TY - CONF A1 - Shashev, Yury A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Britzke, Ralf A1 - Bruno, Giovanni A1 - Müller, Bernd R. A1 - Hentschel, M. P. T1 - Talbot- Lau interferometry with a non- binary phase grating for non-destructive testing N2 - Grating interferometric set-ups have been established in the last decade. They are promising candidates to obtain enhanced image contrast from weakly absorbing micro and nano structures. They are based on X-ray refraction and near-field diffraction using the Talbot effect. At the expense of taking multiple images, Talbot-Lau grating interferometry allows separating the absorption, refraction, and scattering contributions by analysing the disturbances of a phase grating interference pattern. Contrary to other refraction enhanced methods, this technique can be applied using conventional X-ray tubes (divergent, polychromatic source). This makes it attractive to solve typical non-destructive testing problems. We investigated the efficiency of phase gratings, i.e. the visibility (the amplitude of oscillations) upon variation of propagation distance and phase grating rotation around an axis parallel to the grid lines. This grating rotation changes the grating shape (i.e. the distributions of phase shifts). This can yield higher visibilities than derived from rectangular shapes. Our study includes experimental results obtained from synchrotron radiation, as well as simulations for monochromatic radiation. The advantages of Talbot-Lau interferometry are demonstrated at the example of glass capillaries. T2 - 19th World Conference on Non-Destructive Testing 2016 CY - Munich, Germany DA - 13.06.2016 KW - Talbot- Lau interferometry KW - Phase grating KW - Non-destructive testing PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-383163 SP - Tu_3_G_2, 1 EP - 9 AN - OPUS4-38316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shashev, Yury A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Britzke, Ralf A1 - Bruno, Giovanni A1 - Mueller, Bernd R. A1 - Hentschel, Manfred P. T1 - Talbot- Lau interferometry with a non- binary phase grating for non-destructive testing N2 - Grating interferometric set-ups have been established in the last decade. They are promising candidates to obtain enhanced image contrast from weakly absorbing micro and nano structures. They are based on X-ray refraction and near-field diffraction using the Talbot effect. At the expense of taking multiple images, Talbot-Lau grating interferometry allows separating the absorption, refraction, and scattering contributions by analysing the disturbances of a phase grating interference pattern. Contrary to other refraction enhanced methods, this technique can be applied using conventional X-ray tubes (divergent, polychromatic source). This makes it attractive to solve typical non-destructive testing problems. We investigated the efficiency of phase gratings, i.e. the visibility (the amplitude of oscillations) upon variation of propagation distance and phase grating rotation around an axis parallel to the grid lines. This grating rotation changes the grating shape (i.e. the distributions of phase shifts). This can yield higher visibilities than derived from rectangular shapes. Our study includes experimental results obtained from synchrotron radiation, as well as simulations for monochromatic radiation. The advantages of Talbot-Lau interferometry are demonstrated at the example of glass capillaries. T2 - WCNDT2016 CY - Munich, Germany DA - 13.06.2016 KW - Phase-contrast X-ray imaging KW - Talbot- Lau interferometry KW - Phase grating KW - Visibility KW - Synchrotron radiation PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-365987 SN - 978-3-940283-78-8 VL - BB 158 SP - Tu.3.G.2., 1 EP - 9 AN - OPUS4-36598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krankenhagen, Rainer A1 - Ziegler, Mathias A1 - Maierhofer, Christiane ED - Maldague, X. T1 - Systematic errors in the evaluation of uncorrected data from thermographic lock-in measurements N2 - Lock-in thermography (LT) is based on the correct evaluation of phase differences between the temperature oscillations at different surface regions of the object under test during periodic heating. Since the usual heating procedures contain a DC component, the actual heating pattern achieved is not harmonic. This causes systematic deviations when phase differences are determined by means of harmonic analysis, e.g. with FFT analysis. The resulting errors depend clearly on the ratio between DC and AC amplitude, which is demonstrated at simulated and experimentally recorded temperature transients. Further experimental LT data obtained by different oscillating energy inputs showed a variety of possible shapes of transients with different DC components. T2 - 14th QIRT Conference CY - Berlin, Germany DA - 26.06.2018 KW - NDT KW - Lock-in Thermography KW - FFT PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-453768 SP - 539 EP - 547 PB - QIRT Council AN - OPUS4-45376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sproesser, G. A1 - Schenker, S. A1 - Pittner, Andreas A1 - Borndörfer, R. A1 - Rethmeier, Michael A1 - Chang, Y.-J. A1 - Finkbeiner, M. T1 - Sustainable welding process selection based on weight space partitions N2 - Selecting a welding process for a given application is crucial with respect to the sustainability of part manufacturing. Unfortunately, since welding processes are evaluated by a number of criteria, preferences for one or the other process can be contradictory. However, the prevalent procedure of weight assignment for each criterion is subjective and does not provide information about the entire solution space. From the perspective of a decision maker it is important to be able to assess the entire set of possible weightings and answer the question which welding process is optimal for which set of weights. This issue is investigated by means of a weight space partitioning approach. Two welding processes are considered with respect to three criteria that reflect their economic and environmental performance. In order to find the most sustainable welding process the underlying weight space partition is evaluated. T2 - 13th Global Conference on Sustainable Manufacturing – Decoupling Growth from Resource Use CY - Bình Dương New City, Vietnam DA - 16.09.2015 KW - Welding costs KW - Multi-criteria decision support KW - LCA KW - Welding process selection KW - GMAW KW - Multi-attribute decision method PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-353740 DO - https://doi.org/10.1016/j.procir.2016.01.077 SN - 2212-8271 VL - 40 SP - 127 EP - 132 PB - Elsevier B.V. AN - OPUS4-35374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shamsuddoha, Md A1 - Hüsken, Götz A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Baeßler, Matthias T1 - Superplasticizer and Shrinkage Reducing Admixture Dosages for Microfine Cement in Grout Systems N2 - Grouts have numerous applications including crack repair as maintenance in construction industries. Microfine cements are intensively used for high strength mortar and grout products. They are ideal for injection grouting in structural repair. Such grouts should have suitable rheological properties to be injectable, especially those used in repair and rehabilitation. The use of superplasticizers (SP) in these products is thus becoming increasingly crucial to achieve favorable workability and viscosity properties. A difficulty in such grouts is the plastic shrinkage due to finer particles used. It is thus necessary to determine optimum SP and shrinkage reducing admixture (SRA) dosages for a microfine cement based grout. In this study, a saturation dosage was decided from two Polycarboxylate ether (PCE) based SPs in relation to neat cement using slump flow and rheological parameters. A range of grout mixtures was formulated containing micro silica (MS) and fly ash (FA), and tested for suitable rheological and mechanical parameters. Based on the results, a grout mixture with MS and FA was selected to determine optimum SRA content. According to the results, a SP dosage of 3% by weight of neat cement is sufficient to achieve saturation. The grout material including MS and FA can produce comparable properties to neat cement grout. MS is found to improve compressive strength within the range considered, whereas a higher FA content provides favourable rheological properties. Finally, a SRA dosage of 4%, which could reduce the shrinkage by about 43% after 28d days, is determined for the grout system. T2 - 2nd International Conference on Building Materials and Materials Engineering (ICBMM 2018) CY - University of Lisbon, Portugal DA - 26.09.2018 KW - Grout KW - Microfine Cement KW - Superplasticizer KW - Supplementary Cementitious Materials KW - Shrinkage Reducing Admixture PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-478319 DO - https://doi.org/10.1051/matecconf/201927801001 VL - 278 SP - Article Number 01001 PB - EDP Sciences AN - OPUS4-47831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bellon, Carsten A1 - Zhukovskiy, M. A1 - Markov, M. A1 - Podolyako, S. A1 - Uskov, R. A1 - Jaenisch, Gerd-Rüdiger T1 - Supercomputing the cascade processes of radiation transport N2 - Modeling of the photon-electron cascade progress in multicomponent objects of complex geometrical structure by use of hybrid supercomputers is considered. An approach to computing the cascade processes is developed. The approach has three key properties allowing the effective use of heterogeneous structure of computers for solving the tasks of radiation transport in complex multi-scale geometries. Firstly, two different discreet geometrical description of an object being under radiation is used: triangulated model for photon transport and voxel model for electron transport. Secondly, small parameter of the problem is explicitly taking into account for modeling surface effects (for instance, electron emission). Thirdly, the effective calculation decomposition between CPU and GPU is developed for significant increasing the speed of calculations of processes in question. Modeling of experiment on researching the bremsstrahlung generated by electron beam in Ta target is carried out. Comparison of computing and experimental results shows satisfactory consent. T2 - 19th World Conference on Nondestructive Testing CY - Munich, Germany DA - 13.06.2016 KW - Super somputing KW - Photon-electron transport KW - Monte Carlo methods KW - Modelling PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-365932 SN - 978-3-940283-78-8 VL - 158 SP - 1 EP - 6 PB - DGZfP CY - Berlin, Germany AN - OPUS4-36593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Karapanagiotis, Christos A1 - Schukar, Marcus A1 - Breithaupt, Mathias A1 - Duffner, Eric A1 - Ulbricht, Alexander A1 - Prager, Jens A1 - Krebber, Katerina T1 - Structural health monitoring of hydrogen pressure vessels using distributed fiber optic sensing N2 - We report on distributed fiber optic sensing-based monitoring of hydrogen composite overwrapped pressure vessels (COPV) to simultaneously increase the operational lifespan and mitigate maintenance costs. Our approach represents, to the best of our knowledge, the first application of distributed fiber optic sensing for COPV Type IV monitoring, where the sensing fibers are attached to the surface, rather than integrated into the composite material. Specifically, we attach an optical fiber of 50 m to the pressure vessel's surface, covering both the cylindrical and dome sections. We note that our fiber optic sensing technique relies on swept wavelength interferometry providing strain information along the entire length of the optical fiber with high spatial resolution even at the millimeter scale. When the vessel is pressurized, the sensing optical fiber shows a linear strain response to pressure at every position along the fiber. After thousands of load cycles, the vessel finally fails with the optical fiber detecting and precisely localizing the damage in the vessel’s blind dome area. Furthermore, we discuss the potential of state-of-the-art signal processing methods and machine learning for advancing predictive maintenance. This could reduce the number of regular inspections, mitigate premature maintenance costs, and simultaneously increase the vessel’s remaining safe service life. We believe that the structural health monitoring of hydrogen pressure vessels with fiber optic sensors can enhance trust in hydrogen technology contributing to the energy transition in the future. T2 - 11th European Workshop on Structural Health Monitoring CY - Potsdam, Germany DA - 10.06.2024 KW - Hydrogen KW - Fiber optic sensors KW - Composites KW - Machine learning KW - Structural health monitoring PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602731 UR - https://www.ndt.net/search/docs.php3?id=29701 SP - 1 EP - 7 PB - NDT.net AN - OPUS4-60273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Zientek, Nicolai A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Kern, Simon T1 - Strangers in the Night—Smart Process Sensors in Our Current Automation Landscape N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Smart sensors enable concepts like self-diagnostics, self-calibration, and self-configuration/parameterization whenever our current automation landscape allows it. Here we summarize the currently discussed general requirements for process sensors 4.0 and introduce a smart online NMR sensor module as example, which was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme (www.consens-spire.eu). T2 - Eurosensors 2017 Conference CY - Paris, France DA - 03.09.2017 KW - Process Monitoring KW - Smart Sensors KW - CONSENS KW - Online NMR Spectroscopy KW - Mini-plant PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-415772 UR - http://www.mdpi.com/2504-3900/1/4/628 DO - https://doi.org/10.3390/proceedings1040628 VL - 1 SP - 628 EP - 631 PB - MDPI CY - Basel AN - OPUS4-41577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg A1 - Becker, Ben A1 - Duffner, Eric A1 - John, Sebastian T1 - Storage systems for CGH2- systematic improvement of RC&s composite storage systems for compressed hydrogen - systematic improvement of regulations for more attractive storage units N2 - Hydrogen is an attractive energy carrier that requires high effort for safe storage. For ensuring safety they have to undergo a challenging approval process. Relevant standards and regulations for composite cylinders used for the transport of for on-board storage of hydrogen are currently based on deterministic (e.g. ISO 11119-3) or semi-probabilistic (UN GTR No. 13) criteria. This paper analysis the properties of such methods in regards to the evaluation of load cycle strength. Their characteristics are compared with the probabilistic approach of the BAM. Based on Monte-Carlo simulations, the available design range (mean value and scatter of strength criteria) of current concepts were exemplarily estimated. The aspect of small sample sizes is analysed and discussed with respect to the evaluation procedures. T2 - 10th International Conference on Sustainable Energy and Environmental Protection CY - Bled, Slovenia DA - 27.06.2017 KW - Probabilistic KW - Hydrogen KW - Composite KW - Cylinder KW - Regulations KW - Load cycles KW - GTR 13 KW - ISO 11119 PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-416820 SN - 978-961-286-054-7 DO - https://doi.org/10.18690/978-961-286-054-7 SP - 1 EP - 10 PB - University of Maribor Press CY - Maribor, Slovenia AN - OPUS4-41682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wosniok, Aleksander A1 - Jansen, R. A1 - Chen, L. A1 - Toet, P. A1 - Doppenberg, E. A1 - De Jong, W. A1 - Chruscicki, Sebastian T1 - Static load monitoring of a concrete bridge using a high-precision distributed fiber optic sensor system N2 - In the present study, the impact of static traffic loading on the slight deflection effects in the concrete structure of an existing bridge has been investigated using distributed fiber optic sensors. In the face of increasing traffic density and severe traffic loading, the results of the load tests on the Amsterdam bridge 705 make an important contribution to the understanding of its structural behavior. The concept of the static loading was based on the use of two 36-ton trucks stopped on the bridge at multiple pre-determined locations. The load applied in this way led to location-dependent small deflection effects recorded as longitudinal strain of the sensing fiber embedded at the underside of the bridge. The measurements were performed with a commercially-available solution based on Tunable Wavelength Coherent Optical Time Domain Reflectometry with the measurement accuracy in the range of 0.5 µm/m. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures CY - Potsdam, Germany DA - 27.08.2019 KW - Bridge monitoring KW - Distributed fiber optic sensing KW - Static load monitoring KW - TW-COTDR PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-490408 SP - 1 EP - 8 AN - OPUS4-49040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klewe, Tim A1 - Völker, Tobias A1 - Götz, J. A1 - Landmann, M. A1 - Wilsch, Gerd A1 - Kruschwitz, Sabine T1 - Sorting of construction and demolition waste by combining LIBS with NIR spectroscopy N2 - In a joint project of partners from industry and research, the automated recycling of construction and demolition waste (CDW) is investigated and tested by combing laser-induced breakdown spectroscopy (LIBS) and near-infrared (NIR) spectroscopy. Joint processing of information (data fusion) is expected to significantly improve the sorting quality of various materials like concrete, main masonry building materials, organic components, etc., and may enable the detection and separation of impurities such as SO3-cotaining building materials (gypsum, aerated concrete, etc.). The project focuses primarily on the Berlin site to analyze the entire value chain, minimize economic/technological barriers and obstacles at the cluster level, and sustainably increase recovery and recycling rates. First measurements with LIBS and NIR spectroscopy show promising results in distinguishing various material types and indicate the potential for a successful combination. In addition, X-ray fluorescence (XRF) spectroscopy is being performed to obtain more information about the quantitative elemental composition of the different building materials. Future work will apply the developed sorting methodology in a fully automated measurement setup with CDW on a conveyor belt. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - LIBS KW - NDT KW - Circular economy KW - Recycling KW - Material classification PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555531 UR - http://www.ndt.net/?id=27220 VL - 2022/09 SP - 1 EP - 9 PB - NDT.net CY - Bad Breisig AN - OPUS4-55553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Strangfeld, Christoph A1 - Zimmek, David A1 - Bartholmai, Matthias ED - Helmerich, Rosemarie ED - Ilki, A. ED - Motavalli, M. T1 - Smart electronic helper for long-term monitoring of bridges and building structures N2 - Increasing traffic volume on the one hand and ageing infrastructure on the other hand have created many new challenges for maintenance and structural health monitoring of roads and bridges. In the past, many bridges and road structures have been neglected, often resulting in traffic congestion, road closure, and increased repair costs. This research is concerned with the development of a system to improve the challenge of maintenance and early detection of damage, particularly moisture penetration and corrosion of steel reinforced concrete components. The objective is to develop a method that will also work after 30 years and longer. Many new IoT solutions are equipped with internal energy storage elements (accumulators or batteries) which are inappropriate here, since most relevant signs of concrete degradation occur after decades, where the functioning of such elements are more than questionable. The presented technology approach uses radio-frequency identification (RFID) and enables connectivity to sensors. It offers the advantage of an passive, completely independent energy supply without any energy storage components. Since the system should be permanently embedded in concrete, it is crucial to develop a long-term stable device which is adapted to the environmental influences of the structure, e.g., long-term resistance in very alkaline environment of pH 13. In numerous experiments, the robustness of the system was tested and evaluated. Various tests with encapsulations to protect the electronics were performed, and for long-term validation different concrete specimens were instrumented with RFID-sensor-systems. Their operating time is now around two years and investigations for signs of fatigue and damage to the encapsulation and the electronics are ongoing. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures (SMAR 2019) CY - Potsdam, Germany DA - 27.08.2019 KW - Long term monitoring KW - Passive RFID KW - SHM KW - Sensors KW - Smart structures PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-489890 SP - 1 EP - 6 PB - German Society for Non-Destructive Testing (DGZfP e.V.) AN - OPUS4-48989 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bellon, Carsten A1 - Gollwitzer, Christian A1 - Fratzscher, Daniel A1 - Ewert, Uwe A1 - Jaenisch, Gerd-Rüdiger T1 - Simulation of complex scan paths for 3D reconstruction N2 - X-ray computed tomography (CT) is a volumetric (3D) Imaging diagnostic method, well established in the medical field, and in industrial NDE as well. Developments in industrial CT aim to extent the applicability to complex structures, which do not allow the access of all directions. This are e.g. limited view, data and angle CT applications. New reconstruction algorithms are required on one side, and the accuracy has to be improved on the other side. Numerical Simulation can support such developments by providing well defined data sets for the testing of reconstruction algorithms. This approach of virtual CT is realized within the radiographic simulator aRTist, developed by BAM. The poster shows the possibilities of this tool to consider complex scan paths. Simulated data sets have been reconstructed by an versatile backprojection algorithm. T2 - International symposium on digital industrial radiology and computed tomography CY - Berlin, Germany DA - 20.06.2011 KW - Radiographie KW - Computer-Simulation KW - 3D-Rekonstruktion PY - 2011 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-243928 SN - 978-3-940283-34-4 IS - DGZfP-BB 128 (Poster 17) SP - 1 EP - 4 PB - Deutsche Gesellschaft für zerstörungsfreie Prüfung e.V. (DGZfP) AN - OPUS4-24392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Illerhaus, Bernhard A1 - Kunisch, E. A1 - Kinne, R. W. T1 - Serial in situ compression of spongiosa cylinder observed by μCT, compared to simulated stress, strain, and movement N2 - Minimally invasive injection of calcium phosphate cement into bone defects in aged sheep vertebrae has been used as a model for the treatment of osteoporotic vertebral fractures. One of the therapeutic criteria is a compression test of non-treated or treated vertebral bodies. In the present study, an in situ compression test with a stepwise load increase was performed with small spongiosa cylinders from the vertebrae under continuous monitoring by μCT. This allows localization of bone cracks and the visualization of correct placement and form of the bone cylinder. In addition, the effects of an uneven load distribution on the sample due to an irregular shape and a subsequent underperformance of the test sample can be excluded by controlling its shape under increasing load. There was a good agreement between the measured data and those obtained by simulated load-dependent transformation on the basis of a digital volume correlation between consecutive compression tests on the bone surface under the assumption of homogeneous bone material. Mechanic simulation was executed by directly using structural voxel data, resulting in maps of Von Mise stresses and predicted displacements. T2 - 12th ECNDT CY - Gothenburg, Sweden DA - 11.6.2018 KW - Computed tomography KW - In-situ compression KW - Simulation PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-453317 SN - 978-91-639-6217-2 SP - 0162, 1 EP - 7 AN - OPUS4-45331 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stegemann, Robert A1 - Sonntag, Nadja A1 - Kreutzbruck, Marc A1 - Skrotzki, Birgit ED - Brune, M. ED - Buffière, J.Y. ED - Morel, F. ED - Nadot, Y. T1 - Self-magnetic-leakage field detection using magneto-optical sensor technique N2 - Measurement of spontaneous magnetic stray field signals has been reported to be a promising tool for capturing macro-scale information of deformation states, defects and stress concentration zones in a material structure. This paper offers a new method for self-magnetic leakage field detection using a magneto-optical (MO) hand-held microscope. Its sensor has a dynamic field range between ±0.05 and ±2 kA/m and a lateral optical resolution of approx. 10 µm. We examined flat tensile test specimens of metastable austenitic steel AISI 304. Static tensile tests were repeatedly interrupted at various predetermined states of strain and the magnetic information was measured by the MO system. Comparative measurements using a high-precision magnetic field GMR-sensor, verify the outstanding capability of the MO microscope regarding spatial resolution of magnetic fields. T2 - FDMDII-JIP 2014 - 14th International spring meeting CY - Paris, France DA - 06.11.2014 KW - Magneto-optical sensor KW - Metal magnetic memory KW - GMR KW - NDT PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-326911 SN - 978-2-7598-1274-5 DO - https://doi.org/10.1051/matecconf/20141204010 N1 - Serientitel: Materials science, Engineering and Chemistry – Series title: Materials science, Engineering and Chemistry VL - 12 SP - 04010-1 EP - 04010-3 PB - EDP Sciences AN - OPUS4-32691 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ronneteg, U. A1 - Grybäck, T. A1 - Bertovic, Marija A1 - Müller, Christina A1 - Pavlovic, Mato T1 - Safe for 1 million years – NDT matters! N2 - The General Guidance in the Swedish regulations state that the safety assessment for a final repository for spent nuclear fuel should be 1 million years after closure. SKB developed the KBS-3 method, according to which the spent nuclear fuel is protected by three barriers. It is encapsulated in canisters with a diameter of 1 metre and a length of 5 metres. The canister consists of a cast iron insert surrounded by a 5 centimetre thick shell of copper. The canisters are disposed in the bedrock at a depth of about 500 meters surrounded by bentonite clay. In order to assess the safety over this extremely long period, an extensive quality control programme is applied to the canisters before deposit. In this programme, the use of non-destructive testing (NDT) is vital. The safety assessment of the canister in turn places high demands on the coverage, detectability, and reliability of the applied NDT inspections of the canister parts, i.e. cast iron insert, copper base, tube and lid, and the copper friction stir welds (FSW). This paper presents the extensive full-scale inspection development programme that runs at the Canister Laboratory in Oskarshamn (Sweden). In order to fulfil the high demands, phased array ultrasonic inspection techniques are developed using practical trials aided by ultrasonic modelling. The techniques apply, for example, different frequencies, inspection angles, focus depths, and both longitudinal and shear waves. Increased inspection reliability of the FSW is achieved by applying digital X-ray technique using a 9 MeV linear accelerator and a line detector. To complete the coverage, complementary surface inspections methods, i.e. eddy current array, magnetic flux sensor techniques and magnetic particle inspection, are applied. The canister safety assessment was the driving force to include reliability studies during the NDT development. Initially, the technical reliability was considered, resulting in development of advanced POD models (probability of detection). In combination with human factors studies, these models were implemented as tools in the development of the NDT techniques. Human factors studies were also applied to improve the inspection procedures to be more user-friendly enabling reliable inspections. T2 - 19th World Conference on Non-Destructive Testing CY - München, Germany DA - 13.06.2016 KW - NDT KW - Reliability KW - Spent nuclear fuel PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-375785 UR - http://www.ndt.net/article/wcndt2016/papers/we4e4.pdf SP - id 19464, 1 EP - 9 AN - OPUS4-37578 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Maak, Stefan A1 - Mielentz, Frank A1 - Effner, Ute A1 - Strangfeld, Christoph A1 - Timofeev, Juri T1 - Review of recent developments in ultrasonic echo testing of concrete N2 - Ultrasonic methods are used in concrete investigations since decades. While being limited to transmission testing in the laboratory for a while, in-situ echo measurements for structural investigations and condition assessment have made their way into practical application in the past 20 years. However, several challenges remain. On one side, there are technical issues as limitations in depth of penetration, resolution and imaging capabilities. On the other side there are still gaps in validation, standardization and certification, which are limiting the applicability in condition/load capacity assessment. This review reports a couple of developments which will help to overcome these issues. This includes technical developments as new devices which are easier to handle on site or giving a much deeper penetration depth (e.g. the LAUS device at BAM) as well as improvements in imaging by hardware update (e. g. air coupled ultrasound or coded signals) or new software (e. g. RTM imaging). To foster the application in real world projects we are as well working on standardization by developing new reference specimen with international partners which will ensure world-wide comparability of ultrasonic and other methods and quality assurance codes. Further, non-destructive methods are being used to update probabilistic models used for the reassessment of existing structures to support the structural engineer’s decisions. T2 - SMAR 2019 CY - Potsdam, Germany DA - 27.08.2019 KW - Engineered Barrier System (EBS) KW - Ultraschall KW - NDT KW - Re-assessment of exiting bridges PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-489686 SP - 1 EP - 6 AN - OPUS4-48968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grohmann, Maria A1 - Müller, Sabine A1 - Niederleithinger, Ernst T1 - Reverse time migration: Introduction of a new imaging technique for ultrasonic measurements in civil engineering N2 - Ultrasonic echo testing is widely used in non-destructive testing in civil engineering to investigate concrete structures, to measure thickness, and to locate and characterise built-in components or inhomogeneities. Currently, synthetic aperture focusing techniques are mostly used for imaging. These algorithms are highly developed but have some limitations. For example, it is not possible to image the lower boundary of built-in components like tendon ducts or vertical reflectors. We adopted reverse time migration for non-destructive testing in civil engineering in order to improve the imaging of complicated structures in concrete. By using the entire wavefield, including waves reflected more than once, there are fewer limitations compared to synthetic aperture focusing technique algorithms. As a drawback, the required computation is significantly higher than that for the techniques currently used. Simulations for polyamide and concrete structures showed the potential for non-destructive testing. The simulations were followed by experiments at a polyamide specimen. Here, having acquired almost noise-free measurement data to test the algorithm, we were able to determine the shape and size of boreholes with sufficient accuracy. After these successful tests, we performed experiments at a reinforced concrete foundation slab. We obtained information from the data by reverse time migration, which was not accessible by traditional imaging. The imaging of the location and structure of the lower boundary of the concrete foundation slab was improved. Furthermore, vertical reflectors inside the slab were imaged clearly, and more flaws were found. It has been shown that reverse time migration is a step forward in ultrasonic testing in civil engineering. T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering CY - Berlin, Germany DA - 15.09.2015 KW - Ultrasound KW - Imaging KW - Reverse time migration KW - Reflection seismics KW - Concrete PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-345406 SN - 1435-4934 SP - 1 EP - 10 PB - Technische Universität Berlin / Bundesanstalt für Materialforschung und -prüfung AN - OPUS4-34540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghafafian, Carineh A1 - Popiela, Bartosz A1 - Nielow, Dustin A1 - Trappe, Volker T1 - Restoration of structural integrity – a comparison of various repair concepts for wind turbine rotor blade shells N2 - Localized patches are a cost- and time-effective method for repairing fiber-reinforced polymer (FRP) sandwich wind turbine rotor blade shells. To increase the understanding of their effect on the fatigue of the blades, this study examines the effect of various layup methods of localized repair patches on the structural integrity of composite sandwich structures. Manufactured with the vacuum-assisted resin infusion (VARI) process, the shell test specimens are produced as a curved structure with glass fiber reinforced polymer (GFRP) sandwiching a polyvinyl chloride (PVC) foam core. Patch repairs are then introduced with varying layup techniques, and material properties are examined with cyclic fatigue tests. The transition region between patch and parent material is studied in greater detail with finite element method (FEM) simulations, with a focus on the effect of fiber orientation mismatch. Damage onset, crack development, and eventual failure are monitored with in-situ non-destructive testing methods to develop a robust understanding of the effects of repair concepts on material stiffness and strength. T2 - SMAR 2019 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures CY - Potsdam, Germany DA - 27.08.2019 KW - Lightweight materials KW - Glass fiber reinforced polymers KW - Sandwich KW - Wind turbine blades PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-482170 SP - 1 EP - 8 PB - German Society for Non-Destructive Testing (DGZfP e.V.) AN - OPUS4-48217 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Cabeza, S. A1 - Mishurova, Tatiana A1 - Nadammal, Naresh A1 - Thiede, Tobias A1 - Bruno, Giovanni T1 - Residual Stresses in Selective Laser Melted Samples of a Nickel Based Superalloy N2 - Additive Manufacturing (AM) through the Selective Laser Melting (SLM) route offers ample scope for producing geometrically complex parts compared to the conventional subtractive manufacturing strategies. Nevertheless, the residual stresses which develop during the fabrication can limit application of the SLM components by reducing the load bearing capacity and by inducing unwanted distortion, depending on the boundary conditions specified during manufacturing. The present study aims at characterizing the residual stress states in the SLM parts using different diffraction methods. The material used is the nickel based superalloy Inconel 718. Microstructure as well as the surface and bulk residual stresses were characterized. For the residual stress analysis, X-ray, synchrotron and neutron diffraction methods were used. The measurements were performed at BAM, at the EDDI beamline of -BESSY II synchrotronand the E3 line -BER II neutron reactor- of the Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. The results reveal significant differences in the residual stress states for the different characterization techniques employed, which indicates the dependence of the residual state on the penetration depth in the sample. For the surface residual stresses, longitudinal and transverse stress components from X-ray and synchrotron agree well and the obtained values were around the yield strength of the material. Furthermore, synchrotron mapping disclosed gradients along the width and length of the sample for the longitudinal and transverse stress components. On the other hand, lower residual stresses were found in the bulk of the material measured using neutron diffraction. The longitudinal component was tensile and decreased towards the boundary of the sample. In contrast, the normal component was nearly constant and compressive in nature. The transversal component was almost negligible. The results indicate that a stress re-distribution takes place during the deposition of the consecutive layers. Further investigations are planned to study the phenomenon in detail. T2 - European Conference on Residual Stresses - ECRS10 CY - Leuven, Belgium DA - 11.09.2018 KW - Additive Manufacturing KW - Selective Laser Melting KW - Residual Stresses PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-459818 SN - 978-1-94529-189-0 SN - 978-1-94529-188-3 DO - https://doi.org/10.21741/9781945291890-41 SN - 2474-395X SN - 2474-3941 VL - 6 SP - 259 EP - 264 PB - Materials Research Forum LLC CY - Millersville, PA 17551, USA AN - OPUS4-45981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Launert, B. A1 - Rhode, Michael A1 - Kromm, Arne A1 - Pasternak, H. A1 - Kannengießer, Thomas ED - Olden, T.-M. ED - Muransky, O. ED - Edwards, L. T1 - Residual stress influence on the flexural buckling of welded I-girders N2 - The nonlinear analysis became a common tool to precisely assess the load-bearing behavior of steel beam and column members. The failure level is significantly influenced by different types of imperfections, among geometric also structural imperfections (residual stresses). Here are still gaps in the knowledge. Nowadays, 3-D welding simulation developed to a level where it could provide reliable estimation of weld-induced distortion and residual stresses. Nevertheless, modelling and computational effort are still in a less practicable range. In this study a simplified procedure to implement residual welding stresses in continuous large scale members is proposed and the influence on the ultimate limit state of slender members in compression is evaluated for two common structural steel grades. The results showed significant improvements in the utilization of load bearing capacity compared with simplified design methods. The comparatively general approach in this study offers potential for future optimization. T2 - ICRS 2016 - 10th International Conference on Residual Stresses CY - Sydney, Australia DA - 03.07.2016 KW - Stability Design KW - Finit Element Method KW - 2-D Welding Simulation KW - Inherent Strain KW - Plasticity-based Analysis PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-389210 SN - 978-1-94529117-3 SN - 978-1-94529117-6 DO - https://doi.org/10.21741/9781945291173-19 SN - 2474-395X VL - 2 SP - 109 EP - 114 PB - Materials Research Forum LLC CY - Millersville (PA), USA AN - OPUS4-38921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kromm, Arne A1 - Schroepfer, Dirk A1 - Steger, J. A1 - Kannengießer, Thomas ED - Seefeldt, M. T1 - Residual stress formation in component related stress relief cracking tests of a welded creep-resistant steel N2 - Submerged arc welded (SAW) components of creep-resistant low-alloyed Cr-Mo-V steels are used for thick-walled heavy petrochemical reactors (wall-thickness up to 475 mm) as well as employed in construction of modern high-efficient fossil fired power plants. These large components are accompanied by significant restraints during welding fabrication, especially at positions of different thicknesses like welding of nozzles. As a result, residual stresses occur, playing a domi-nant role concerning so-called stress relief cracking (SRC) typically during post weld heat treat-ment (PWHT). Besides specific metallurgical factors (like secondary hardening due to re-precipitation), high tensile residual stresses are a considerable influence factor on SRC. For the assessment of SRC susceptibility of certain materials mostly mechanical tests are applied which are isolated from the welding process. Conclusions regarding the influence of mechanical factors are rare so far. The present research follows an approach to reproduce loads, which occur during welding of real thick-walled components scaled to laboratory conditions by using tests designed on different measures. A large-scale slit specimen giving a high restraint in 3 dimensions by high stiffness was compared to a medium-scale multi-pass welding U-profile specimen showing a high degree of restraint in longitudinal direction and a small-scale TIG-re-melted specimen. The small-scale specimens were additionally subjected to mechanical bending to induce loads that are found during fabrication on the real-scale in heavy components. Results show for all three cases compa-rable high tensile residual stresses up to yield strength with high gradients in the weld metal and the heat affected zone. Those high tensile stresses can be significant for cracking during further PWHT. T2 - European Conference on Residual Stresses 2018 - ECRS-10 CY - Leuven, Belgium DA - 11.09.2018 KW - Welding KW - Residual stresses KW - Stress Relief Cracking (SRC) KW - Creep-resistant steel KW - Post Weld Heat Treatment (PWHT) PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-459683 SN - 978-1-9452-9188-3 SN - 978-1-9452-9189-0 DO - https://doi.org/10.21741/9781945291890-29 SN - 2474-395X SN - 2474-3941 VL - 6 SP - 185 EP - 190 PB - Materials Research Forum LLC CY - Millersville, PA, USA AN - OPUS4-45968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mayer, K. A1 - Krause, Martin A1 - Ibrahim, M. A1 - Schubert, Marcus T1 - Requirements for a Small Size Ultrasonic Imaging System for Inspection of Concrete Elements N2 - Ultrasonic imaging systems usually require an array of ultrasonic transducers for data acquisition on a wide area on top of an object under investigation. The goal of an imaging algorithm is the use of reflected ultrasound data to form a recognizable image. Conventional algorithms like SAFT are based on an inverse Huygens' principle and need therefore a dense measurement grid. This requires a big effort in data capturing. For simple and inexpensive measurement different strategies of imaging with reduced amount of data and examples with a manual scanning device on concrete elements are presented. T2 - 19th World Conference on Non-Destructive Testing 2016 CY - Munich, Germany DA - 13.06.2016 KW - NDT-CE KW - Ultrasonic echo KW - SAFT PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-388548 SP - 1245 EP - 1254 PB - DGZfP CY - Bad Breising, Germany AN - OPUS4-38854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Küttenbaum, Stefan A1 - Kainz, C. A1 - Braml, T. T1 - Reliability assessment of existing concrete bridges with geometrical NDT results - Case studies N2 - The results of and the validity in reliability assessment of existing bridges essentially depend on the information available about the considered system. Information about the actual condition as well as structural and material characteristics can be observed on-site to refine the computation models used in assessment. Non-destructive testing (NDT) methods for concrete structures are capable of reconstructing missing, questioned, or inconsistent as-built plans. This contribution summarizes recent developments within the scope of the national pre-standardization project “ZfPStatik”, which aims to prepare a guideline about NDT-supported structural analyses. The focus is on the purposeful and explicit utilization of geometrical tendon and reinforcement bar positions (measured on-site using the ultrasound echo and ground penetrating radar (GPR) techniques) in probabilistic reliability analyses — shown by means of real case studies. The well-established first order reliability method is applied to different concrete bridges, which are typical for the German road bridge stock, to demonstrate the utility of incorporating quality-evaluated NDT-results in terms of changes in structural reliability. T2 - 13th German-Japanese Bridge Symposium CY - Osaka, Japan DA - 28.08.2023 KW - Non-destructive testing KW - Prestressed concrete KW - Data-informed reliability analysis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582727 SP - 29 EP - 40 PB - Osaka Metropolitan University CY - Osaka AN - OPUS4-58272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Küttenbaum, Stefan A1 - Taffe, A. A1 - Braml, T. A1 - Maack, Stefan ED - Alexander, M. G. ED - Beushausen, H. ED - Dehn, F. ED - Moyo, P. T1 - Reliability assessment of existing bridge constructions based on results of non-destructive testing N2 - The non-destructive testing methods available for civil engineering (NDT-CE) enable the measurements of quantitative parameters, which realistically describe the characteristics of existing buildings. In the past, methods for quality evaluation and concepts for validation expanded into NDT-CE to improve the objectivity of measured data. Thereby, a metrological foundation was developed to collect statistically sound and structurally relevant information about the inner construction of structures without destructive interventions. More recently, the demand for recalculations of structural safety was identified. This paper summarizes a basic research study on structural analyses of bridges in combination with NDT. The aim is to use measurement data of nondestructive testing methods as stochastic quantities in static calculations. Therefore, a methodical interface between the guide to the expression of uncertainty in measurement and probabilistic approximation procedures (e.g. FORM) has been proven to be suitable. The motivation is to relate the scientific approach of the structural analysis with real information coming from existing structures and not with those found in the literature. A case study about the probabilistic bending proof of a reinforced concrete bridge with statistically verified data from ultrasonic measurements shows that the measuring results fulfil the requirements concerning precision, trueness, objectivity and reliability. T2 - International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2018) CY - Cape Town, South Africa DA - 19.11.2018 KW - NDT KW - Concrete KW - Probabilistic reassessment KW - Bridge PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-467898 DO - https://doi.org/10.1051/matecconf/201819906001 SN - 2261-236X VL - 199 SP - 06001, 1 EP - 9 PB - MATEC Web of Conferences AN - OPUS4-46789 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pavlovic, Mato A1 - Müller, Christina A1 - Heckel, Thomas A1 - Zoёga, Andreas T1 - Reliability analysis of the ultrasonic inspection system for the inspection of hollow railway axles N2 - Axles are safety critical train components that are subjected to significant cyclic loading during operation. If the crack is initiated in the axle, cyclic loading will lead to crack propagation. To maintain structural integrity, axles must be periodically inspected for fatigue cracks in the material. Deutsche Bahn uses mechanized ultrasonic inspection system to inspect hollow railway axles. The inspections are performed from the bore surface, using several conventional transducers with different incident angles, inspecting the axle along the entire length. As with the every safety critical system, the reliability of these inspections must be determined with regard to their flaw detection capabilities. Traditionally this is done according to the relevant standards for railway vehicles. To investigate the capability of the NDT system more thoroughly, we want to evaluate the capability of the inspection system to detect flaws by means of probability of detection (POD) curves. It will be shown that other parameters, beside the size of the crack, for example crack position in the axle, influence the detection of the crack. The influence of these parameters was evaluated using ultrasonic simulation. The evaluation served as an input for the manufacturing of the flaws in the real scale axle. Once these axles are inspected and the data evaluated, using data from both measurement and simulation, we will express the POD of the crack as function of influencing parameters using the multiparameter POD model. T2 - 19th Wolrd Conference on Nondestructive Testing CY - Munich, Germany DA - 13.06.2016 KW - POD KW - Railway KW - Axle KW - Safety KW - Reliability KW - Ultrasonics PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-366996 VL - 2016/158 SP - Tu.3.D.5 PB - Deutsche Gesellschaft für zerstörungsfreie Prüfung (DGZfP) CY - Berlin AN - OPUS4-36699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pavlovic, Mato A1 - Müller, Christina A1 - Ronneteg, U. T1 - Reliability Analysis of the Phased-Array Ultrasonic System used for the Inspection of Friction Stir Welds N2 - The canister for the permanent storage of spent nuclear fuel used by SKB in Sweden consists of a cast iron insert surrounded by a five centimetre thick shell of copper. It is a safety critical component and in order to secure long-term structural integrity non-destructive methods are used to inspect 100% of the volume of each canister, before it is disposed of in the repository. One of the critical components that requires inspection is a sealing weld, joining the copper tube and the lid. The friction stir weld is inspected using an ultrasonic phased array system. The area of the weld is inspected with several inspection channels with different angles and varying coverage. To make sure that no defects that might occur in the weld are overseen, the reliability of the inspection must be quantified. The reliability of NDT is usually quantified with the probability of detection curves. The influence of the parameters that might influence the POD of the flaws in the weld is investigated analysing the experimental results, as well as with a help of a numerical simulation of the inspection. T2 - 19th Wolrd Conference on Nondestructive Testing CY - Munich, Germany DA - 13.06.2016 KW - NDT KW - Ultrasonic KW - Reliability KW - POD KW - Copper KW - FSW KW - JLH PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-366982 VL - 2016/158 SP - We.4.E.5 PB - Deutsche Gesellschaft für zerstörungsfreie Prüfung (DGZfP) CY - Berlin AN - OPUS4-36698 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kotschate, Daniel A1 - Gohlke, Dirk A1 - Eisentraut, Mark T1 - Reference block design for high resolution ultrasound immersion tank N2 - In respect of modern approaches in material sciences and highly increased requirements on materials on safety relevant components, quality management and non-destructive testing reclaims a steadily increased meaning. The destructive meaning of measuring the degree of purity is defined in DIN EN 10247 through metallurgical investigations, especially microsections. For and comparable, but non-destructive testing due ultrasonic testing, the material the SEP 1927 is a well-defined industry standard. A novel and alternative way of reference block construction was focused by this work. The proposed amendments, regarding the manufacturing and machining, are less time and cost consuming. Verified by measurements the presented reference block fits the same acoustical characteristics and the requirements of the guideline. T2 - 19th World Conference on Non-Destructive Testing CY - Munich, Germany DA - 13.06.2016 KW - SEP 1927 KW - Degree of purity KW - High resolution ultrasonic testing KW - Immersion tank testing PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-368512 VL - 2016 SP - Paper X15, 1 EP - 4 AN - OPUS4-36851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kinne, Marko A1 - Schneider, Ronald A1 - Thöns, Sebastian T1 - Reconstructing Stress Resultants in Wind Turbine Towers Based on Strain Measurements N2 - Support structures of offshore wind turbines are subject to cyclic stresses generated by different time-variant random loadings such as wind, waves, and currents in combinationwith the excitation by the rotor. In the design phase, the cyclic demand on wind turbine support structure is calculated and forecasted with semi or fully probabilistic engineering models. In some cases, additional cyclic stresses may be induced by construction deviations, unbalanced rotor masses and structural dynamic phenomena such as, for example, the Sommerfeld effect. Both, the significant uncertainties in the design and a validation of absence of unforeseen adverse dynamic phenomena necessitate the employment of measurement Systems on the support structures. The quality of the measurements of the cyclic demand on the support structures depends on (a) the precision of the measurement System consisting of sensors, amplifier and data normalization and (b) algorithms for analyzing and converting data to structural health information. This paper presents the probabilistic modelling and analysis of uncertainties in strain measurements performed for the purposes of reconstructing stress resultants in wind turbine towers. It is shown how the uncertainties in the strain measurements affect the uncertainty in the individual components of the reconstructed forces and moments. The analysis identifies the components of the vector of stress resultants that can be reconstructed with sufficient precision. T2 - International Conference on Uncertainty in Mechanical Engineering - ICUME CY - Online meeting DA - 07.06.2021 KW - Reconstruction of stress resultants KW - Strain measurements KW - Bayesian updating of measurement uncertainties PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527987 DO - https://doi.org/10.1007/978-3-030-77256-7_18 SP - 224 EP - 235 PB - Springer AN - OPUS4-52798 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmid, Thomas A1 - Dariz, P. ED - Ziemann, M. T1 - Raman band widths of anhydrite II reveal the burning history of high-fired medieval gypsum mortars N2 - The use of high-fired gypsum as binder for masonry and joint mortars or stuccowork in Central Europe in the Early and High Middle Ages was a regional specific as it depended on local gypsum deposits. The calcination technology possible at the time resulted in an assemblage of calcium sulphate phases dehydrated to different degrees and partly thermally damaged accessory minerals of the raw gypsum. Because of the absence of medieval textbooks, the observation of high-temperature, low-pressure mineral transformations and the correlation of phases coexisting in not hydrated binder relicts in the gypsum matrix to the mineralogy of the raw material and the burning conditions constitute the only source to the historical technological know-how. The CaSO4–H2O system consists of five crystalline phases, which can be discriminated by structural analysis methods, such as Raman spectroscopy, due to obvious differences in their spectroscopic data: gypsum (CaSO4 ⋅ 2 H2O), bassanite (hemihydrate, CaSO4 ⋅ ½ H2O), anhydrite III (CaSO4), anhydrite II (CaSO4), and anhydrite I (CaSO4). Only recently, it was possible to demonstrate that small spectroscopic variations exist also within the relatively large stability range of anhydrite II from approx. 180°C to 1180°C: all Raman bands narrow with increasing burning temperature applied in the synthesis from gypsum powder. The determination of band widths of down to 3 cm-1 and differences between them of a few tenths of a wavenumber is not a trivial task. Thus, this contribution discusses peak fitting and strategies for correction of instrument-dependent band broadening. Raman maps of polished thin sections of gypsum mortars provide access to the burning histories of individual remnant thermal anhydrite grains and enable the discrimination of natural anhydrite originating from the gypsum deposit. This novel analytical method was applied to samples from medieval South Tyrolean stucco decorations and sculptures. Beyond that, Raman microspectroscopy was employed for following pyrometamorphic reactions in natural impurities of the raw material. In the presented examples mineral thermometry indicates process temperatures above 800°C: the breakdown of magnesium-rich chlorite led to the formation of forsterite Mg2SiO4, while the thermal decomposition of dolomite CaMg(CO3)2 yielded – after hydration and carbonation – magnesite MgCO3, CaCO3 polymorphs and magnesian calcite. Lower burning temperatures, which leave the accessory minerals in their pristine form, can be traced by measuring the spectra of anhydrite crystalites in grains of firing products and evaluating Raman band widths. Throughout the applications of this analytical method so far, calcination temperatures ranging from approx. 600°C to 900°C were determined. T2 - 10th International Congress on the Application of Raman Spectroscopy in Art and Archaeology CY - Potsdam, Germany DA - 03.09.2019 KW - Raman microspectroscopy KW - High-fired medieval gypsum mortars KW - Raman band width KW - Gypsum dehydration KW - Thermal anhydrite PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-496204 SP - 36 EP - 37 PB - University of Potsdam CY - Potsdam AN - OPUS4-49620 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stajanca, Pavol A1 - Krebber, Katerina ED - Webb, D. J. ED - Scully, P. ED - Sugden, K. T1 - Radiation induced attenuation in perfluorinated polymer optical fibres for dosimetry applications N2 - Real-time measurement of radiation-induced attenuation (RIA) in a commercial perfluorinated polymer optical fibre (PF-POF) is performed with regard to on-line Radiation monitoring purposes. Spectral character and dose dependence of fibre’s RIA is measured in 450-900 nm spectral region. Fibre exhibited high radiation sensitivity in the visible region with strong increase towards the UV wavelengths. Good linearity and high sensitivity reaching up to 130 dBm-1/kGy was demonstrated in the VIS region for a low-dose range. This of-the-shelf PF-POF could be therefore interesting for on-line remote dosimetry applications. T2 - POF 2016: 25th International Conference on Plastic Optical Fibres CY - Birmingham, UK DA - 13.09.2016 KW - Perfluorinated polymer optical fibers KW - Gamma radiation monitoring KW - Radiation induced attenuation PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-403221 SN - 978-1-85449-408-5 SP - 167 EP - 170 CY - Birmingham AN - OPUS4-40322 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krietsch, Arne A1 - Krause, U. A1 - Gabel, D. A1 - Abbas, Z. A1 - Dufaud, O. T1 - Quasi-static dispersion of dusts for the determination of lower explosion limits of hybrid mixtures N2 - Knowledge of explosion limiting concentration of explosible materials is necessary for the design of explosion protection measures. Currently employed methods of testing MEC of a dust cloud or LEL of a hybrid mixture are based on arbitrary assumptions and possess technical limitations that often lead to values of MEC/LEL, which are unrealistically low or poorly reproducible. This contribution presents an improved method for experimental determination of MEC of a combustible dust cloud or LEL of a flammable gas or hybrid mixture. The new set-up operates under laminar conditions and allows a uniform suspension of dust particles in an open top acrylic glass tube. Dust concentration is measured with the help of infrared sensors installed a few centimeters above and below the ignition source. In order to evaluate the dependence of MEC on flow front velocity, MEC of lycopodium was determined at four flow velocities. The results show that the flow field intensity does not significantly influence the MEC of lycopodium for the flow ranges tested in this work. Moreover, LEL of hybrid mixtures of lycopodium and methane was also tested at flow velocities of 4.7 cm/s, 5.8 cm/s, 7 cm/s and 11 cm/s and compared with the values obtained from other sources. The results suggest that the requirement of high energy pyrotechnical igniter may be relinquished, provided that a truly homogeneous suspension of dust particles could be achieved. Moreover, the effect of relative amount of dust and gas, on the course of ignition and flame propagation in hybrid mixtures at their LEL, was studied by the help of high speed videos. For hybrid mixtures of carbonaceous dusts (like lycopodium) at their LEL, ignition occurs in the gas phase, however, flame propagation is only possible through a two-way interaction of dust and gas during the course of combustion. T2 - 13th Symposium International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions (ISHPMIE) CY - Online meeting DA - 27.07.2020 KW - Dust explosions KW - Gas explosions KW - Lower explosion limit KW - Hybrid mixtures PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540955 DO - https://doi.org/10.7795/810.20200724 SP - 750 EP - 764 PB - Physikalisch-Technische Bundesanstalt AN - OPUS4-54095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaenisch, Gerd-Rüdiger A1 - Kolkoori, Sanjeevareddy A1 - Bellon, Carsten T1 - Quantitative simulation of back scatter X-ray imaging and comparison to experiments N2 - X-ray backscatter imaging is a well established NDT technique to inspect complex objects using only a single-sided access. In difference to conventional transmission X-ray radiography, the X-ray backscatter imaging utilizes the scattered radiation caused by the Compton scattering effect. In order to achieve high backscatter intensities from a test object, it is necessary to optimize the backscatter system parameters namely the angle between source and slit camera, the slit collimator system, the shielding between source and scatter camera, and the type of detector. In addition, the scatter phenomena in to the investigated object need to be understood. In this contribution, we present a Monte Carlo model McRay which considers all relevant single and multiple interactions of photons and electrons. This model can be used to simulate back scatter techniques. It allows not only calculating the scatter image for a given experimental setup but also registering the spectrum of the detected scattered photons. Both aspects are important to understand the imaging process, to interpret the results, and to optimize the backscatter camera investigated here. Additionally experimental results will be presented and compared with simulations. T2 - 19th World Conference on Nondestructive Testing CY - Munich, Germany DA - 13.06.2016 KW - Radiology KW - Back-scatter techniques KW - Simulation KW - Monte Carlo methods KW - Measurements PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-365897 SN - 978-3-940283-78-8 VL - 158 SP - 1 EP - 11 PB - Deutsche Gesellschaft für zerstörungsfreie Prüfung (DGZfP) CY - Berlin, Germany AN - OPUS4-36589 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Götschel, S. A1 - Maierhofer, Christiane A1 - Müller, Jan P. A1 - Rothbart, Nick A1 - Weiser, M. T1 - Quantitative defect reconstruction in active thermography for fiber-reinforced composites N2 - Carbon-fiber reinforced composites are becoming more and more important in the production of light-weight structures, e.g., in the automotive and aerospace industry. Thermography is often used for non-destructive testing of These products, especially to detect delaminations between different layers of the composite. In this presentation, we aim at methods for defect reconstruction from thermographic measurements of such carbon-fiber reinforced composites. The reconstruction results shall not only allow to locate defects, but also give a quantitative characterization of the defect properties. We discuss the simulation of the measurement process using finite element methods, as well as the experimental validation on flat bottom holes. Especially in pulse thermography, thin boundary layers with steep temperature gradients occurring at the heated surface need to be resolved. Here we use the combination of a 1D analytical solution combined with numerical solution of the remaining defect equation. We use the simulations to identify material Parameters from the measurements. Finally, fast heuristics for reconstructing defect geometries are applied to the acquired data, and compared for their accuracy and utility in detecting different defects like back surface defects or delaminations. T2 - 19th World Conference on Non-Destructive Testing 2016 CY - München, Germany DA - 13.06.2016 KW - Active thermography KW - Numerical simulation KW - Time-resolved thermogram KW - Thermal wave PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-366644 UR - https://www.wcndt2016.com/Programme/show/Th-4-C-4 VL - 2016 SP - Th.4.C.4-1 EP - Th.4.C.4-10 AN - OPUS4-36664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krankenhagen, Rainer A1 - Maierhofer, Christiane A1 - Heckel, Thomas A1 - Brackrock, Daniel A1 - Gower, M. A1 - Lodeiro, M. A1 - Baker, G. T1 - Quantitative comparison of different non-destructive techniques for the detection of artificial defects in GFRP N2 - In order to test their suitability different non-destructive methods were performed to inspect a GFRP plate with artificial defects. These defects were manufactured by means of thin PTFE sheets inserted between two plies in three different depth. The inspection methods were microwave reflection, flash thermography and phased array ultrasonics, all applied to the same specimen. Selected results are shown for all methods demonstrating opportunities and limits of the particular inspection methods. The achieved detection limits and further application aspects are compared directly to provide a useful information for the planning of inspection tasks. T2 - ECNDT CY - Gothenburg, Sweden DA - 11.06.2018 KW - Fiber resisted polymers KW - Non-destructive testing KW - Thermographic testing KW - Ultrasonic testing PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-453728 SP - ECNDT-0247-2018 AN - OPUS4-45372 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maierhofer, Christiane A1 - Krankenhagen, Rainer A1 - Röllig, Mathias A1 - Heckel, Thomas A1 - Brackrock, Daniel A1 - Gaal, Mate T1 - Quantification of impact damages in CFRP and GFRP structures with thermography and ultrasonics N2 - The extent of damage caused by impacts in fibre reinforced composites depends on the energy of the impacts, on the velocity and the shape of the impacting body, on the material and structure of the composite and on the geometry of the structure. Here, mainly the thickness of the component is essential. The non-destructive evaluation of these damages can be carried out using both ultrasound and active thermography methods. A comparison of the detection sensitivity of these methods for the different damages is carried out in this paper depending on the fibre composite material used (CFRP and GFRP), the thickness of the material and the impact energy. The NDT methods used after the damage are supplemented by thermographic measurements with high temporal resolution, which were already recorded during the impact. T2 - 14th Quantitative InfraRed Thermography Conference CY - Berlin, Germany DA - 25.06.2018 KW - Active thermography KW - Passive thermography KW - Ultrasonics KW - CFRP KW - GFRP KW - Impact PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-454952 UR - http://www.qirt.org/archives/qirt2018/papers/126.pdf DO - https://doi.org/10.21611/qirt.2018.126 SP - 933 EP - 940 PB - DGZfP e. V. AN - OPUS4-45495 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Hentschel, M. P. A1 - Lange, A. A1 - Trappe, Volker A1 - Laquai, René A1 - Shashev, Yury A1 - Evsevleev, Sergei A1 - Bruno, Giovanni T1 - Progress survey of X-Ray refraction imaging techniques N2 - The most substantial innovations in radiographic imaging techniques of the last two decades aim at enhanced image contrast of weakly absorbing micro and nano structures by taking advantage of X-ray refraction effects occurring at outer and inner surfaces. The applications range from fibre reinforced plastics to biological tissues. These techniques comprise, among others, X-ray refraction topography, diffraction enhanced imaging, phase contrast imaging, Talbot-Lau grating interferometry, and refraction enhanced imaging. They all make use of selective beam deflections up to a few minutes of arc: the X-ray refraction effect. In contrast to diffraction, this type of interaction has a 100 % scattering cross section, as shown experimentally. Since X-ray refraction is very sensitive to the orientation of interfaces, it is additionally a tool to detect, e.g., fibre or pore orientation. If the detector resolution exceeds the size of (small) individual features, one detects the integral information (of inner surfaces) within the gauge volume. We describe the above-mentioned techniques, and show their experimental implementation in the lab and at a synchrotron source. We also show strategies for data processing and quantitative analysis. T2 - 19th World Conference on Non-Destructive Testing CY - Munich, Germany DA - 13.06.2016 KW - grating KW - topography KW - refraction KW - X-ray PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-366194 SN - 978-3-940283-78-8 VL - 2016/158 SP - We.3.B.2, 1 EP - 9 AN - OPUS4-36619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Kern, Simon A1 - Gräßer, Patrick A1 - Maiwald, Michael ED - Maiwald, Michael T1 - Process monitoring of an intensified continuous production unit with compact NMR spectroscopy N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and relatively inexpensive analyzers, which feature advantages like low cost, low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, sufficient robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are cur-rently not available off the rack. Recently, promising benchtop NMR instruments with acceptable performance came to market and process integrated sensors developed on basis of such laboratory instruments are on their way. T2 - 12. Kolloquium des Arbeitskreises Prozessanalytik CY - Berlin, Germany DA - 28.11.2016 KW - Online NMR spectroscopy KW - Modular production units KW - Low field NMR spectroscopy PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-383646 SP - P17, 75 EP - 77 AN - OPUS4-38364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Niederleithinger, Ernst T1 - Practical procedure for the precise measurement of geometrical tendon positions in concrete with ultrasonic echo N2 - Existing concrete structures were usually designed for lifetimes of several decades. The current and urgently required efforts to increase sustainability and protect the environment will likely result in extended service lives up to 100 years. To achieve such objectives, it is required to assess structures over their entire lifecycles. Non-destructive testing (NDT) methods can reliably support the assessment of existing structures during the construction, operational, and decommissioning phases. One of the most important and safety-relevant components of a prestressed concrete structure are the tendons. NDT methods such as the ultrasonic echo method are suitable for both the detection and the localization of the tendons, i.e., the measurement of their geometrical position inside the component. The uniqueness of structures, concrete heterogeneity, and varying amounts of secondary components such as the reinforcement represent obstacles in the application of these methods in practice. The aim of this contribution is to demonstrate a practicable procedure, that can be used in the field to determine the parameters required for the measuring data analysis without extensive knowledge about the investigated components. For this purpose, a polyamide reference specimen is used to show which steps are required to obtain reliable imaging information on the position of tendons from the measurement data. The procedure is then demonstrated on a concrete test specimen that covers various relevant and practice-oriented test scenarios, such as varying tendon depths and component thicknesses. T2 - International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2022) CY - Cape Town, South Africa DA - 03.10.2022 KW - Validation KW - Non-destructive testing KW - Ultrasonic KW - Reconstruction KW - Concrete KW - Tendon duct PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559979 DO - https://doi.org/10.1051/matecconf/202236403007 SN - 2261-263X SP - 1 EP - 8 AN - OPUS4-55997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winkelmann, Aimo A1 - Nolze, Gert A1 - Voss, M. A1 - Salvat-Pujol, F. A1 - Werner, W. S. M. T1 - Physics-based simulation models for EBSD: advances and challenges N2 - EBSD has evolved into an effective tool for microstructure investigations in the scanning electron microscope. The purpose of this contribution is to give an overview of various simulation approaches for EBSD Kikuchi patterns and to discuss some of the underlying physical mechanisms. T2 - EMAS 2015 - 14th European Workshop on MODERN DEVELOPMENTS AND APPLICATIONS IN MICROBEAM ANALYSIS CY - Portoroz, Slovenia DA - 03.05.2015 KW - Electron backscatter diffraction KW - Simulation KW - Dynamical theory KW - Kinematic theory PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-377469 DO - https://doi.org/10.1088/1757-899X/109/1/012018 VL - 109 SP - 012018-1 EP - 012018-13 AN - OPUS4-37746 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Philippe, P. A1 - Cuéllar, Pablo A1 - Brunier-Coulin, F. A1 - Luu, L.-H. A1 - Benahmed, N. A1 - Bonelli, S. A1 - Delenne, J.-Y. T1 - Physics of soil erosion at the microscale N2 - We focus here on the major and still relevant issue of soil erosion by fluid flows, and more specifically on the determination of both a critical threshold for erosion occurrence and a kinetics that specifies the rate of eroded matter entrainment. A state-of-the-art is first proposed with a critical view on the most commonly used methods and erosion models. It is then discussed an alternative strategy, promoting the use of model materials that allow systematic parametric investigations with the purpose of identifying more precisely the local mechanisms responsible for soil particle erosion and ultimately quantifying both critical onsets and kinetics, possibly through existing or novel empirical erosion laws. Finally, we present and discuss several examples following this methodology, implemented either by means of experiments or numerical simulations, and coupling erosion tests in several particular hydrodynamical configurations with wisely selected mechanical tests. T2 - 8th International Conference on Micromechanics on Granular Media CY - Montpellier, France DA - 03.07.2017 KW - Erosion phenomena KW - Onset of jet erosion KW - LBM-DEM numerical simulation KW - Experimental testing KW - PLIF-RIM optical techniques PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-411198 DO - https://doi.org/10.1051/epjconf/201714008014 VL - 140 SP - Paper 08014, 1 EP - Paper 08014, 4 PB - The European Physical Journal (EPJ) - Web of Conferences AN - OPUS4-41119 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, David A1 - Zscherpel, Uwe A1 - Ewert, Uwe T1 - Photon counting and energy discriminating x-ray detectors - benefits and applications N2 - Since a few years the direct detection of X-ray photons into electrical signals is possible by usage of highly absorbing photo conducting materials (e.g. CdTe) as detection layer of an underlying CMOS semiconductor X-ray detector. Even NDT energies up to 400 keV are possible today, as well. The image sharpness and absorption efficiency is improved by the replacement of the unsharp scintillation layer (as used at indirect detecting detectors) by a photo conducting layer of much higher thickness. If the read-out speed is high enough (ca. 50 – 100 ns dead time) single X-ray photons can be counted and their energy measured. Read-out noise and dark image correction can be avoided. By setting energy thresholds selected energy ranges of the X-ray spectrum can be detected or suppressed. This allows material discrimination by dual-energy techniques or the reduction of image contributions of scattered radiation, which results in an enhanced contrast sensitivity. To use these advantages in an effective way, a special calibration procedure has to be developed, which considers also time dependent processes in the detection layer. This contribution presents some of these new properties of direct detecting digital detector arrays (DDAs) and shows first results on testing fiber reinforced composites as well as first approaches to dual energy imaging. T2 - 19th World Conference on Non-Destructive Testing, 2016 CY - Munich, Germany DA - 13.06.2016 KW - CFRP KW - Photon counting detectors KW - dual-energy KW - laminography PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-365744 SN - 978-3-940283-78-8 N1 - Geburtsname von Schumacher, David: Walter, D. - Birth name of Schumacher, David: Walter, D. VL - 2016 / 158 SP - Tu.2.B.5 AN - OPUS4-36574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bühling, Benjamin A1 - Maack, Stefan A1 - Strangfeld, Christoph T1 - OsciCheck - A Novel Fluidic Transducer for Air-Coupled Ultrasonic Measurements N2 - Ultrasonic measurement technology has become indispensable in NDT-CE. Air-coupled ultrasonic (ACU) measurement techniques promise to reduce measurement time. However, the signal quality suffers from large specific impedance mismatch at the transducer-air and air-specimen interface. Additionally, large pressure amplitudes are necessary for the penetration depth required in NDT-CE applications. To address the specific requirements of ultrasonic testing in NDT-CE, a robust ACU transducer was developed, that generates ultrasound by quickly switching a pressurized air flow. The simple design of the fluidic transducer makes the device maintenance free and resilient against harsh environmental conditions. Since the signal is generated by aeroacoustics, there is no specific impedance mismatch between the transducer and the surrounding air. The ultrasonic signal exhibits frequencies in the 30-60 kHz range and is therefore well suited to penetrate heterogenous materials such as concrete. This contribution gives an introduction in the working principle and signal characteristics of the fluidic transducer. Its applicability to measurements in concrete is verified. A detailed outlook is given to discuss the future potential of fluidic ultrasonic actuators. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Air-coupled ultrasound KW - Nondestructive testing KW - Fluidics KW - Bistable amplifier KW - Aeroacoustics PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555271 UR - https://www.ndt.net/search/docs.php3?id=27319 VL - 2022/09 SP - 1 EP - 9 PB - NDT.net CY - Bad Breisig AN - OPUS4-55527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grundmann, Jana A1 - Ermilova, Elena A1 - Hertwig, Andreas A1 - Klapetek, Petr A1 - Pereira, Silvania F. A1 - Rafighdoost, Jila A1 - Bodermann, Bernd T1 - Optical and Tactile Measurements on SiC Sample Defects N2 - The different defect types on SiC samples are measured with various measurement methods including optical and tactile methods. The defect types investigated include particles, carrots and triangles and they are analyzed with imaging ellipsometry, coherent Fourier scatterometry and atomic force microscopy. Each of these methods measures different properties of the defects and they all together contribute to a complete analysis. T2 - SMSI 2023 - Sensor and Measurement Science International CY - Nuremberg, Germany DA - 08.05.2023 KW - Defects KW - Silicon carbide KW - Imaging ellipsometry KW - Atomic force microscopy KW - Coherent Fourier scatterometry PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593397 SN - 978-3-9819376-8-8 DO - https://doi.org/10.5162/SMSI2023/D5.2 VL - 2023/D5 SP - 233 EP - 234 PB - AMA Service CY - Wunstorf AN - OPUS4-59339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gollwitzer, Christian A1 - Bellon, Carsten A1 - Deresch, Andreas A1 - Ewert, Uwe A1 - Jaenisch, Gerd-Rüdiger T1 - On POD estimations with radiographic simulator aRTist N2 - The computer simulation of radiography is applicable for different purposes in NDT such as for the qualification of NDT systems, the optimization of system parameters, feasibility analysis, model-based data interpretation, education and training of NDT/NDE personnel, and others. Within the framework of the European project PICASSO simulators will be adapted to support reliability assessments of NDT tasks. The radiographic simulator aRTist developed by BAM is well suited for this task. It combines analytical modelling of the RT inspection process with the CAD-orientated object description applicable to various industrial sectors such as power generation, aerospace, railways and others. The analytic model includes the description of the radiation source, the interaction of Radiation with the material of the part, and the detection process with special focus to DIR. To support reliability estimations the simulation tool is completed by a tool for probability of detection (POD) estimation. It consists of a user interface for planning automatic simulation runs with varying parameters, specifically defect variations. Further, an automatic image analysis procedure is included to evaluate the defect visibility and calculate the POD therefrom. T2 - International symposium on digital industrial radiology and computed tomography CY - Berlin, Germany DA - 20.06.2011 KW - Radiographie KW - Computersimulation KW - Probability of detection PY - 2011 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-245092 SN - 978-3-940283-34-4 IS - DGZfP-BB 128 (Tu.2.3) SP - 1 EP - 8 PB - Deutsche Gesellschaft für zerstörungsfreie Prüfung e.V. (DGZfP) AN - OPUS4-24509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brandt, S. A1 - Brozowski, F. A1 - Horn, Wolfgang A1 - Müller, B. T1 - Odour testing of building products: Examinations for an on-going development of the test standard ISO 16000-28 N2 - VOC-emissions and their odours from building products and furnishings present indoors should not have an impact on personal well-being or health. Odours can be measured by applying the standard ISO 16000-28. Indoor air determination of odour emissions from building products using test chambers. One of the described procedures is the assessment of perceived intensity using a comparative scale by a group of panellists. In this paper, the perceived intensity sampling procedure and its evaluation method are investigated and shown to need improvement. New technical developments in the methodology used to increase the reproducibility of measurement results are discussed. Since odour tests are used for labelling, they have a major influence on the assessment of construction products, similar to the procedure of the German Committee for Health Evaluation of Building Products (AgBB). In the original ISO standard, the evaluation is typically performed using a sampling container separated from the emission chamber. For a better sample presentation, an adapter was developed to connect the emission test chamber to the evaluation funnel and thus enable an odour assessment which is comparable to a direct measurement. The investigations show that losses of odourous substances can be greatly reduced, which is very desirable when seeking to obtain reliable results in odour measurement. Another experimental series was carried out to reduce the measurement effort in the evaluation of perceived intensity. Application of the developed greater than or less than/equal to. query could be helpful here. The results show that the query mostly leads to the same result as the evaluation of the perceived intensity using the method according to the standard but is much easier to perform. Overall, the results can contribute to improving the acceptance of the evaluation of perceived intensity using ISO 16000-28 and to determining odours from building materials increasingly more precisely. T2 - Healthy Buildings 2023 Europe CY - Aachen, Germany DA - 11.06.2023 KW - Building material KW - Odour KW - Perceived intensity KW - VOC KW - Emission test chamber PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580070 SP - 345 EP - 352 PB - ISIAQ (International Society of Indoor Air Quality and Climate) CY - Herndon, VA, USA AN - OPUS4-58007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pohl, Christoph A1 - Unger, Jörg F. ED - von Scheven, M. ED - Keip, M.-A. ED - Karajan, N. T1 - Obtaining macroscopic properties from a mesoscale thermomechanical model of concrete N2 - A coupled thermomechanical mesoscale model for concrete under heating is presented. When considering the heterogeneous structure under coupled loads, complex macroscopic material properties can be modelled using simple constitutive relations. For instance, damage evolution is directly driven by the incompatibility of thermal strains between matrix and aggregates. Without prescribing fc = f(T), a decline in compressive strength with rising temperatures will be shown. T2 - 7th GACM Colloquium on Computational Mechanics for Young Scientists from Academia and Industry CY - Stuttgart, Germany DA - 11.10.2017 KW - Multiscale KW - Concrete mesoscale KW - Thermomechanical PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-436540 DO - https://doi.org/10.18419/opus-9334 VL - 7 SP - MS13, 418 EP - 422 PB - Institute for Structural Mechanics, University of Stuttgart CY - Stuttgart AN - OPUS4-43654 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Puthiyaveettil, N. A1 - Kidangan, R. A1 - Unnikrishnakurup, Sreedhar A1 - Krishnamurthy, C. V. A1 - Ziegler, Mathias A1 - Myrach, Philipp A1 - Balasubramaniam, K. T1 - Numerical study of laser line thermography for crack detection at high temperature N2 - The detection of cracks before the failure is highly significant when it comes to safety-relevant structures. Crack detection in metallic samples at high surface temperature is one of the challenging situation in manufacturing industries. Laser thermography has already proved its detection capability of surface cracks in metallic samples at room temperature. In this work a continuous wave (CW) laser use to generate a laser, which is using to scan the metal surface with notch. The corresponding heat distribution on the surface monitored using infrared thermal (IR) camera. A simplified 3D model for laser thermography is developed and validated with experimental results. A dedicated image processing algorithm developed to improve the detectability of the cracks. To understand the dependency of surface temperature, laser power, laser scanning speed etc. in defect detection, we carried out parametric studies with our validated model. Here we Report the capability of laser thermography in crack detection at elevated temperature. T2 - 14th Quantitative InfraRed Thermography Conference CY - Berlin, Germany DA - 25.06.2018 KW - Thermal contrast KW - Laser Thermography KW - FEM KW - Surface cracks KW - NDT PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-499113 DO - https://doi.org/10.21611/qirt.2018.076 SN - 2371-4085 VL - 2018 SP - 685 EP - 686 AN - OPUS4-49911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cuéllar, Pablo A1 - Benseghier, Z. A1 - Luu, L.-H. A1 - Bonelli, S. A1 - Delenne, J.-Y. A1 - Radjai, F. A1 - Philippe, P. T1 - Numerical insight into the micromechanics of jet erosion of a cohesive granular material N2 - Here we investigate the physical mechanisms behind the surface erosion of a cohesive granular soil induced by an impinging jet by means of numerical simulations coupling fluid and grains at the microscale. The 2D numerical model combines the Discrete Element and Lattice Boltzmann methods (DEM-LBM) and accounts for the granular cohesion with a contact model featuring a paraboloidal yield surface. Here we review first the hydrodynamical conditions imposed by the fluid jet on a solid granular packing, turning then the attention to the impact of cohesion on the erosion kinetics. Finally, the use of an additional subcritical debonding damage model based on the work of Silvani and co-workers provides a novel insight into the internal solicitation of the cohesive granular sample by the impinging jet. T2 - 8th International Conference on Micromechanics on Granular Media CY - Montpellier, France DA - 03.07.2017 KW - Micromechanical modelling KW - LBM-DEM KW - Jet erosion KW - Granular cohesion KW - Subcritical debonding PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-411186 DO - https://doi.org/10.1051/epjconf/201714015017 VL - 140 SP - Paper 15017, 1 EP - Paper 15017, 4 PB - The European Physical Journal (EPJ) - Web of Conferences AN - OPUS4-41118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Chen, Hefeng T1 - Numerical Analysis for an Electro‐Magneto‐Mechanical Phenomenon with High‐Order Accurate Methods N2 - This paper establishes an axisymmetric model for a levitation device. Therein, the Maxwell equations are combined with the balance of linear momentum. Different possible formulations to describe the MAXWELL equations are presented and compared and discussed in the example. A high order finite element discretization using GALERKIN's method in space and the generalized NEWMARK‐α method in time are developed for the electro‐magneto‐mechanical approach. Several studies on spatial and temporal discretization with respect to convergence will be investigated. In addition, the boundary influences and the domain size with respect to the levitation device are also examined. T2 - International Association for Applied Mathematics and Mechanics CY - Kassel, Germany DA - 16.03.2020 KW - High-Order Methods KW - Electro-Magneto-Mechanical KW - Levitation Device PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520720 DO - https://doi.org/10.1002/pamm.202000018 VL - 20 IS - 1 SP - e202000018 PB - Wiley‐VCH GmbH CY - Online AN - OPUS4-52072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -