HV at base metal and 200 to 380 HV at the fusion zone connecting the web to the flange. KW - Ship building KW - Laser beam welding KW - Hybrid laser arc welding PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523931 DO - https://doi.org/10.3390/met11040600 VL - 11 IS - 4 SP - 600 PB - MDPI CY - Basel, Switzerland AN - OPUS4-52393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Duarte, Larissa A1 - Madia, Mauro A1 - Zerbst, Uwe T1 - The effect of the environmental conditions on the threshold against fatigue crack propagation N2 - The threshold against fatigue crack propagation (ΔKth) is a crucial parameter for the damage tolerance assessment of engineering components subjected to cyclic loading and it is composed by two distinct components, one intrinsic, dependent on the elastic material properties and the lattice type, and one extrinsic, related to the occurrence of crack closure effects. An important issue is that several factors can influence ΔKth and, in general, the fatigue crack propagation behavior. In this work, the influence of the experimental procedure, air humidity, stress ratio and test frequency on da/dN-ΔK data has been investigated. Results are discussed with their potential causes and consequences on the calculations of the residual lifetime. KW - Fatigue crack propagation threshold KW - Crack closure effect KW - Experimental procedure KW - Environmental conditions PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544905 DO - https://doi.org/10.1016/j.prostr.2022.03.030 VL - 38 SP - 292 EP - 299 PB - Elsevier B.V. AN - OPUS4-54490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hunter, R. D. A1 - Rowlandson, J. L. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Ting, V. P. A1 - Kulak, A. A1 - Schnepp, Z. T1 - The effect of precursor structure on porous carbons produced by iron-catalyzed graphitization of biomass N2 - This paper reports a systematic study into the effect of different biomass-derived precursors on the structure and porosity of carbons prepared via catalytic graphitization. Glucose, starch and cellulose are combined with iron nitrate and heated under a nitrogen atmosphere to produce Fe3C nanoparticles, which catalyze the conversion of amorphous carbon to graphitic nanostructures. The choice of organic precursor provides a means of controlling the catalyst particle size, which has a direct effect on the porosity of the material. Cellulose and glucose produce mesoporous carbons, while starch produces a mixture of micro- and mesopores under the same conditions and proceeds via a much slower graphitization step, generating a mixture of graphitic nanostructures and turbostratic carbon. Porous carbons are critical to energy applications such as batteries and electrocatalytic processes. For These applications, a simple and sustainable route to those carbons is essential. Therefore, the ability to control the precise structure of a biomass-derived carbon simply through the choice of precursor will enable the production of a new generation of energy materials. KW - SAXS KW - Porous carbons KW - Graphitization KW - Iron nanoparticles KW - Catalysis KW - Gas sorption PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515531 DO - https://doi.org/10.1039/d0ma00692k VL - Royal Society of Chemistry SP - 1 EP - 11 AN - OPUS4-51553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hunter, R. D. A1 - Hayward, E. C. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Kulak, A. A1 - Guan, S. A1 - Schnepp, Z. T1 - The effect of nitrogen on the synthesis of porous carbons by iron-catalyzed graphitization N2 - This paper reports a systematic study into the effect of nitrogen on iron-catalyzed graphitization of biomass. Chitin, chitosan, N-acetylglucosamine, gelatin and glycine were selected to represent nitrogen-rich saccharides and amino-acid/polypeptide biomass precursors. The materials were pyrolyzed with an iron catalyst to produce carbons with a wide range of chemical and structural features such as mesoporosity and nitrogen-doping. Many authors have reported the synthesis of nitrogen-doped carbons by pyrolysis and these have diverse applications. However, this is the first systematic study of how nitrogen affects pyrolysis of biomass and importantly the catalytic graphitization step. Our data demonstrates that nitrogen inhibits graphitization but that some nitrogen survives the catalytic graphitization process to become incorporated into various chemical environments in the carbon product. KW - Graphitization KW - Nanoparticles KW - Nanocomposite KW - Porous carbon KW - Nitrogen KW - Scattering PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575351 DO - https://doi.org/10.1039/d3ma00039g VL - 4 SP - 2070 EP - 2077 PB - Royal Society of Chemistry AN - OPUS4-57535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hernández-Nava, E. A1 - Smith, C.J. A1 - Derguti, F. A1 - Tammas-Williams, S. A1 - Léonard, Fabien A1 - Withers, P. J. A1 - Todd, I. A1 - Goodall, R. T1 - The effect of defects on the mechanical response of Ti-6Al-4V cubic lattice structures fabricated by electron beam melting N2 - Electron Beam Melting (EBM) as a means of Additive Manufacturing (AM), is of interest for the fabrication of intricate geometries for cellular materials in areas where complex architectures are needed, e.g. biomedical implants. Most studies have focused on specific geometries and so the effect of the structure on mechanical performance is not well understood. Many kinds of micro- and macro-scale defects can arise in additively manufactured components, so assessment of their influence on properties is needed. In this work, lattices of Ti-6Al-4V having a cubic structure have been manufactured by EBM, and the effect of heat treatments above and below the β-transus temperature on microstructure and compression response have been investigated. The former modifies only slightly the α + β structure and mechanical performance whereas the latter leads to coarse alternating α and β lamellae packets and α at the prior grain boundaries with a 10% loss in yield strength. The variation in the compressive yield stress with strut diameter is in good accord with simple models based on compressive deformation rather than shearing or buckling. Internal pores for struts aligned with the build direction are found around the edges of the solid form, in regions which seem to be associated with the EB scan pattern. Struts normal to the build direction show more significant defects but their redundancy means that they do not compromise the compressive performance in the build direction. Using a particle size in the range 45–100 μm minimum weld-track sizes were experimentally and numerically identified to be 176 and 148 μm in depth respectively with a depth-to-width ratio of 0.55. This produced a beam pass of the order of 300 μm oversizing small features (struts of 0.4 and 0.6 mm nominal diameter) when a contour around the strut periphery was applied. KW - Cellular solids KW - Additive manufacturing KW - Titanium alloy KW - Mechanical properties KW - X-ray computed tomography PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-390686 DO - https://doi.org/10.1016/j.actamat.2016.02.029 SN - 1359-6454 VL - 108 SP - 279 EP - 292 PB - Elsevier Ltd. CY - Amsterdam [u.a.] AN - OPUS4-39068 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Talebi, Elnaz A1 - Korzen, Manfred A1 - Espinós, A. A1 - Hothan, Sascha ED - Albero, Vicente T1 - The effect of damage location on the performance of seismically damaged concrete filled steel tube columns at fire N2 - In this paper, a nonlinear three-dimensional finite element (FE) model was developed and validated to study the effect of seismic damage location on the response of concrete filled tube (CFT) columns at fire after earthquakes. Three analyses were conducted consecutively in the modelling, namely, cyclic, thermal and structural. Results of the cyclic loading analysis comprising residual deformations were applied as the Initial condition to the thermal-stress model, replicating the seismic performance of column. Following, a nonlinear sequentially coupled-thermal stress Analysis was carried out to investigate the fire response of CFT columns after the seismic event. Three damage scenarios were contemplated, considering any possible potential damages that could be generated by the earthquake loading on CFT columns. The accuracy of the proposed FE model was examined by comparing the numerical results with that of available tests on fire and cyclic loading. By means of the validated model, the performance of damaged CFT columns was then investigated under fire after earthquakes. The level of damage was assumed as a high damage level, presuming that the column reached 50% of ist lateral resistance while still maintaining its overall stability after the earthquake. The results were presented broadly, including the axial deformation history as well as the fire resistance time for CFT columns. To have a comprehensive insight on the influence of damage location in columns, the fire response of damaged specimens was compared with that of an intact one. T2 - 12th International Conference on Advances in Steel-Concrete Composite Structures (ASCCS 2018) CY - Valencia, Spain DA - 27.06. 2018 KW - Fire after earthquake KW - Concrete filled tube (CFT) column KW - Finite element model KW - Seismically damaged column KW - Damage location KW - Fire performance PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-457694 SN - 978-84-9048-601-6 DO - https://doi.org/10.4995/ASCCS2018.2018.8534 SP - 835 EP - 842 PB - Editorial Universitat Politècnica de València CY - València AN - OPUS4-45769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Szymoniak, Paulina A1 - Hodoroaba, Vasile-Dan A1 - Sturm, Heinz T1 - The effect of boehmite nanoparticles (gamma‐AlOOH) on nanomechanical and thermomechanical properties correlated to crosslinking density of epoxy N2 - We show that complex physical and chemical interactions between boehmite nanoparticles and epoxy drastically affect matrix properties, which in the future will provide tuning of material properties for further optimization in applications from automotive to aerospace. We utilize intermodulation atomic force microscopy (ImAFM) for probing local stiffness of both particles and polymer matrix. Stiff particles are expected to increase total stiffness of nanocomposites and the stiffness of polymer should remain unchanged. However, ImAFM revealed that stiffness of matrix in epoxy/boehmite nanocomposite is significantly higher than unfilled epoxy. The stiffening effect of the boehmite on epoxy also depends on the particle concentration. To understand the mechanism behind property alteration induced by boehmite nanoparticles, network architecture is investigated using dynamic mechanical thermal analysis (DMTA). It was revealed that although with 15 wt% boehmite nanoparticles the modulus at glassy state increases, crosslinking density of epoxy for this composition is drastically low. KW - Crosslinking density KW - Epoxy KW - Intermodulation KW - Atomic force microscopy KW - Nanomechanical properties KW - Boehmite nanoparticles PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-476050 DO - https://doi.org/10.1016/j.polymer.2018.12.054 SN - 0032-3861 SN - 1873-2291 VL - 164 SP - 174 EP - 182 PB - Elsevier AN - OPUS4-47605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lumpe, H. A1 - Menke, A. A1 - Haisch, C. A1 - Mayer, P. A1 - Kabelitz, Anke A1 - Yusenko, Kirill A1 - de Oliveira Guilherme Buzanich, Ana A1 - Block, T. A1 - Pöttgen, R. A1 - Emmerling, Franziska A1 - Daumann, L. J. T1 - The Earlier the Better: Structural Analysis and Separation of Lanthanides with Pyrroloquinoline Quinone N2 - Lanthanides (Ln) are critical raw materials, however, their mining and purification have a considerable negative environmental impact and sustainable recycling and separation strategies for these elements are needed. In this study, the precipitation and solubility behavior of Ln complexes with pyrroloquinoline quinone (PQQ), the cofactor of recently discovered lanthanide (Ln) dependent methanol Dehydrogenase (MDH) enzymes, is presented. In this context, the molecular structure of a biorelevant europium PQQ complex was for the first time elucidated outside a protein environment. The complex crystallizes as an inversion symmetric dimer, Eu2PQQ2, with binding of Eu in the biologically relevant pocket of PQQ. LnPQQ and Ln1Ln2PQQ complexes were characterized by using inductively coupled Plasma mass spectrometry (ICP-MS), infrared (IR) spectroscopy, 151Eu-Mössbauer spectroscopy, X-ray total scattering, and Extended X-ray absorption fine structure (EXAFS). It is shown that a natural enzymatic cofactor is capable to achieve Separation by precipitation of the notoriously similar, and thus difficult to separate, lanthanides to some extent. KW - Lanthanides KW - Structural Analysis KW - Separation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510821 DO - https://doi.org/10.1002/chem.202002653 SN - 0947-6539 VL - 26 SP - 1 EP - 8 PB - WILEY-VCH Verlag GmbH & co. KGaA AN - OPUS4-51082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lumpe, H. A1 - Menke, Annika A1 - Haisch, C. A1 - Mayer, P. A1 - Kabelitz, Anke A1 - Yusenko, Kirill A1 - de Oliveira Guilherme Buzanich, Ana A1 - Block, T. A1 - Pöttgen, R. A1 - Emmerling, Franziska A1 - Daumann, L. T1 - The Earlier the Better: Structural Analysis and Separation of Lanthanides with Pyrroloquinoline Quinone N2 - Lanthanides (Ln) are critical raw materials, however, their mining and purification have a considerable negative environmental impact and sustainable recycling and separation strategies for these elements are needed. In this study, the precipitation and solubility behavior of Ln complexes with pyrroloquinoline quinone (PQQ), the cofactor of recently discovered lanthanide (Ln) dependent methanol dehydrogenase (MDH) enzymes, is presented. In this context, the molecular structure of a biorelevant europium PQQ complex was for the first time elucidated outside a protein environment. The complex crystallizes as an inversion symmetric dimer, Eu2PQQ2, with binding of Eu in the biologically relevant pocket of PQQ. LnPQQ and Ln1Ln2PQQ complexes were characterized by using inductively coupled plasma mass spectrometry (ICP‐MS), infrared (IR) spectroscopy, 151Eu‐Mössbauer spectroscopy, X‐ray total scattering, and extended X‐ray absorption fine structure (EXAFS). It is shown that a natural enzymatic cofactor is capable to achieve separation by precipitation of the notoriously similar, and thus difficult to separate, lanthanides to some extent. KW - PQQ KW - Lanthanoide KW - Coordination chemistry KW - Rare earth elements separations PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512707 DO - https://doi.org/10.1002/chem.202002653 VL - 26 IS - 44 SP - 10133 EP - 10139 AN - OPUS4-51270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - The dynamic train-track interaction on a bridge and in a tunnel compared with the simultaneous vehicle, track, and ground vibration measurements at a surface line N2 - The vehicle–track interaction generates forces and consequently vibrations in the environment. The interaction has been analysed by the simultaneous measurements of vehicle, track and ground vibrations during test runs with varied train speeds. The special effects of the passage over a bridge and through a tunnel are studied and compared with the measurements on a conventional ballasted surface line. The maximum amplitudes, narrow band and one-third octave band spectra are presented for the axle-box accelerations and for the track, bridge and ground vibrations. The different frequencies and frequency bands are related to wheel out-of-roundness, track alignment errors, the sleeper passage and the wheelset–track resonance. An axle impulse component has been observed at the track, at the near-field soil and as a scattered version in the far field. Specific results can be found for the bridge track, where clearly speed-dependent bridge resonances occur due to the axle sequence of the train, and for the tunnel track where soft rail pads are responsible for a strong amplification around the wheelset–track resonance. On the other hand, the axle impulses are strongly reduced by the tunnel track, and the scattered axle impulse component is not as relevant as for the surface track. As a consequence, a strong mid-frequency amplitude reduction of the tunnel compared to the surface line has been measured for low and high train speeds by the Federal Institute of Material Research and Testing (BAM) and by other institutes. KW - Vehicle–track interaction KW - Ground vibration KW - Tunnel-to-surface reduction KW - Bridge resonance KW - Axle sequence PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-585139 DO - https://doi.org/10.3390/app131910992 VL - 13 IS - 19 SP - 1 EP - 23 PB - MDPI CY - Basel, Schweiz AN - OPUS4-58513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - An, Biwen Annie A1 - Deland, Eric A1 - Sobol, Oded A1 - Yao, Jizheng A1 - Skovhus, T. L. A1 - Koerdt, Andrea T1 - The differences in the corrosion product compositions of Methanogen-induced microbiologically influenced corrosion (Mi-MIC) between static and dynamic growth conditions N2 - Currently, corrosion rates (CR) and/or corrosion products (CP) obtained for methanogen-induced microbiologically influenced corrosion (Mi-MIC) on carbon steel are mainly analyzed from static-incubations. By using a multiport-flow-column, much higher CRs (0.72 mm/yr) were observed, indicating static-incubations are not suitable for determining the corrosive potential of Mi-MIC. With the combination of various analytical methods (ToF-SIMS/SEM-EDS/SEM-FIB) and contrary to previously published data, we observed that CPs contained phosphorus, oxygen, magnesium, calcium and iron but lacked carbon-related species (e.g. siderite). Overall, siderite nucleation is disrupted by methanogens, as they convert aqueous bicarbonate into carbon dioxide for methanogenesis resulting in increased localized corrosion. KW - Carbon steel KW - Modelling studies KW - SIMS KW - SEM KW - Reactor conditions KW - Microbiologically influenced corrosion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517632 DO - https://doi.org/10.1016/j.corsci.2020.109179 SN - 0010-938X VL - 180 SP - 9179 PB - Elsevier AN - OPUS4-51763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Manuel A1 - Kabelitz, Anke A1 - Gorelik, T. E. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Kolb, U. A1 - Rademann, K. A1 - Emmerling, Franziska T1 - The crystallisation of copper(II) phenylphosphonates N2 - The crystal structures and syntheses of four different copper(II) phenylphosphonates, the monophenylphosphonates α-, β-, and γ-Cu(O3PC6H5)·H2O (α-CuPhPmH (1) β-CuPhPmH (2) and γ-CuPhPmH (3)), and the diphosphonate Cu(HO3PC6H5)2·H2O (CuPhP2mH (4)), are presented. The compounds were synthesized from solution at room temperature, at elevated temperature, under hydrothermal conditions, and mechanochemical conditions. The structures of α-CuPhPmH (1) and CuPhP2mH (4) were solved from powder X-ray diffraction data. The structure of β-CuPhPmH (2) was solved by single crystal X-ray analysis. The structures were validated by extended X-ray absorption fine structure (EXAFS) and DTA analyses. Disorder of the crystal structure was elucidated by electron diffraction. The relationship between the compounds and their reaction pathways were investigated by in situ synchrotron measurements. KW - Mechanochemistry KW - Metal phosphonate KW - In situ PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-384217 DO - https://doi.org/10.1039/C6DT02904C SN - 1477-9226 SN - 1477-9234 VL - 45 IS - 43 SP - 17453 EP - 17463 PB - The Royal Society of Chemistry AN - OPUS4-38421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wild, B. A1 - Gerrits, Ruben A1 - Bonneville, S. T1 - The contribution of living organisms to rock weathering in the critical zone N2 - Rock weathering is a key process in global elemental cycling. Life participates in this process with tangible consequences observed from the mineral interface to the planetary scale. Multiple lines of evidence show that microorganisms may play a pivotal—yet overlooked—role in weathering. This topic is reviewed here with an emphasis on the following questions that remain unanswered: What is the quantitative contribution of bacteria and fungi to weathering? What are the associated mechanisms and do they leave characteristic imprints on mineral surfaces or in the geological record? Does biogenic weathering fulfill an ecological function, or does it occur as a side effect of unrelated metabolic functions and biological processes? An overview of efforts to integrate the contribution of living organisms into reactive transport models is provided. We also highlight prospective opportunities to harness microbial weathering in order to support sustainable agroforestry practices and mining activities, soil remediation, and carbon sequestration. KW - Bio-weathering KW - Fungi KW - Mineral PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-566748 DO - https://doi.org/10.1038/s41529-022-00312-7 SN - 2397-2106 VL - 6 SP - 1 EP - 16 PB - Macmillan CY - London AN - OPUS4-56674 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wetzel, Annica A1 - von der Au, Marcus A1 - Dietrich, P. M. A1 - Radnik, Jörg A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia T1 - The comparison of the corrosion behavior of the CrCoNi medium entropy alloy and CrMnFeCoNi high entropy alloy N2 - This work presents the determination of the corrosion characteristics of CrCoNi (medium entropy alloy) and CrMnFeCoNi (high entropy alloy) in 0.1 M NaCl and 0.1 M H2SO4. The morphology and chemical composition of the oxide layers formed on CrCoNi and CrMnFeCoNi were comparatively analyzed by scanning Kelvin probe microscopy (SKPFM) and scanning electron microscopy (SEM) and supported with chemical analysis by means of inductively coupled plasma mass spectrometry (ICP-MS) and X-Ray photoelectron spectroscopy (XPS). The analysis of the 3p core level peaks showed that the oxide layer (native and after anodic passivation) on CrCoNi consisted mainly of Cr oxides, while the oxide layer on CrMnFeCoNi was primarily composed of a mixture of Cr and Fe oxides. In addition, XPS was utilized to assess the oxide layer thicknesses. These results were compared to the thicknesses obtained by means of electrochemical impedance spectroscopy (EIS), with both approaches yielding values up to about 4 nm depending on the electrolyte and the alloy. Cyclic polarization measurements indicated superior corrosion resistance of CrCoNi in both aqueous environments compared to CrMnFeCoNi, as well as to AISI 304 stainless steel. KW - Medium entropy alloy KW - High entropy alloy KW - SKPFM KW - XPS KW - Passivation KW - Corrosion PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559902 DO - https://doi.org/10.1016/j.apsusc.2022.154171 SN - 0169-4332 VL - 601 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-55990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -