TY - JOUR A1 - Clark, P.C.J A1 - Andresen, Elina A1 - Sear, M. J. A1 - Favaro, M. A1 - Girardi, L. A1 - van de Krol, R. A1 - Resch-Genger, Ute A1 - Starr, D.E. T1 - Quantification of the Activator and Sensitizer Ion Distributions in NaYF4:Yb3+, Er3+ Upconverting Nanoparticles Via Depth-Profiling with Tender X-Ray Photoemission JF - Small N2 - The spatial distribution and concentration of lanthanide activator and sensitizer dopant ions are of key importance for the luminescence color and efficiency of upconverting nanoparticles (UCNPs). Quantifying dopant ion distributions and intermixing, and correlating them with synthesis methods require suitable analytical techniques. Here, X-ray photoelectron spectroscopy depth-profiling with tender X-rays (2000–6000 eV), providing probe depths ideally matched to UCNP sizes, is used to measure the depth-dependent concentration ratios of Er3+ to Yb3+, [Er3+]/[Yb3+], in three types of UCNPs prepared using different reagents and synthesis methods. This is combined with data simulations and inductively coupled plasma-optical emission spectroscopy (ICP-OES) measurements of the lanthanide ion concentrations to construct models of the UCNPs’ dopant ion distributions. The UCNP sizes and architectures are chosen to demonstrate the potential of this approach. Core-only UCNPs synthesized with XCl3·6H2O precursors (β-phase) exhibit a homogeneous distribution of lanthanide ions, but a slightly surface-enhanced [Er3+]/[Yb3+] is observed for UCNPs prepared with trifluroacetate precursors (α-phase). Examination of Yb-core@Er-shell UCNPs reveals a co-doped, intermixed region between the single-doped core and shell. The impact of these different dopant ion distributions on the UCNP's optical properties is discussed to highlight their importance for UCNP functionality and the design of efficient UCNPs. KW - Shell KW - Nanomaterial KW - Nano KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Excitation power density KW - Surface KW - Coating KW - Core-shell KW - XPS KW - Intermixing KW - HAXPES KW - Method PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552075 DO - https://doi.org/10.1002/smll.202107976 SN - 1613-6813 SP - 1 EP - 13 PB - Wiley-VCH-Verlag CY - Weinheim, Germany AN - OPUS4-55207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sternbaek, L. A1 - Kimani, Martha Wamaitha A1 - Gawlitza, Kornelia A1 - Rurack, Knut A1 - Janicke, B. A1 - Alm, K. A1 - Gjörloff-Wingren, A. A1 - Eriksson, H. T1 - Molecularly Imprinted Polymers Exhibit Low Cytotoxic and Inflammatory Properties in Macrophages In Vitro JF - Applied Sciences N2 - Molecularly imprinted polymers (MIPs) against sialic acid (SA) have been developed as a detection tool to target cancer cells. Before proceeding to in vivo studies, a better knowledge of the overall effects of MIPs on the innate immune system is needed. The aim of this study thus was to exemplarily assess whether SA-MIPs lead to inflammatory and/or cytotoxic responses when administered to phagocytosing cells in the innate immune system. The response of monocytic/macrophage cell lines to two different reference particles, Alhydrogel and PLGA, was compared to their response to SA-MIPs. In vitro culture showed a cellular association of SA-MIPs and Alhydrogel, as analyzed by flow cytometry. The reference particle Alhydrogel induced secretion of IL-1b from the monocytic cell line THP-1, whereas almost no secretion was provoked for SA-MIPs. A reduced number of both THP-1 and RAW 264.7 cells were observed after incubation with SA-MIPs and this was not caused by cytotoxicity. Digital holographic cytometry showed that SA-MIP treatment affected cell division, with much fewer cells dividing. Thus, the reduced number of cells after SA-MIP treatment was not linked to SA-MIPs cytotoxicity. In conclusion, SA-MIPs have a low degree of inflammatory properties, are not cytotoxic, and can be applicable for future in vivo studies. KW - Molecularly imprinted polymers KW - Digital holographic cytometry KW - Cytotoxicity KW - Proinflammatory cytokines PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552250 DO - https://doi.org/10.3390/app12126091 SN - 2076-3417 VL - 12 IS - 12 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-55225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Grauel, Bettina A1 - Pons, Monika A1 - Frenzel, Florian A1 - Rissiek, P. A1 - Rücker, Kerstin A1 - Haase, Markus A1 - Resch-Genger, Ute T1 - Yb- and Er concentration dependence of the upconversion luminescence of highly doped NaYF4:Yb,Er/NaYF4:Lu core/shell nanocrystals prepared by a water-free synthesis JF - Nano Research N2 - High sensitizer and activator concentrations have been increasingly examined to improve the performance of multi-color emissive upconversion (UC) nanocrystals (UCNC) like NaYF4:Yb,Er and first strategies were reported to reduce concentration quenching in highly doped UCNC. UC luminescence (UCL) is, however, controlled not only by dopant concentration, yet by an interplay of different parameters including size, crystal and shell quality, and excitation power density (P). Thus, identifying optimum dopant concentrations requires systematic studies of UCNC designed to minimize additional quenching pathways and quantitative spectroscopy. Here, we quantify the dopant concentration dependence of the UCL quantum yield (ΦUC) of solid NaYF4:Yb,Er/NaYF4:Lu upconversion core/shell nanocrystals of varying Yb3+ and Er3+ concentrations (Yb3+ series: 20%‒98% Yb3+; 2% Er3+; Er3+ series: 60% Yb3+; 2%‒40% Er3+). To circumvent other luminescence quenching processes, an elaborate synthesis yielding OH-free UCNC with record ΦUC of ~9% and ~25 nm core particles with a thick surface shell were used. High Yb3+ concentrations barely reduce ΦUC from ~9% (20% Yb3+) to ~7% (98% Yb3+) for an Er3+ concentration of 2%, thereby allowing to strongly increase the particle absorption cross section and UCNC brightness. Although an increased Er3+ concentration reduces ΦUC from ~7% (2% Er3+) to 1% (40%) for 60% Yb3+. Nevertheless, at very high P (> 1 MW/cm2) used for microscopic studies, highly Er3+-doped UCNC display a high brightness because of reduced saturation. These findings underline the importance of synthesis control and will pave the road to many fundamental studies of UC materials. KW - Upconverion KW - Nanoparticle KW - Lanthanides KW - Quantum yield PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551346 DO - https://doi.org/10.1007/s12274-022-4570-5 SP - 1 EP - 8 PB - Springer AN - OPUS4-55134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholtz, Lena A1 - Eckert, J. G. A1 - Elahi, T. A1 - Lübkemann, F. A1 - Hübner, Oskar A1 - Bigall, N. C. A1 - Resch-Genger, Ute T1 - Luminescence encoding of polymer microbeads with organic dyes and semiconductor quantum dots during polymerization JF - Scientific reports N2 - Luminescence-encoded microbeads are important tools for many applications in the life and material sciences that utilize luminescence detection as well as multiplexing and barcoding strategies. The preparation of such beads often involves the staining of premanufactured beads with molecular luminophores using simple swelling procedures or surface functionalization with layer-by-layer (LbL) techniques. Alternatively, these luminophores are sterically incorporated during the polymerization reaction yielding the polymer beads. The favorable optical properties of semiconductor quantum dots (QDs), which present broadly excitable, size-tunable, narrow emission bands and low photobleaching sensitivity, triggered the preparation of beads stained with QDs. However, the colloidal nature and the surface chemistry of these QDs, which largely controls their luminescence properties, introduce new challenges to bead encoding that have been barely systematically assessed. To establish a straightforward approach for the bead encoding with QDs with minimized loss in luminescence, we systematically assessed the incorporation of oleic acid/oleylamine-stabilized CdSe/CdS-core/shell-QDs into 0.5–2.5 μm-sized polystyrene (PS) microspheres by a simple dispersion polymerization synthesis that was first optimized with the organic dye Nile Red. Parameters addressed for the preparation of luminophore-encoded beads include the use of a polymer-compatible ligand such as benzyldimethyloctadecylammonium chloride (OBDAC) for the QDs, and crosslinking to prevent luminophore leakage. The physico-chemical and optical properties of the resulting beads were investigated with electron microscopy, dynamic light scattering, optical spectroscopy, and fluorescence microscopy. Particle size distribution, fluorescence quantum yield of the encapsulated QDs, and QD leaking stability were used as measures for bead quality. The derived optimized bead encoding procedure enables the reproducible preparation of bright PS microbeads encoded with organic dyes as well as with CdSe/CdS-QDs. Although these beads show a reduced photoluminescence quantum yield compared to the initially very strongly luminescent QDs, with values of about 35%, their photoluminescence quantum yield is nevertheless still moderate. KW - Polymerization KW - Quantum dots KW - Microbeads KW - Fluorescence PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-553430 DO - https://doi.org/10.1038/s41598-022-16065-x SN - 2045-2322 VL - 12 SP - 1 EP - 16 PB - Nature Publishing Group CY - London AN - OPUS4-55343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kader, A. A1 - Kaufmann, Jan Ole A1 - Mangarova, D. B. A1 - Moeckel, J. A1 - Brangsch, J. A1 - Adams, L. C. A1 - Zhao, J. A1 - Reimann, C. A1 - Saatz, Jessica A1 - Traub, Heike A1 - Buchholz, R. A1 - Karst, U. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Iron Oxide Nanoparticles for Visualization of Prostate Cancer in MRI JF - Cancers N2 - Prostate cancer (PCa) is one of the most common cancers in men. For detection and diagnosis of PCa, non-invasive methods, including magnetic resonance imaging (MRI), can reduce the risk potential of surgical intervention. To explore the molecular characteristics of the tumor, we investigated the applicability of ferumoxytol in PCa in a xenograft mouse model in two different tumor volumes, 500 mm3 and 1000 mm3. Macrophages play a key role in tumor progression, and they are able to internalize iron-oxide particles, such as ferumoxytol. When evaluating T2*-weighted sequences on MRI, a significant decrease of signal intensity between pre- and post-contrast images for each tumor volume (n = 14; p < 0.001) was measured. We, furthermore, observed a higher signal loss for a tumor volume of 500 mm3 than for 1000 mm3. These findings were confirmed by histological examinations and laser ablation inductively coupled plasma-mass spectrometry. The 500 mm3 tumors had 1.5% iron content (n = 14; sigma = 1.1), while the 1000 mm3 tumors contained only 0.4% iron (n = 14; sigma = 0.2). In vivo MRI data demonstrated a correlation with the ex vivo data (R2 = 0.75). The results of elemental analysis by inductively coupled plasma-mass spectrometry correlated strongly with the MRI data (R2 = 0.83) (n = 4). Due to its long retention time in the blood, biodegradability, and low toxicity to patients, ferumoxytol has great potential as a contrast agent for visualization PCa. KW - Imaging KW - Nanoparticle KW - Cancer KW - Iron oxide KW - ICP-MS KW - Magnetic resonance imaging PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550075 DO - https://doi.org/10.3390/cancers14122909 VL - 14 IS - 12 SP - 1 EP - 13 PB - MDPI CY - Basel, Switzerland AN - OPUS4-55007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biesen, L. A1 - Krenzer, J. A1 - Nirmalananthan-Budau, Nithiya A1 - Resch-Genger, Ute A1 - Müller, Th. J. J. T1 - Asymmetrically bridged aroyl-S,N-ketene acetalbased multichromophores with aggregationinduced tunable emission JF - Chemical Science N2 - Asymmetrically bridged aroyl-S,N-ketene acetals and aroyl-S,N-ketene acetal multichromophores can be readily synthesized in consecutive three-, four-, or five-component syntheses in good to excellent yields by several successive Suzuki-couplings of aroyl-S,N-ketene acetals and bis(boronic)acid esters. Different aroyl-S,N-ketene acetals as well as linker molecules yield a library of 23 multichromophores with substitution and linker pattern-tunable emission properties. This allows control of different communication pathways between the chromophores and of aggregation-induced emission (AIE) and energy transfer (ET) properties, providing elaborate aggregation-based fluorescence switches. KW - Dye KW - Aggregation KW - Aggregation induced emission KW - Signal enhancement KW - Energy transfer KW - Switch KW - Sensor KW - Quantum yield KW - Lifetime KW - Photophysics KW - Sythesis KW - Nanaoparticle PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550719 DO - https://doi.org/10.1039/d2sc00415a VL - 13 SP - 5374 EP - 5381 PB - Royal Society of Chemistry AN - OPUS4-55071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromer, Ch. A1 - Schwibbert, K. A1 - Gadicherla, A. K. A1 - Thiele, D. A1 - Nirmalananthan-Budau, Nithiya A1 - Laux, P. A1 - Resch-Genger, Ute A1 - Luch, A. A1 - Tschiche, H. R. T1 - Monitoring and imaging pH in biofilms utilizing a fluorescent polymeric nanosensor JF - Scientific reports N2 - Biofilms are ubiquitous in nature and in the man-made environment. Given their harmful effects on human health, an in-depth understanding of biofilms and the monitoring of their formation and growth are important. Particularly relevant for many metabolic processes and survival strategies of biofilms is their extracellular pH. However, most conventional techniques are not suited for minimally invasive pH measurements of living biofilms. Here, a fluorescent nanosensor is presented for ratiometric measurements of pH in biofilms in the range of pH 4.5–9.5 using confocal laser scanning microscopy. The nanosensor consists of biocompatible polystyrene nanoparticles loaded with pH-inert dye Nile Red and is surface functionalized with a pH-responsive fluorescein dye. Its performance was validated by fluorometrically monitoring the time-dependent changes in pH in E. coli biofilms after glucose inoculation at 37 °C and 4 °C. This revealed a temperature-dependent decrease in pH over a 4-h period caused by the acidifying glucose metabolism of E. coli. These studies demonstrate the applicability of this nanosensor to characterize the chemical microenvironment in biofilms with fluorescence methods. KW - Dye KW - Fluorescence KW - Signal enhancement KW - Sensor KW - Quantum yield KW - Synthesis KW - Nanoparticle KW - Nano KW - Polymer KW - Ph KW - Biofilm KW - MIC KW - Corrosion KW - Microorganism KW - Bacteria PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550751 DO - https://doi.org/10.1038/s41598-022-13518-1 SN - 2045-2322 VL - 12 IS - 1 SP - 1 EP - 10 PB - Nature Publishing Group CY - London AN - OPUS4-55075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieber, M. J. A1 - Wilke, M. A1 - Appelt, O. A1 - Oelze, Marcus A1 - Koch-Müller, M. T1 - Melting relations of Ca–Mg carbonates and trace element signature of carbonate melts up to 9 GPa – A proxy for melting of carbonated mantle lithologies JF - European journal of mineralogy N2 - The most profound consequences of the presence of Ca–Mg carbonates (CaCO3–MgCO3) in the Earth’s upper mantle may be to lower the melting temperatures of the mantle and control the melt composition. Low-degree partial melting of a carbonate-bearing mantle produces CO2-rich, silica-poor melts compositionally imposed by the melting relations of carbonates. Thus, understanding the melting relations in the CaCO3–MgCO3 system facilitates the interpretation of natural carbonate-bearing silicate systems. We report the melting relations of the CaCO3–MgCO3 system and the partition coefficient of trace elements between carbonates and carbonate melt from experiments at high pressure (6 and 9 GPa) and temperature (1300–1800 ◦C) using a rocking multi-anvil press. In the absence of water, Ca–Mg carbonates are stable along geothermal gradients typical of subducting slabs. Ca–Mg carbonates (∼ Mg0.1–0.9Ca0.9–0.1CO3) partially melt beneath mid-ocean ridges and in plume settings. Ca–Mg carbonates melt incongruently, forming periclase crystals and carbonate melt between 4 and 9 GPa. Furthermore, we show that the rare earth element (REE) signature of Group-I kimberlites, namely strong REE fractionation and depletion of heavy REE relative to the primitive mantle, is resembled by carbonate melt in equilibrium with Ca-bearing magnesite and periclase at 6 and 9 GPa. This suggests that the dolomite–magnesite join of the CaCO3–MgCO3 system might be useful to approximate the REE signature of carbonate-rich melts parental to kimberlites. KW - High pressure experiments KW - Laser Ablation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-561197 DO - https://doi.org/10.5194/ejm-34-411-2022 SN - 0935-1221 VL - 34 IS - 5 SP - 411 EP - 424 PB - Copernicus Publications CY - Göttingen AN - OPUS4-56119 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Garrido, E. A1 - Hernández-Sigüenza, G. A1 - Climent, Estela A1 - Marcos, M. D. A1 - Rurack, Knut A1 - Gaviña, P. A1 - Parra, M. A1 - Sancenón, F. A1 - Martí-Centelles, V. A1 - Martínez-Máñez, R. T1 - Strip-based lateral flow-type indicator displacement assay for γ-hydroxybutyric acid (GHB) detection in beverages JF - Sensors and Actuators: B. Chemical N2 - The use of gamma-hydroxybutyric acid (GHB) in drug-facilitated sexual assault has increased due to its availability and high solubility in aqueous solutions and alcoholic beverages, necessitating the development of rapid methods for GHB detection. In this respect, portable testing methods for use in the field, based on lateral flow assays (LFAs) and capable of detecting trace concentrations of target analytes, are particularly attractive and hold enormous potential for the detection of illicit drugs. Using this strategy, here we report a rapid, low cost, easy-to-handle strip-based LFA for GHB analysis employing a smartphone for fluorescence readout. At molecular signalling level, the ensemble is based on a Cu2+ complex with a tetradentate ligand and the fluorescent dye coumarin 343, which indicate GHB through an indicator displacement assay (IDA) in aqueous solution. When incorporated in a LFA-based strip test this system shows a detection limit as low as 0.03 μM for GHB in MES buffer solution and is able to detect GHB at concentrations of 0.1 μM in soft drinks and alcoholic beverages in only 1 min. KW - Indicator displacement assay KW - Gamma-hydroxybutyric acid KW - Lateral flow assay KW - Test strip KW - Fluorescent dyes KW - Smartphone readout PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564631 DO - https://doi.org/10.1016/j.snb.2022.133043 SN - 0925-4005 VL - 377 SP - 1 EP - 7 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-56463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Villajos Collado, José Antonio T1 - Experimental volumetric hydrogen uptake determination at 77 K of commercially available metal-organic framework materials JF - C - Journal of carbon research N2 - Storage is still limiting the implementation of hydrogen as an energy carrier to integrate the intermittent operation of renewable energy sources. Among different solutions to the currently used compressed or liquified hydrogen systems, physical adsorption at cryogenic temperature in porous materials is an attractive alternative due to its fast and reversible operation and the resulting reduction in storage pressure. The feasibility of cryoadsorption for hydrogen storage depends mainly on the performance of the used materials for the specific application, where metal-organic frameworks or MOFs are remarkable candidates. In this work, gravimetric and volumetric hydrogen uptakes at 77 K and up to 100 bar of commercially available MOFs were measured since these materials are made from relatively cheap and accessible building blocks. These materials also show relatively high porous properties and are currently near to large-scale production. The measuring device was calibrated at different room temperatures to calculate an average correction factor and standard deviation so that the correction deviation is included in the measurement error for better comparability with different measurements. The influence of measurement conditions was also studied, concluding that the available adsorbing area of material and the occupied volume of the sample are the most critical factors for a reproducible measurement, apart from the samples’ preparation before measurement. Finally, the actual volumetric storage density of the used powders was calculated by directly measuring their volume in the analysis cell, comparing that value with the maximum volumetric uptake considering the measured density of crystals. From this selection of commercial MOFs, the materials HKUST-1, PCN-250(Fe), MOF-177, and MOF-5 show true potential to fulfill a volumetric requirement of 40 g·L−1 on a material basis for hydrogen storage systems without further packing of the powders. KW - Hydrogen adsorption KW - Commercial metal-organic frameworks KW - Hydrogen uptake reproducibility KW - Volumetric uptake KW - Packing density PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542215 DO - https://doi.org/10.3390/c8010005 SN - 2311-5629 VL - 8 IS - 1 SP - 1 EP - 14 PB - MDPI CY - Basel AN - OPUS4-54221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zänker, Steffen A1 - Scholz, G. A1 - Marquardt, Julien A1 - Emmerling, Franziska T1 - Structural changes in Ba-compounds of different hardness induced by high-energy ball milling – evidenced by 137Ba NMR and X-ray powder diffraction JF - Zeitschrift für anorganische und allgemeine Chemie N2 - Changes in the global bulk and local structures, of three different barium compounds (BaZrO3, BaF2, and BaFCl),were induced by mechanical milling and followed using X-ray powder diffraction (PXRD), subsequent microstructure analysis, and 137Ba solid state NMR spectroscopy. Harder materials like BaZrO3 experience significantly higher structural changes upon milling than softer materials like BaF2. Moreover, soft materials with layered structures, like BaFCl, show a pronounced structural change during the milling process. By combining PXRD and solid state NMR, detailed information on the changes to the global and local structures were obtained, which are of interest for mechanochemical synthesis, mechanically treated catalysts or ionic conductors. KW - Mechanochemistry KW - X-ray diffraction KW - Solid state NMR PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547397 DO - https://doi.org/10.1002/zaac.202200026 SN - 0044-2313 VL - 648 IS - 10 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Langenhan, Jennifer A1 - Jaeger, Carsten A1 - Baum, K. A1 - Simon, M. A1 - Lisec, Jan T1 - A Flexible Tool to Correct Superimposed Mass Isotopologue Distributions in GC‐APCI‐MS Flux Experiments JF - Metabolites N2 - The investigation of metabolic fluxes and metabolite distributions within cells by means of tracer molecules is a valuable tool to unravel the complexity of biological systems. Technological advances in mass spectrometry (MS) technology such as atmospheric pressure chemical ionization (APCI) coupled with high resolution (HR), not only allows for highly sensitive analyses but also broadens the usefulness of tracer‐based experiments, as interesting signals can be annotated de novo when not yet present in a compound library. However, several effects in the APCI ion source, i.e., fragmentation and rearrangement, lead to superimposed mass isotopologue distributions (MID) within the mass spectra, which need to be corrected during data evaluation as they will impair enrichment calculation otherwise. Here, we present and evaluate a novel software tool to automatically perform such corrections. We discuss the different effects, explain the implemented algorithm, and show its application on several experimental datasets. This adjustable tool is available as an R package from CRAN. KW - Mass Spectrometry KW - Isotopologue Distribution KW - Metabolic Flux KW - R package PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547318 DO - https://doi.org/10.3390/metabo12050408 VL - 12 IS - 5 SP - 1 EP - 10 PB - MDPI AN - OPUS4-54731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Veico, V. P. A1 - Karlagina, Yu. Yu. A1 - Samokhvalov, A. A. A1 - Polyakov, D. S. A1 - Manokhin, S. S. A1 - Radaev, M. M. A1 - Odintsova, G. V. A1 - Gornushkin, Igor B. T1 - Surface Structuring and Reverse Deposition of Nanoporous Titanium Oxides by Laser Ablation of Titanium in Air JF - Plasma Chemistry and Plasma Processing N2 - The deposition of titanium oxides during titanium laser ablation in air has been experimentally and numerically investigated. A titanium sample was irradiated by nanosecond pulses from an Yb-fber laser with a beam scanned across the sample surface for its texturing. As a result, the hierarchical structure was observed consisting of a microrelief formed by the laser ablation and a nanoporous coating formed by the reverse deposition from the laser induced plasma plume. The chemical and phase composition of the nanoporous coating, as well as the morphology and structure of the surface, were studied using scanning electron microscopy, atomic force microscopy, and X-ray microanalysis. It was found that the deposit consists mostly of porous TiO2 with 26% porosity and inclusions of TiO, Ti2O3, and Ti2O3N. Optical emission spectroscopy was used to control the plasma composition and estimate the effective temperature of plasma plume. The chemical-hydrodynamic model of laser induced plasma was developed to get a deeper insight into the deposition process. The model predicts that condensed titanium oxides, formed in peripheral plasma zones, gradually accumulate on the surface during the plasma plume evolution. A satisfactory agreement between the experimental and calculated chemical composition of the plasma plume as well as between the experimental and calculated composition and thickness of the deposited film was demonstrated. This allows a cautious conclusion that the formation of condensed oxides in the plasma and their consequent deposition onto the ablation surface are among the key mechanisms of formation of porous surface films. KW - Laser ablation KW - Laser induced plasma deposition KW - Surface coating KW - Titanium dioxide KW - Hydrodynamic model KW - Plasma chemistry KW - Emission spectroscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548555 DO - https://doi.org/10.1007/s11090-022-10256-0 VL - 42 IS - 4 SP - 923 EP - 937 PB - Springer AN - OPUS4-54855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jaeger, Carsten A1 - Lisec, Jan T1 - Towards Unbiased Evaluation of Ionization Performance in LC-HRMS Metabolomics Method Development JF - Metabolites N2 - As metabolomics increasingly finds its way from basic science into applied and regulatory environments, analytical demands on nontargeted mass spectrometric detection methods continue to rise. In addition to improved chemical comprehensiveness, current developments aim at enhanced robustness and repeatability to allow long-term, inter-study, and meta-analyses. Comprehensive metabolomics relies on electrospray ionization (ESI) as the most versatile ionization technique, and recent liquid chromatography-high resolution mass spectrometry (LC-HRMS) instrumentation continues to overcome technical limitations that have hindered the adoption of ESI for applications in the past. Still, developing and standardizing nontargeted ESI methods and instrumental setups remains costly in terms of time and required chemicals, as large panels of metabolite standards are needed to reflect biochemical diversity. In this paper, we investigated in how far a nontargeted pilot experiment, consisting only of a few measurements of a test sample dilution series and comprehensive statistical analysis, can replace conventional targeted evaluation procedures. To examine this potential, two instrumental ESI ion source setups were compared, reflecting a common scenario in practical method development. Two types of feature evaluations were performed, (a) summary statistics solely involving feature intensity values, and (b) analyses additionally including chemical interpretation. Results were compared in detail to a targeted evaluation of a large metabolite standard panel. We reflect on the advantages and shortcomings of both strategies in the context of current harmonization initiatives in the metabolomics field. KW - Mass Spectrometry KW - Non-targeted analysis KW - Method development PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548065 DO - https://doi.org/10.3390/metabo12050426 VL - 12 IS - 5 SP - 1 EP - 13 PB - MDPI AN - OPUS4-54806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jiang, Shan A1 - Wang, T. A1 - Behren, S. A1 - Westerlind, U. A1 - Gawlitza, Kornelia A1 - Persson, J. L. A1 - Rurack, Knut T1 - Sialyl-Tn Antigen-Imprinted Dual Fluorescent Core–Shell Nanoparticles for Ratiometric Sialyl-Tn Antigen Detection and Dual-Color Labeling of Cancer Cells JF - ACS Applied Nano Materials N2 - Sialyl-Tn (STn or sialyl-Thomsen-nouveau) is a carbohydrate antigen expressed by more than 80% of human carcinomas. We here report a strategy for ratiometric STn detection and dual-color cancer cell labeling, particularly, by molecularly imprinted polymers (MIPs). Imprinting was based on spectroscopic studies of a urea-containing green-fluorescent monomer 1 and STn-Thr-Na (sodium salt of Neu5Acα2-6GalNAcα-O-Thr). A few-nanometer-thin green-fluorescent polymer shell, in which STn-Thr-Na was imprinted with 1, other comonomers, and a cross-linker, was synthesized from the surface of red-emissive carbon nanodot (R-CND)-doped silica nanoparticles, resulting in dual fluorescent STn-MIPs. Dual-color labeling of cancer cells was achieved since both red and green emissions were detected in two separate channels of the microscope and an improved accuracy was obtained in comparison with single-signal MIPs. The flow cytometric cell analysis showed that the binding of STn-MIPs was significantly higher (p < 0.001) than that of non-imprinted polymer (NIP) control particles within the same cell line, allowing to distinguish populations. Based on the modularity of the luminescent core–fluorescent MIP shell architecture, the concept can be transferred in a straightforward manner to other target analytes. KW - Cancer KW - Core−shell particles KW - Dual-color labeling glycan KW - Molecular imprinting PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563106 DO - https://doi.org/10.1021/acsanm.2c03252 SP - 1 EP - 14 PB - ACS Publications AN - OPUS4-56310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Valderrey, Virginia A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Thiourea- and Amino-Substituted Benzoxadiazole Dyes with Large Stokes Shifts as Red-Emitting Probe Monomers for Imprinted Polymer Layers Targeting Carboxylate-Containing Antibiotics JF - Thiourea- and Amino-Substituted Benzoxadiazole Dyes with Large Stokes Shifts as Red-Emitting Probe Monomers for Imprinted Polymer Layers Targeting Carboxylate-Containing Antibiotics N2 - Bifunctional fluorescent molecular oxoanion probes based on the benzoxadiazole (BD) chromophore are described which integrate a thiourea binding motif and a polymerizable 2-aminoethyl methacrylate unit in the 4,7-positions of the BD core. Concerted charge transfer in this electron donor-acceptor-donor architecture endows the dyes with strongly Stokes shifted (up to >250 nm) absorption and fluorescence. Binding of electron-rich carboxylate guests at the thiourea receptor leads to further analyte-induced red-shifts of the emission, shifting the fluorescence maximum of the complexes to ≥700 nm. Association constants for acetate are ranging from 1–5×105 M−1 in acetonitrile. Integration of one of the fluorescent probes through its polymerizable moiety into molecularly imprinted polymers (MIPs) grafted from the surface of submicron silica cores yielded fluorescent MIP-coated particle probes for the selective detection of antibiotics containing aliphatic carboxylate groups such as enoxacin (ENOX) at micromolar concentrations in highly polar solvents like acetonitrile. KW - Molecular imprinting KW - Anion recognition KW - Antibiotics KW - Benzoxadiazole dyes KW - Charge transfer KW - Fluorescence PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545027 DO - https://doi.org/10.1002/chem.202104525 SN - 1521-3765 SP - 1 EP - 9 PB - Wiley-VCH AN - OPUS4-54502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beyer, S. A1 - Kimani, Martha Wamaitha A1 - Zhang, Y. A1 - Verhassel, A. A1 - Sternbæk, L. A1 - Wang, T. A1 - Persson, J. L. A1 - Härkönen, P. A1 - Johansson, E. A1 - Caraballo, R. A1 - Elofsson, M. A1 - Gawlitza, Kornelia A1 - Rurack, Knut A1 - Ohlsson, L. A1 - El-Schich, Z. A1 - Gjörloff Wingren, A. A1 - Stollenwerk, M. M. T1 - Fluorescent Molecularly Imprinted Polymer Layers against Sialic Acid on Silica-coated Polystyrene Cores - Assessment of the Binding Behavior to Cancer Cells JF - Cancers N2 - Sialic acid (SA) is a monosaccharide usually linked to the terminus of glycan chains on the cell surface. It plays a crucial role in many biological processes, and hypersialylation is a common feature in cancer. Lectins are widely used to analyze the cell surface expression of SA. However, these protein molecules are usually expensive and easily denatured, which calls for the development of alternative glycan-specific receptors and cell imaging technologies. In this study, SA-imprinted fluorescent core-shell molecularly imprinted polymer particles (SA-MIPs) were employed to recognize SA on the cell surface of cancer cell lines. The SA-MIPs improved suspensibility and scattering properties compared with previously used core-shell SA-MIPs. Although SA-imprinting was performed using SA without preference for the alpha-2,3- and alpha-2,6-SA forms, we screened the cancer cell lines analyzed using the lectins Maackia Amurensis Lectin I (MAL I, alpha-2,3-SA) and Sambucus Nigra Lectin (SNA, alpha-2,6-SA). Our results show that the selected cancer cell lines in this study presented a varied binding behavior with the SA-MIPs. The binding pattern of the lectins was also demonstrated. Moreover, two different pentavalent SA conjugates were used to inhibit the binding of the SA-MIPs to breast, skin, and lung cancer cell lines, demonstrating the specificity of the SA-MIPs in both flow cytometry and confocal fluorescence microscopy. We concluded that the synthesized SA-MIPs might be a powerful future tool in the diagnostic analysis of various cancer cells. KW - Cancer KW - Imprinting KW - Molecularly imprinted polymers KW - SA conjugates KW - Sialic acid PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546625 DO - https://doi.org/110.3390/cancers14081875 SN - 2072-6694 VL - 14 IS - 8 PB - MDPI CY - Basel AN - OPUS4-54662 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Anderhalten, L. A1 - Silva, R. V. A1 - Morr, A. A1 - Wang, S. A1 - Smorodchenko, A. A1 - Saatz, Jessica A1 - Traub, Heike A1 - Mueller, S. A1 - Boehm-Sturm, P. A1 - Rodriguez-Sillke, Y. A1 - Kunkel, D. A1 - Hahndorf, J. A1 - Paul, F. A1 - Taupitz, M. A1 - Sack, I. A1 - Infante-Duarte, C. T1 - Different Impact of Gadopentetate and Gadobutrol on Inflammation-Promoted Retention and Toxicity of Gadolinium Within the Mouse Brain JF - Investigative Radiology N2 - Objectives: Using a murine model of multiple sclerosis, we previously showed that repeated administration of gadopentetate dimeglumine led to retention of gadolinium (Gd) within cerebellar structures and that this process was enhanced with inflammation. This study aimed to compare the kinetics and retention profiles of Gd in inflamed and healthy brains after application of the macrocyclic Gd-based contrast agent (GBCA) gadobutrol or the linear GBCA gadopentetate. Moreover, potential Gd-induced neurotoxicity was investigated in living hippocampal slices ex vivo. Materials and Methods: Mice at peak of experimental autoimmune encephalomyelitis (EAE; n = 29) and healthy control mice (HC; n = 24) were exposed to a cumulative dose of 20 mmol/kg bodyweight of either gadopentetate dimeglumine or gadobutrol (8 injections of 2.5 mmol/kg over 10 days). Magnetic resonance imaging (7 T) was performed at baseline as well as at day 1, 10, and 40 post final injection (pfi) of GBCAs. Mice were sacrificed after magnetic resonance imaging and brain and blood Gd content was assessed by laser ablation-inductively coupled plasma (ICP)-mass spectrometry (MS) and ICP-MS, respectively. In addition, using chronic organotypic hippocampal slice cultures, Gd-induced neurotoxicity was addressed in living brain tissue ex vivo, both under control or inflammatory (tumor necrosis factor α [TNF-α] at 50 ng/μL) conditions. Results: Neuroinflammation promoted a significant decrease in T1 relaxation times after multiple injections of both GBCAs as shown by quantitative T1 mapping of EAE brains compared with HC. This corresponded to higher Gd retention within the EAE brains at 1, 10, and 40 days pfi as determined by laser ablation-ICP-MS. In inflamed cerebellum, in particular in the deep cerebellar nuclei (CN), elevated Gd retention was observed until day 40 after last gadopentetate application (CN: EAE vs HC, 55.06 ± 0.16 μM vs 30.44 ± 4.43 μM). In contrast, gadobutrol application led to a rather diffuse Gd content in the inflamed brains, which strongly diminished until day 40 (CN: EAE vs HC, 0.38 ± 0.08 μM vs 0.17 ± 0.03 μM). The analysis of cytotoxic effects of both GBCAs using living brain tissue revealed an elevated cell death rate after incubation with gadopentetate but not gadobutrol at 50 mM. The cytotoxic effect due to gadopentetate increased in the presence of the inflammatory mediator TNF-α (with vs without TNF-α, 3.15% ± 1.18% vs 2.17% ± 1.14%; P = 0.0345). Conclusions: In the EAE model, neuroinflammation promoted increased Gd retention in the brain for both GBCAs. Whereas in the inflamed brains, efficient clearance of macrocyclic gadobutrol during the investigated time period was observed, the Gd retention after application of linear gadopentetate persisted over the entire observational period. Gadopentetate but not gadubutrol appeared to be neurotoxic in an ex vivo paradigm of neuronal inflammation. KW - Imaging KW - ICP-MS KW - Gadolinium KW - Contrast agent KW - Laser ablation KW - Brain KW - Multiple sclerosis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546910 DO - https://doi.org/10.1097/RLI.0000000000000884 SN - 0020-9996/22/0000–0000 VL - 57 IS - 10 SP - 677 EP - 688 PB - Wolters Kluwer N.V. CY - Alphen aan den Rijn, The Netherlands AN - OPUS4-54691 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Cui A1 - Kitzmann, W.R. A1 - Weigert, Florian A1 - Förster, Ch. A1 - Wang, X. A1 - Heintze, K. A1 - Resch-Genger, Ute T1 - Matrix Effects on Photoluminescence and Oxygen Sensitivity of a Molecular Ruby JF - ChemPhotoChem N2 - The molecular ruby analogue [Cr(ddpd)2]3+ (ddpd=N,N’-dimethyl-N,N’-dipyridine-2-ylpyridine-2,6-diamine) exhibits near infrared (NIR) emission with a high photoluminescence (PL) quantum yield ΦPL of 11 % and a lifetime of 898 μs in deaerated water at room temperature. While ligand-based control of the photophysical properties has received much attention, influences of the counter anions and microenvironment are still underexplored. In this study, the luminescence properties of the molecular ruby were systematically examined for the counter anions Cl−, Br−, [BF4]−, [PF6]−, [BPh4]−, and [BArF24]− in acetonitrile (MeCN) solution, in crystals, and embedded into polystyrene nanoparticles (PSNP). Stern-Volmer analyses of the oxygen quenching studies in the intensity and lifetime domain showed the highest oxygen sensitivity of the complexes with the counter anions of [BF4]− and [BArF24]−, which also revealed the longest luminescence lifetimes. Embedding [Cr(ddpd)2][PF6]3 in PSNPs and shielding with poly(vinyl alcohol) yields a strongly NIR-emissive oxygen-insensitive material with a record ΦPL of 15.2 % under ambient conditions. KW - Fluorescence KW - Sensor KW - Oxygen KW - Quantum yield KW - Quality assurance KW - Complex KW - Cr(III) KW - Lifetime KW - Ligand KW - Solid state KW - X-Ray analysis KW - Structure-property relationship KW - Nano KW - Polymer KW - Particle PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546057 DO - https://doi.org/10.1002/cptc.202100296 SN - 2367-0932 VL - 6 IS - 6 SP - 1 EP - 9 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martins, Ines A1 - Al-Sabbagh, Dominik A1 - Bentrup, U. A1 - Marquardt, Julien A1 - Schmid, Thomas A1 - Scoppola, E. A1 - Kraus, Werner A1 - Stawski, Tomasz A1 - de Oliveira Guilherme Buzanich, Ana A1 - Yusenko, Kirill A1 - Weidner, Steffen A1 - Emmerling, Franziska T1 - Formation Mechanism of a Nano-Ring of Bismuth Cations and Mono-Lacunary Keggin-Type Phosphomolybdate JF - Chemistry - A European Journal N2 - A new hetero-bimetallic polyoxometalate (POM) nano-ring was synthesized in a one-pot procedure. The structure consists of tetrameric units containing four bismuth-substituted monolacunary Keggin anions including distorted [BiO8] cubes. The nano-ring is formed via self-assembly from metal precursors in aqueous acidic medium. The compound (NH4)16[(BiPMo11O39)4] ⋅ 22 H2O; (P4Bi4Mo44) was characterized by single-crystal X-ray diffraction, extended X-ray absorption fine structure spectroscopy (EXAFS), Raman spectroscopy, matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF), and thermogravimetry/differential scanning calorimetry mass spectrometry (TG-DSC-MS). The formation of the nano-ring in solution was studied by time-resolved in situ small- and wide-angle X-ray scattering (SAXS/WAXS) and in situ EXAFS measurements at the Mo−K and the Bi−L3 edge indicating a two-step process consisting of condensation of Mo-anions and formation of Bi−Mo-units followed by a rapid self-assembly to yield the final tetrameric ring structure. KW - Bismuth KW - In situ EXAFS KW - In situ SAXS/WAXS KW - Lacunary Keggin ion KW - Polyoxometalates KW - Self-assembly PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546823 DO - https://doi.org/10.1002/chem.202200079 SN - 0947-6539 VL - 28 IS - 27 SP - 1 EP - 7 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gugin, Nikita A1 - Villajos Collado, José Antonio A1 - Feldmann, Ines A1 - Emmerling, Franziska T1 - Mix and wait – a relaxed way for synthesizing ZIF-8 JF - RSC Advances N2 - Herein we report the synthesis of a zeolitic imidazolate framework (ZIF-8) by an easy “mix and wait” procedure. In a closed vial, without any interference, the mixture of 2-methylimidazole and basic zinc carbonate assembles into the crystalline product with approx. 90% conversion after 70 h. The reaction exhibits sigmoidal kinetics due to the self-generated water which accelerates the reaction. KW - In-situ analysis KW - Mechanochemistry KW - MOF KW - Synthesis KW - ZIF-8 PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546841 DO - https://doi.org/10.1039/D2RA00740A VL - 12 SP - 8940 EP - 8944 PB - Royal Society of Chemistry AN - OPUS4-54684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kimani, Martha Wamaitha A1 - Pérez-Padilla, Victor A1 - Valderrey, Virginia A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Red-Emitting Polymerizable Guanidinium Dyes as Fluorescent Probes in Molecularly Imprinted Polymers for Glyphosate Detection JF - Chemosensors N2 - The development of methodologies to sense glyphosate has gained momentum due to its toxicological and ecotoxicological effects. In this work, a red-emitting and polymerizable guanidinium benzoxadiazole probe was developed for the fluorescence detection of glyphosate. The interaction of the fluorescent probe and the tetrabutylammonium salt of glyphosate was studied via UV/vis absorption and fluorescence spectroscopy in chloroform and acetonitrile. The selective recognition of glyphosate was achieved by preparing molecularly imprinted polymers, able to discriminate against other common herbicides such as 2,4-dichlorophenoxyacetic acid (2,4-D) and 3,6-dichloro-2-methoxybenzoic acid (dicamba), as thin layers on submicron silica particles. The limits of detection of 4.8 µM and 0.6 µM were obtained for the sensing of glyphosate in chloroform and acetonitrile, respectively. The reported system shows promise for future application in the sensing of glyphosate through further optimization of the dye and the implementation of a biphasic assay with water/organic solvent mixtures for sensing in aqueous environmental samples. KW - Glyphosate KW - Guanidinium receptors KW - Fluorescent probes KW - Molecularly imprinted polymers KW - Core-shell particles PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544441 DO - https://doi.org/10.3390/chemosensors10030099 SN - 2227-9040 VL - 10 IS - 3 SP - 1 EP - 20 PB - MDPI CY - Basel AN - OPUS4-54444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bastos, V. A1 - Oskoei, P. A1 - Andresen, Elina A1 - Saleh, Maysoon I. A1 - Rühle, Bastian A1 - Resch-Genger, Ute A1 - Oliveira, H. T1 - Stability, dissolution, and cytotoxicity of NaYF4‑upconversion nanoparticles with different coatings JF - Scientific reports N2 - Upconversion nanoparticles (UCNPs) have attracted considerable attention owing to their unique photophysical properties. Their utilization in biomedical applications depends on the understanding of their transformations under physiological conditions and their potential toxicity. In this study, NaYF4: Yb,Er UCNPs, widely used for luminescence and photophysical studies, were modified with a set of four different coordinatively bound surface ligands, i.e., citrate, alendronate (AA), ethylendiamine tetra(methylene phosphonate) (EDTMP), and poly(maleic anhydride-alt-1-octadecene) (PMAO), as well as silica coatings with two different thicknesses. Subsequently, the aging-induced release of fluoride ions in water and cell culture media and their cytotoxic profile to human keratinocytes were assessed in parallel to the cytotoxic evaluation of the ligands, sodium fluoride and the lanthanide ions. The cytotoxicity studies of UCNPs with different surface modifications demonstrated the good biocompatibility of EDTMP-UCNPs and PMAO-UCNPs, which is in line with the low amount of fluoride ions released from these samples. An efficient prevention of UCNP dissolution and release of cytotoxic ions, as well as low cytotoxicity was also observed for UCNPs with a sufficiently thick silica shell. Overall, our results provide new insights into the understanding of the contribution of surface chemistry to the stability, dissolution behavior, and cytotoxicity of UCNPs. Altogether, the results obtained are highly important for future applications of UCNPs in the life sciences and bioimaging studies. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Excitation power density KW - Surface chemistry KW - Coating PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544681 DO - https://doi.org/10.1038/s41598-022-07630-5 SN - 2045-2322 VL - 12 SP - 1 EP - 13 PB - Springer Nature CY - London AN - OPUS4-54468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knoche, Lisa A1 - Lisec, Jan A1 - Schwerdtle, T. A1 - Koch, Matthias T1 - LC-HRMS-Based Identification of Transformation Products of the Drug Salinomycin Generated by Electrochemistry and Liver Microsome JF - antibiotics N2 - The drug salinomycin (SAL) is a polyether antibiotic and used in veterinary Medicine as coccidiostat and growth promoter. Recently, SAL was suggested as a potential anticancer drug. However, transformation products (TPs) resulting from metabolic and environmental degradation of SAL are incompletely known and structural information is missing. In this study, we therefore systematically investigated the formation and identification of SAL derived TPs using electrochemistry (EC) in an electrochemical reactor and rat and human liver microsome incubation (RLM and HLM) as TP generating methods. Liquid chromatography (LC) coupled to high-resolution mass spectrometry (HRMS) was applied to determine accurate masses in a suspected target analysis to identify TPs and to deduce occurring modification reactions of derived TPs. A total of 14 new, structurally different TPs were found (two EC-TPs, five RLM-TPs, and 11 HLM-TPs). The main modification reactions are decarbonylation for EC-TPs and oxidation (hydroxylation) for RLM/HLM-TPs. Of particular interest are potassium-based TPs identified after liver microsome incubation because these might have been overlooked or declared as oxidated sodium adducts in previous, non-HRMS-based studies due to the small mass difference between K and O + Na of 21 mDa. The MS fragmentation pattern of TPs was used to predict the position of identified modifications in the SAL molecule. The obtained knowledge regarding transformation reactions and novel TPs of SAL will contribute to elucidate SAL-metabolites with regards to structural prediction. KW - Salinomycin KW - Ionophore antibiotics KW - Transformation product KW - Electrochemistry KW - Rat/human liver microsomes KW - HRMS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542543 DO - https://doi.org/10.3390/antibiotics11020155 SN - 2079-6382 VL - 11 IS - 2 SP - 155 PB - MDPI CY - Basel AN - OPUS4-54254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Climent Terol, Estela A1 - Gojani, Ardian A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - Generalized Analysis Approach of the Profile Roughness by Electron Microscopy with the Example of Hierarchically Grown Polystyrene–Iron Oxide–Silica Core–Shell–Shell Particles JF - Advanced Engineering Materials N2 - The roughness as a property of core–shell (CS) microparticles plays a key role in their functionality. Quantitative evaluation of the roughness of CS microparticles is, however, a challenging task with approaches using electron microscopy images being scarce and showing pronounced differences in terms of methodology and results. This work presents a generalized method for the reliable roughness determination of nonplanar specimens such as CS particles from electron microscopic images, the method being robust and reproducible with a high accuracy. It involves a self-written software package (Python) that analyzes the recorded images, extracts corresponding data, and calculates the roughness based on the deviation of the identified contour. Images of single particles are taken by a dual mode scanning electron microscopy (SEM) setup which permits imaging of the same field-of-view of the sample with high resolution and surface sensitive in SE InLens mode as well as in transmission mode (TSEM). Herein, a new type of polystyrene core–iron oxide shell–silica shell particles is developed to serve as a set of lower micrometer-sized study objects with different surface roughness; the analysis of their images by the semiautomatic workflow is demonstrating that the particles’ profile roughness can be quantitatively obtained. KW - Core–shell particles KW - Image analysis KW - Nanoparticles KW - Roughness KW - SEM KW - transmission mode PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542576 DO - https://doi.org/10.1002/adem.202101344 SP - 1 EP - 9 PB - Wiley-VCH AN - OPUS4-54257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Yi A1 - Riedel, Jens T1 - Approaching phase-imaging through defocusing shadowgraphy for acoustic resonator diagnosis and the capability of direct index-of-refraction measurements JF - Review of Scientific Instruments N2 - The visualization of index-of-refraction (IoR) distribution is one of the common methods to investigate fluid flow or pressure fields. While schlieren and shadowgraphy imaging techniques are widely accepted, their inherent limitations often lead to difficulties in elucidating the IoR distribution and extracting the true IoR information from the resulting images. While sophisticated solutions exist, the IoR-gradient-to-image was achieved by purposely introducing a commonly avoided “defect” into the optical path of a conventional coincident schlieren/shadowgraphy setup; the defect is a combination of slight defocusing and the use of non-conjugate optical components. As such, the method presented in this work is referred to as defocusing shadowgraphy, or DF-shadowgraphy. While retaining the ease of a conventional schlieren/shadowgraphy geometry, this DF approach allows direct visualization of complicated resonant acoustic fields even without any data processing. For instance, the transient acoustic fields of a common linear acoustic resonator and a two-dimensional one were directly visualized without inversion. Moreover, the optical process involved in DF-shadowgraphy was investigated from a theoretical perspective. A numerical solution of the sophisticated impulse response function was obtained, which converts the phase distortion into intensity distributions. Based on this solution, the IoRs of various gas streams (e.g., CO2 and isopropanol vapor) were determined from single images. KW - Imaging Technique KW - Phase Imaging KW - Shadowgraphy KW - Schlieren Imaging PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537116 DO - https://doi.org/10.1063/5.0058334 SN - 1089-7623 VL - 92 IS - 10 SP - 103703 PB - AIP Publishing Group AN - OPUS4-53711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahiboz, D. A1 - Andresen, Elina A1 - Manley, P. A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Becker, C. T1 - Metasurface-Enhanced Photon Upconversion upon 1550 nm Excitation JF - Advanced Science News N2 - Photon upconversion upon 1550 nm excitation is of high relevance for applications in the third biological excitation window, for photovoltaics beyond current limitations, and enables appealing options in the field of glass Fiber telecommunications. Trivalent doped erbium ions (Er3+) are the material of choice for 1550 nm excited upconversion, however, they suffer from a low absorption cross-section and a low brightness. Therefore, the ability of Silicon metasurfaces to provide greatly enhanced electrical near-fields is employed to enable efficient photon upconversion even at low external Illumination conditions. Hexagonally shaped β-NaYF4:Er3+ nanoparticles are placed on large-area silicon metasurfaces designed to convert near-infrared (1550 nm) to visible light. More than 2400-fold enhanced photon upconversion luminescence is achieved by using this metasurface instead of a planar substrate. With the aid of optical simulations based on the finite-element method, this result is attributed to the coupling of the excitation source with metasurface resonances at appropriate incident angles. Analysis of the excitation power density dependence of upconversion luminescence and red-to-green-emission ratios enables the estimation of nanoscale near-field enhancement on the metasurface. The findings permit the significant reduction of required external excitation intensities for photon upconversion of 1550 nm light, opening perspectives in biophotonics, telecommunication, and photovoltaics. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Excitation power density KW - Single particle KW - Brightness KW - NIR KW - Mechanism KW - Single enhancement KW - SWIR KW - Method PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537193 DO - https://doi.org/10.1002/adom.202101285. SN - 2195-1071 VL - 9 IS - 24 SP - 2101285 PB - Wiley-VCH-GmbH AN - OPUS4-53719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sommerfeld, Thomas A1 - Jung, Christian A1 - Riedel, Juliane A1 - Mauch, Tatjana A1 - Sauer, Andreas A1 - Koch, Matthias T1 - Development of a certified reference material for the determination of polycyclic aromatic hydrocarbons (PAHs) in rubber toy JF - Analytical and Bioanalytical Chemistry N2 - Polycyclic aromatic hydrocarbons (PAHs) are a large group of priority organic pollutants, which contaminate environmental compartments, food, and consumer products as well. Due to their frequent occurrence associated with elevated Levels of PAHs, plastic and rubber parts of consumer products and toys are particular sources of exposure. Although European maximum levels exist for eight carcinogenic PAHs in consumer products and toys according to REACH Regulation (EC) No. 1907/2006, certified reference materials (CRM) are still not available. To overcome this lack, the first CRM for the determination of PAHs in rubber toys (BAM-B001) was developed according to the requirements of ISO Guide 35. The whole process of CRM development including preparation, homogeneity and stability studies, and value assignment is presented. The assignment of the certified mass fractions was based upon in-house study at BAM using stable isotope Dilution analysis (SIDA) gas chromatography mass spectrometry (GC–MS). The obtained values were confirmed by the results of two interlaboratory comparison (ILC) studies with more than 50 expert laboratories from Germany and China. The mass fractions of 14 PAHs including all REACH and GS mark regulated compounds were certified ranging between 0.2 and 15.4 mg/ kg accompanied by expanded uncertainties (coverage factor k = 2). In addition, informative values were determined for 4 PAHs, mainly due to higher uncertainties and/or lack of ILC data for confirmation. BAM-B001 is intended for analytical quality control particularly based on the AfPS GS 2019:01 PAK method and contributes to improve the chemical safety of consumer products including toys. KW - PAHs KW - Consumer Products KW - Toys KW - Chemical Safety KW - Certified reference material KW - Quality assurance PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539920 DO - https://doi.org/10.1007/s00216-021-03796-5 VL - 414 IS - 15 SP - 4369 EP - 4378 PB - Springer AN - OPUS4-53992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dariz, P. A1 - Schmid, Thomas T1 - Trace compounds in Early Medieval Egyptian blue carry information on provenance, manufacture, application, and ageing JF - Scientific Reports N2 - Only a few scientific evidences for the use of Egyptian blue in Early Medieval wall paintings in Central and Southern Europe have been reported so far. The monochrome blue fragment discussed here belongs to the second church building of St. Peter above Gratsch (South Tyrol, Northern Italy, fifth/ sixth century A.D.). Beyond cuprorivaite and carbon black (underpainting), 26 accessory minerals down to trace levels were detected by means of Raman microspectroscopy, providing unprecedented insights into the raw materials blend and conversion reactions during preparation, application, and ageing of the pigment. In conjunction with archaeological evidences for the manufacture of Egyptian blue in Cumae and Liternum and the concordant statements of the antique Roman writers Vitruvius and Pliny the Elder, natural impurities of the quartz sand speak for a pigment produced at the northern Phlegrean Fields (Campania, Southern Italy). Chalcocite (and chalcopyrite) suggest the use of a sulphidic copper ore, and water-insoluble salts a mixed-alkaline flux in the form of plant ash. Not fully reacted quartz crystals partly intergrown with cuprorivaite and only minimal traces of silicate glass portend solid-state reactions predominating the chemical reactions during synthesis, while the melting of the raw materials into glass most likely played a negligible role. KW - Egyptian blue KW - Raman microspectroscopy KW - Spectoscopic imaging KW - Cuprorivaite KW - Amorphous carbon PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537591 DO - https://doi.org/10.1038/s41598-021-90759-6 VL - 11 SP - 1 EP - 12 PB - Nature Portfolio AN - OPUS4-53759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Kraft, Ronja A1 - Dariz, P. T1 - Shedding light onto the spectra of lime - Part 2: Raman spectra of Ca and Mg carbonates and the role of d-block element luminescence JF - Journal of Raman Spectroscopy N2 - We previously described the observation of a characteristic narrowband red luminescence emission of burnt lime (CaO), whose reason was unknown so far. This study presents Raman spectra of Mg5 CO3)4(OH)2∙4H2O, Mg5(CO3)4(OH)2, MgCO3, CaMgCO3 and CaCO3 (in limestone powder) as well as luminescence spectra of their calcination products. Comparison of the latter revealed MgO:Cr3+ as the source of the red lime luminescence in all studied samples, containing magnesium oxide as major component, minor component or trace. Spectral characteristics and theoretical background of the luminescence emission of d-block elements integrated in crystal lattices are discussed with the aim of sharpening the awareness for this effect in the Raman community and promoting its application in materials analysis. The latter is demonstrated by the Raman microspectroscopic imaging of the distributions of both Raman-active and Raman-inactive phases in clinker remnants in a 19th-century meso Portland cement mortar sample, which contain relatively high amounts of free lime detected in the form of both luminescing CaO and Raman-scattering Ca(OH)2, owing to exposure of the surface of the thin section to humid air. A combination of light and Raman spectroscopy revealed a calcium–magnesium–iron sulphide phase, indicating sulphurous raw materials and/or solid fuels employed in the calcination process, which in contrast to previously described morphologies of sulphides in cement clinker form extensive greenish black layers on free lime crystals. KW - Calcium carbonates KW - Raman spectroscopy KW - Luminescence KW - Magnesium carbonates KW - Meso Portland cement PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537611 DO - https://doi.org/10.1002/jrs.6174 SN - 0377-0486 VL - 52 IS - 8 SP - 1462 EP - 1472 PB - Wiley Analytical Science AN - OPUS4-53761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Hidde, Julia A1 - Grünier, Sophie A1 - Jungnickel, Robert A1 - Dariz, P. A1 - Riedel, Jens A1 - Neuhaus, B. T1 - Ageing effects in mountig media of microscope slide samples from natural history collections: A case study with Canada balsam and Permount™ JF - Polymers N2 - Microscope slide collections represent extremely valuable depositories of research material in a natural history, forensic, veterinary, and medical context. Unfortunately, most mounting media of these slides deteriorate over time, with the reason for this not yet understood at all. In this study, Raman spectroscopy, ultraviolet–visible (UV–Vis) spectroscopy, and different types of light microscopy were used to investigate the ageing behaviour of naturally aged slides from museum collections and the experimentally aged media of Canada balsam and Permount™, representing a natural and a synthetic resin, respectively, with both being based on mixtures of various terpenes. Whereas Canada balsam clearly revealed chemical ageing processes, visible as increasing colouration, Permount™ showed physical deterioration recognisable by the increasing number of cracks, which even often impacted a mounted specimen. Noticeable changes to the chemical and physical properties of these mounting media take decades in the case of Canada balsam but just a few years in the case of Permount™. Our results question whether or not Canada balsam should really be regarded as a mounting medium that lasts for centuries, if its increasing degree of polymerisation can lead to a mount which is no longer restorable. KW - Deterioration KW - Microscope slides KW - Mounting media KW - Raman spectroscopy KW - UV–Vis spectroscopy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537632 DO - https://doi.org/10.3390/polym13132112 VL - 13 IS - 13 SP - 1 EP - 27 PB - MDPI CY - Basel AN - OPUS4-53763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Munir, R. A1 - Noureen, N. A1 - Bashir, M. A1 - Shoaib, N. A1 - Ashraf, A. A1 - Lisec, Jan A1 - Zaidi, N. T1 - Cancer Awareness Measure (CAM) and Cancer Awareness Measure MYthical Causes Scale (CAM‑MY) scores in Pakistani population JF - Scientific reports N2 - Lifestyle modifications could prevent almost one‑third to one‑half of all cancer cases. The awareness of cancer risk factors could motivate people to make such changes in their behaviors and lifestyles. This work aims to investigate the cancer awareness level in the Pakistani population. Telephone interviews of 657 individuals in Pakistan were carried out using the Cancer Awareness Measure (CAM) and Cancer Awareness Measure–MYthical Causes Scale (CAM‑MY). We observed that participants scored significantly better on the CAM scale than the CAM‑MY scale, and CAM scores were negatively associated with CAM‑MY scores. Years of formal education or a biology major at undergraduate or graduate level did not affect our population’s cancer awareness levels. Age displayed a weak but statistically significant negative association with CAM scores. Most participants failed to identify modifiable cancer risk factors, e.g., low physical activity. Efforts should be made to improve awareness of modifiable risk factors. We observed that brief training sessions could markedly improve people’s understanding of cancer risk factors and myths. KW - Cancer KW - Cancer awareness measure KW - Cancer risk PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548960 DO - https://doi.org/10.1038/s41598-022-13012-8 SN - 2045-2322 VL - 12 IS - 1 SP - 1 EP - 10 PB - Nature Publishing Group CY - London AN - OPUS4-54896 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biesen, L. A1 - May, L. A1 - Nirmalananthan-Budau, Nithiya A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Müller, T. J. J. T1 - Communication of Bichromophore Emission upon Aggregation – Aroyl-S,N-ketene Acetals as Multifunctional Sensor Merocyanines JF - Chemical European Journal N2 - Aroyl-S,N-ketene acetal-based bichromophores can be readily synthesized in a consecutive three-component synthesis in good to excellent yields by condensation of aroyl chlorides and an N-(p-bromobenzyl) 2-methyl benzothiazolium salt followed by a Suzuki coupling, yielding a library of 31 bichromophoric fluorophores with substitution patterntunable emission properties. Varying both chromophores enables different communication pathways between the chromophores, exploiting aggregation-induced emission (AIE) and energy transfer (ET) properties, and thus, furnishing aggregation-based fluorescence switches. Possible applications range from fluorometric analysis of alcoholic beverages to pH sensors. KW - Dye KW - Fluorescence KW - Aggregation induced emission KW - Signal enhancement KW - Energy transfer KW - Switch KW - Sensor KW - Quantum yield KW - Lifetime KW - Photophysics KW - Synthesis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531123 DO - https://doi.org/10.1002/chem.202102052 VL - 27 IS - 53 SP - 13426 EP - 13434 PB - Wiley-VCH AN - OPUS4-53112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Witte, F. A1 - Rietsch, P. A1 - Nirmalananthan-Budau, Nithiya A1 - Weigert, Florian A1 - Götze, J. P. A1 - Resch-Genger, Ute A1 - Eigler, S. A1 - Paulus, B. T1 - Aggregation-induced emission leading to two distinct emissive species in the solid-state structure of high-dipole organic chromophores JF - Physical chemistry chemical physics: PCCP N2 - The concept of aggregation-induced emission represents a means to rationalise photoluminescence of usually nonfluorescent excimers in solid-state materials. In this publication, we study the photophysical properties of selected diaminodicyanoquinone (DADQ) derivatives in the solid state using a combined approach of experiment and theory. DADQs are a class of high-dipole organic chromophores promising for applications in non-linear optics and light-harvesting devices. Among the compounds investigated, we find both aggregation-induced emission and aggregation-caused quenching effects rationalised by calculated energy transfer rates. Analysis of fluorescence spectra and lifetime measurements provide the interesting result that (at least) two emissive species seem to contribute to the photophysical properties of DADQs. The main emission peak is notably broadened in the long-wavelength limit and exhibits a blue-shifted shoulder. We employ high-level quantum-chemical methods to validate a molecular approach to a solid-state problem and show that the complex emission features of DADQs can be attributed to a combination of H-type aggregates, monomers, and crystal structure defects. KW - Fluorescence KW - Optical probe KW - Dye KW - Photophysics KW - Theory KW - Quantum yield KW - Mechanism KW - Quantum chemistry KW - Modelling KW - Aggregation KW - Lifetime KW - Single particle KW - Microscopy KW - Solid KW - Crystal PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531138 DO - https://doi.org/10.1039/d1cp02534a SP - 1 EP - 9 PB - Royal Society of Chemistry AN - OPUS4-53113 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Smeir, E. A1 - Leberer, S. A1 - Blumrich, A. A1 - Vogler, G. A1 - Vasiliades, A. A1 - Dresen, S. A1 - Jaeger, Carsten A1 - Gloaguen, Y. A1 - Klose, C. A1 - Beule, D. A1 - Schulze, P. A1 - Bodmer, R. A1 - Foryst-Ludwig, A. A1 - Kintscher, U. T1 - Depletion of Cardiac Cardiolipin Synthase Alters Systolic and Diastolic Function JF - iScience N2 - Cardiolipin (CL) is a major cardiac mitochondrial phospholipid maintaining regular mitochondrial morphology and function in cardiomyocytes. Cardiac CL production includes ist biosynthesis and a CL-remodeling process. Here we studied the impact of CL-biosynthesis and the enzyme Cardiolipin Synthase (CLS) on cardiac function. CLS and cardiac CL-species were significantly downregulated in cardiomyocytes following catecholamine-induced cardiac damage in mice, accompanied by increased oxygen consumption rates, signs of oxidative stress and mitochondrial uncoupling. RNAi-mediated cardiomyocyte-specific knockdown of CLS in Drosophila melanogaster resulted in marked cardiac dilatation, severe impairment of systolic performance and slower diastolic filling velocity assessed by fluorescence-based heart imaging. Finally, we showed that CL72:8 is significantly decreased in cardiac samples from patients with heart failure with reduced ejection fraction (HFrEF). In summary, we identified CLS as a regulator of cardiac function. Considering the cardiac depletion of CL-species in HFrEF, pharmacological targeting of CLS may be a promising therapeutic approach.zeige mehrzeige weniger KW - High-resolution mass spectrometry KW - Nontarget analysis KW - Heart failure KW - Cardiolipins KW - Lipidomics PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536833 DO - https://doi.org/10.1016/j.isci.2021.103314 VL - 24 IS - 11 SP - 103314 PB - Cell Press AN - OPUS4-53683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blumrich, A. A1 - Vogler, G. A1 - Dresen, S. A1 - Diop, S. B. A1 - Jaeger, Carsten A1 - Leberer, S. A1 - Grune, J. A1 - Wirth, E. K. A1 - Hoeft, B. A1 - Renko, K. A1 - Foryst-Ludwig, A. A1 - Spranger, J. A1 - Sigrist, S. A1 - Bodmer, R. A1 - Kintscher, U. T1 - Fat-body brummer lipase determines survival and cardiac function during starvation in Drosophila melanogaster JF - iScience N2 - The cross talk between adipose tissue and the heart has an increasing importance for cardiac function under physiological and pathological conditions. This study characterizes the role of fat body lipolysis for cardiac function in Drosophila melanogaster. Perturbation of the function of the key lipolytic enzyme, brummer (bmm), an ortholog of themammalian ATGL (adipose triglyceride lipase) exclusively in the fly’s fat body, protected the heart against starvation-induced dysfunction. We further provide evidence that this protection is caused by the preservation of glycerolipid stores, resulting in a starvation-resistant maintenance of energy supply and adequate cardiac ATP synthesis. Finally, we suggest that alterations of lipolysis are tightly coupled to lipogenic processes, participating in the preservation of Lipid energy substrates during starvation. Thus, we identified the inhibition of adipose tissue lipolysis and subsequent energy preservation as a protective mechanism against cardiac dysfunction during catabolic stress. KW - High-resolution mass spectrometry KW - Nontarget analysis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528756 DO - https://doi.org/10.1016/j.isci.2021.102288 VL - 24 IS - 4 SP - 102288 AN - OPUS4-52875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reichenauer, F. A1 - Wang, Cui A1 - Förster, C. A1 - Boden, P. A1 - Ugur, N. A1 - Báez-Cruz, R. A1 - Kalmbach, J. A1 - Carrella, L. M. A1 - Rentschler, E. A1 - Ramanan, C. A1 - Niedner-Schatteburg, G. A1 - Gerhards, M. A1 - Seitz, M. A1 - Resch-Genger, Ute A1 - Heinze, K. T1 - Strongly Red-Emissive Molecular Ruby [Cr(bpmp)2]3+ Surpasses [Ru(bpy)3]2+ JF - Journal of th American Chemical Society N2 - Gaining chemical control over the thermodynamics and kinetics of photoexcited states is paramount to an efficient and sustainable utilization of photoactive transition metal complexes in a plethora of technologies. In contrast to energies of charge Transfer states described by spatially separated orbitals, the energies of spinflip states cannot straightforwardly be predicted as Pauli Repulsion and the nephelauxetic effect play key roles. Guided by multireference quantum chemical calculations, we report a novel highly luminescent spin-flip emitter with a quantum chemically predicted blue-shifted luminescence. The spin-flip emission band of the chromium complex [Cr(bpmp)2]3+ (bpmp = 2,6-bis(2-pyridylmethyl) pyridine) shifted to higher energy from ca. 780 nm observed for known highly emissive chromium(III) complexes to 709 nm. The photoluminescence quantum yields climb to 20%, and very long excited state lifetimes in the millisecond range are achieved at room temperature in acidic D2O solution. Partial ligand deuteration increases the quantum yield to 25%. The high excited state energy of [Cr(bpmp)2]3+ and its facile reduction to [Cr(bpmp)2]2+ result in a high excited state redox potential. The ligand’s methylene bridge acts as a Brønsted acid quenching the luminescence at high pH. Combined with a pH-insensitive chromium(III) emitter, ratiometric optical pH sensing is achieved with single wavelength excitation. The photophysical and Ground state properties (quantum yield, lifetime, redox potential, and acid/base) of this spin-flip complex incorporating an earth-abundant metal surpass those of the classical precious metal [Ru(α-diimine)3]2+ charge transfer complexes, which are commonly employed in optical sensing and photo(redox) catalysis, underlining the bright future of these molecular ruby analogues. KW - Fluorescence KW - Optical probe KW - Sensor KW - PH KW - Quantum yield KW - Quality assurance KW - Complex KW - Cr(III) KW - Lifetime KW - Ligand KW - Theory PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530548 DO - https://doi.org/10.1021/jacs.1c05971 VL - 143 IS - 30 SP - 11843 EP - 11855 PB - ACS Publications AN - OPUS4-53054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Srivastava, Priyanka A1 - Fürstenwerth, Paul Christian A1 - Witte, J. F. A1 - Resch-Genger, Ute T1 - Synthesis and spectroscopic characterization of a fluorescent phenanthrene-rhodamine dyad for ratiometric measurements of acid pH values JF - New Journal of Chemistry N2 - We present the rational design, synthesis and spectroscopic characterization of a novel dual excitation, three color emitting, pH-responsive fluorescent probe consisting of two phenanthrene and one rhodamine B units linked by click chemistry. The rhodamine moiety, excitable at λEx = 315 nm and at λEx = 560 nm in its ring-opened form, provides the pH-responsive fluorophore, while the pH-insensitive phenanthrene, excited at λEx = 315 nm, serves as inert internal reference, The presence of two phenanthrene moieties enables a blue monomer and a blueish green excimer emission at 351 nm and 500 nm, respectively. Opening of the rhodamine B spirolactam ring at an acidic pH below 5.0 (pKa = 2.59 ± 0.04) switches on its emission at 580 nm. Simultaneously, the phenanthrene excimer emission decreases caused by a change in orientation of the phenanthrene units, while the monomer emission is barely affected. This sensor design enables ratiometric measurements in the low acidic pH range utilizing the intensity ratios of the rhodamine B and phenanthrene excimer emission at 580 nm and 500 nm. Alternatively, also the intensity ratios of the rhodamine B and the phenanthrene monomer emission could be exploited or the sum of the phenanthrene monomer and excimer fluorescence. To the best of our knowledge, this is the first report of ratiometric sensing utilizing such a versatile type of tricolor emissive dyad probe bearing phenanthrene moieties and showing phenanthrene monomer and excimer emission. KW - Fluorescence KW - Optical probe KW - Sensor KW - Dye KW - Rhodamine KW - Synthesis KW - Photophysics KW - PH KW - Quantum yield KW - Quality assurance KW - Mechanism KW - Chemodosimeter KW - Phenanthrene KW - Ratiometric KW - Dyad PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530554 DO - https://doi.org/10.1039/d1nj01573g SN - 1144-0546 VL - 45 IS - 31 SP - 13755 EP - 13762 PB - Royal Society of Chemistry AN - OPUS4-53055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Andresen, Elina A1 - Radunz, Sebastian A1 - Resch-Genger, Ute T1 - Novel PET-Operated Rosamine Sensor Dyes with Substitution Pattern-Tunable pKa Values and Temperature Sensitivity JF - New Journal of Chemistry N2 - We present the synthesis and characterization of a family of regioisomerically pure pH-sensitive rosamine fluorophores consisting of xanthene fluorophore cores, which determine the dyes’ photophysical properties such as excitation/emission wavelength, fluorescence quantum yield, and fluorescence lifetime, and differently substituted phenol moieties. The hydroxyl substituent of the phenol moiety introduces a pH sensitivity of the dyes’ fluorescence exploiting a photoinduced electron transfer (PET), that leads to a protonation-induced switching ON of the rosamine emission. Rational tuning of the pKa value of the rosamine fluorescence between 4 to 9 is achieved by altering the substitution pattern and degree of bromination of the phenolic subunits. Additionally, a temperature sensitivity of the fluorescence quantum yield is introduced or suppressed based upon the degree of rigidity of the xanthene scaffold. KW - Fluorescence KW - Optical probe KW - Sensor KW - Dye KW - Rosamine KW - Synthesis KW - Photophysics KW - PH KW - Quantum yield KW - Quality assurancemechanism KW - temperature PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530562 DO - https://doi.org/10.1039/d1nj02505h VL - 45 IS - 31 SP - 13934 EP - 13940 PB - Royal Society of Chemistry AN - OPUS4-53056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nelson, G. A1 - Boehm, U. A1 - Bagley, S. A1 - Bajcsy, P. A1 - Bischof, J. A1 - Brown, C. M. A1 - Dauphin, A. A1 - Dobbie, I. M. A1 - Eriksson, J. E. A1 - Faklaris, O. A1 - Fernandez-Rodriguez, J. A1 - Ferrand, A. A1 - Gelman, L, A1 - Gheisari, A. A1 - Hartmann, H. A1 - Kukat, C. A1 - Laude, A. A1 - Mitkovski, M. A1 - Munck, S. A1 - North, A. J. A1 - Rasse, T. A1 - Resch-Genger, Ute A1 - Schuetz, L. C. A1 - Seitz, A. A1 - Strambio-De-Castillia, C. A1 - Swedlow, J. R. A1 - Alexopoulos, I. A1 - Aumayr, K. A1 - Avilov, S. A1 - Bakker, G.-J. A1 - Bammann, R. R. A1 - Bassi, A. A1 - Beckert, H. A1 - Beer, S. A1 - Belyaev, Y. A1 - Bierwagen, J. A1 - Birngruber, K. A. A1 - Bosch, M. A1 - Breitlow, J. A1 - Cameron, L. A. A1 - Chalfoun, J. A1 - Chambers, J. J. A1 - Chen, C.-L. A1 - Conde-Sousa, E. A1 - Corbett, A. D. A1 - Cordelieres, F. P. A1 - Del Nery, E. A1 - Dietzel, R. A1 - Eismann, F. A1 - Fazeli, E. A1 - Felscher, A. A1 - Fried, H. A1 - Gaudreault, N. A1 - Goh, W. I. A1 - Guilbert, T. A1 - Hadleigh, R. A1 - Hemmerich, P. A1 - Holst, G. A. A1 - Itano, M. S. A1 - Jaffe, C. B. A1 - Jambor, H. K. A1 - Jarvis, S. C. A1 - Keppler, A. A1 - Kirchenbuechler, D. A1 - Kirchner, M. A1 - Kobayashi, N. A1 - Krens, G. A1 - Kunis, S. A1 - Lacoste, J. A1 - Marcello, M. A1 - Martins, G. G. A1 - Metcalf, D. J. A1 - Mitchell, C. A. A1 - Moore, J. A1 - Mueller, T. A1 - Nelson, M. S. A1 - Ogg, S. A1 - Onami, S. A1 - Palmer, A. L. A1 - Paul-Gilloteaux, P. A1 - Pimentel, J. A. A1 - Plantard, L. A1 - Podder, S. A1 - Rexhepaj, E. A1 - Royon, A. A1 - Saari, M. A. A1 - Schapman, D. A1 - Schoonderwoert, V. A1 - Schroth-Diez, B. A1 - Schwartz, S. A1 - Shaw, M. A1 - Spitaler, M. A1 - Stoeckl, M. T. A1 - Sudar, D. A1 - Teillon, J. A1 - Terjung, S. A1 - Thuenauer, R. A1 - Wilms, C. D. A1 - Wright, G. D. A1 - Nitschke, R. T1 - QUAREP-LiMi: A community-driven initiative to establish guidelines for quality assessment and reproducibility for instruments and images in light microscopy JF - Journal of microscopy N2 - A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated, quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist’s experiments, while more than half have even failed to reproduce their own experiments1. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique2,3. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g., DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE4), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common Standards and guidelines for quality assessment and reproducibility5. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative6 was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models7,8, and tools9,10, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper 1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; 2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of Stakeholders including, researchers, imaging scientists11, bioimage analysts, bioimage informatics developers, corporate partners, Funding agencies, standards organizations, scientific publishers, and observers of such; 3) outlines the current actions of the QUAREPLiMi initiative, and 4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics. KW - Fluorescence KW - Microscopy KW - Quality assurance KW - Comparability KW - Imaging KW - Standards KW - Reference materials KW - Reliability KW - Data KW - Reference data KW - Biology KW - Medicine KW - Life science PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530629 DO - https://doi.org/10.1111/jmi.13041 SN - 1365-2818 VL - 284 IS - 1 SP - 56 EP - 73 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-53062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Rurack, Knut A1 - Hecht, Mandy T1 - Loading and Release of Charged and Neutral Fluorescent Dyes into and from Mesoporous Materials: A Key Role for Sensing Applications JF - Micromachines N2 - The aim of this study is to determine the efficiency of loading and release of several zwitterionic, neutral, anionic and cationic dyes into/from mesoporous nanoparticles to find the optimum loading and release conditions for their application in detection protocols. The loading is carried out for MCM-41 type silica supports suspended in phosphate-buffered saline (PBS) buffer (pH 7.4) or in acetonitrile, involving the dyes (rhodamine B chloride, rhodamine 101 chloride, rhodamine 101 perchlorate, rhodamine 101 inner salt, meso-(4-hydroxyphenyl)-boron–dipyrromethene (BODIPY), sulforhodamine B sodium salt and fluorescein 27). As a general trend, rhodamine-based dyes are loaded with higher efficiency, when compared with BODIPY and fluorescein dyes. Between the rhodamine-based dyes, their charge and the solvent in which the loading process is carried out play important roles for the amount of cargo that can be loaded into the materials. The delivery experiments carried out in PBS buffer at pH 7.4 reveal for all the materials that anionic dyes are more efficiently released compared to their neutral or cationic counterparts. The overall best performance is achieved with the negatively charged sulforhodamine B dye in acetonitrile. This material also shows a high delivery degree in PBS buffer. KW - Mesoporous materials KW - Charged dyes KW - Neutral dyes KW - Dye loading optimisation KW - Dye release PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522596 UR - https://www.mdpi.com/2072-666X/12/3/249 DO - https://doi.org/10.3390/mi12030249 VL - 12 IS - 3 SP - 249 PB - MDPI AN - OPUS4-52259 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rühle, Bastian A1 - Krumrey, Julian Frederic A1 - Hodoroaba, Vasile-Dan T1 - Workflow towards automated segmentation of agglomerated, non‑spherical particles from electron microscopy images using artificial neural networks JF - Scientific reports N2 - We present a workflow for obtaining fully trained artificial neural networks that can perform automatic particle segmentations of agglomerated, non-spherical nanoparticles from scanning electron microscopy images “from scratch”, without the need for large training data sets of manually annotated images. The whole process only requires about 15 minutes of hands-on time by a user and can typically be finished within less than 12 hours when training on a single graphics card (GPU). After training, SEM image analysis can be carried out by the artificial neural network within seconds. This is achieved by using unsupervised learning for most of the training dataset generation, making heavy use of generative adversarial networks and especially unpaired image-to-image translation via cycle-consistent adversarial networks. We compare the segmentation masks obtained with our suggested workflow qualitatively and quantitatively to state-of-the-art methods using various metrics. Finally, we used the segmentation masks for automatically extracting particle size distributions from the SEM images of TiO2 particles, which were in excellent agreement with particle size distributions obtained manually but could be obtained in a fraction of the time. KW - Electron microscopy KW - Neural networks KW - Artificial intelligence KW - Image segmentation KW - Automated image analysis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522454 DO - https://doi.org/10.1038/s41598-021-84287-6 VL - 11 IS - 1 SP - 4942 PB - Springer Nature AN - OPUS4-52245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marklein, B. A1 - Jenning, M. A1 - Konthur, Zoltán A1 - Häupl, T. A1 - Welzel, F. A1 - Nonhoff, U. A1 - Krobitsch, S. A1 - Mulder, D. M. A1 - Koenders, M. I. A1 - Joshua, V. A1 - Cope, A. P. A1 - Shlomchik, M. J. A1 - Anders, H.-J. A1 - Burmester, G. R. A1 - Hensvold, A. A1 - Catrina, A. I. A1 - Rönnelid, J. A1 - Steiner, G. A1 - Skriner, K. T1 - The citrullinated/native index of autoantibodies against hnRNP-DL predicts an individual "window of treatment success" in RA patients JF - Arthritis research & therapy N2 - Background: There is a need for biomarker to identify patients “at risk” for rheumatoid arthritis (risk-RA) and to better predict the therapeutic response and in this study we tested the hypothesis that novel native and citrullinated heterogeneous nuclear ribonucleoprotein (hnRNP)-DL autoantibodies could be possible biomarkers. Methods: Using protein macroarray and ELISA, epitope recognition against hnRNP-DL was analysed in sera from different developed RA disease and diagnosed SLE patients. Toll-like receptor (TLR) 7/9 and myeloid Differentiation primary response gene 88 (MyD88)-dependency were studied in sera from murine disease models. HnRNP-DL expression in cultivated cells and synovial tissue was analysed by indirect immunofluorescence, immunoblot and immunohistochemistry. KW - Citrullinated KW - Rheumatoid arthritis KW - Protein-modification KW - Autoantibodies KW - Antigens PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533682 DO - https://doi.org/10.1186/s13075-021-02603-x SN - 1478-6362 VL - 23 SP - 1 EP - 16 PB - BioMed Central CY - London AN - OPUS4-53368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haeckel, A. A1 - Ascher, Lena A1 - Beindorff, N. A1 - Prasad, S. A1 - Garczynska, K. A1 - Guo, J. A1 - Schellenberger, E. T1 - Long‑circulating XTEN864‑annexin A5 fusion protein for phosphatidylserine‑related therapeutic applications JF - Apoptosis N2 - Annexin A5 (anxA5) is a marker for apoptosis, but has also therapeutic potential in cardiovascular diseases, cancer, and, due to apoptotic mimicry, against dangerous viruses, which is limited by the short blood circulation. An 864-amino-acid XTEN polypeptide was fused to anxA5. XTEN864-anxA5 was expressed in Escherichia coli and purified using XTEN as tag. XTEN864-anxA5 was coupled with DTPA and indium-111. After intravenous or subcutaneous injection of 111In-XTEN864-anxA5, mouse blood samples were collected for blood half-life determination and organ samples for biodistribution using a gamma counter. XTEN864-anxA5 was labeled with 6S-IDCC to confirm binding to apoptotic cells using flow cytometry. To demonstrate targeting of atherosclerotic plaques, XTEN864-anxA5 was labeled with MeCAT(Ho) and administered intravenously to atherosclerotic ApoE−/−mice. MeCAT(Ho)-XTEN864-anxA5 was detected together with MeCAT(Tm)-MAC-2 macrophage antibodies by imaging mass cytometry (CyTOF) of aortic root sections. The ability of anxA5 to bind apoptotic cells was not affected by XTEN864. The blood half-life of XTEN864-anxA5 was 13 h in mice after IV injection, markedly longer than the 7-min half-life of anxA5. 96 h after injection, highest amounts of XTEN864-anxA5 were found in liver, spleen, and kidney. XTEN864-anxA5 was found to target the adventitia adjacent to atherosclerotic plaques. XTEN864-anxA5 is a long-circulating fusion protein that can be efficiently produced in E. coli and potentially circulates in humans for several days, making it a promising therapeutic drug. KW - Programmed cell death KW - LA/ICP-MS Imaging KW - Medicinal application PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533811 DO - https://doi.org/10.1007/s10495-021-01686-w VL - 26 IS - 9-10 SP - 534 EP - 547 PB - Springer AN - OPUS4-53381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xu, R. A1 - Teich, W. A1 - Frenzel, Florian A1 - Hoffmann, Katrin A1 - Radke, J. A1 - Rösler, J. A1 - Faust, K. A1 - Blank, A. A1 - Brandenburg, S. A1 - Misch, M. A1 - Vajkoczy, P. A1 - Onken, J. S. A1 - Resch-Genger, Ute T1 - Optical characterization of sodium fluorescein in vitro and ex vivo JF - Frontiers in oncology N2 - Objective: The utilization of fluorescein-guided biopsies and resection has been recently discussed as a suitable strategy to improve and expedite operative techniques for the resection of central nervous system (CNS) tumors. However, little is known about the optical properties of sodium fluorescein (NaFl) in human tumor tissue and their potential impact on ex vivo analyses involving fluorescence-based methods. Methods: Tumor tissue was obtained from a study cohort of an observational study on the utilization of fluorescein-guided biopsy and resection (n=5). The optical properties of fluorescein-stained tissue were compared to the optical features of the dye in vitro and in control samples consisting of tumor tissue of high-grade glioma patients (n=3) without intravenous (i.v.) application of NaFl. The dye-exposed tumor tissues were used for optical measurements to confirm the detectability of NaFl emission ex vivo. The tissue samples were fixed in 4%PFA, immersed in 30% sucrose, embedded in Tissue-Tek OCT compound, and cut to 10 mm cryosections. Spatially resolved emission spectra from tumor samples were recorded on representative slides with a Confocal Laser Scanning Microscope FV1000 (Olympus GmbH, Hamburg, Germany) upon excitation with lexc = 488 nm. Results: Optical measurements of fluorescein in 0.9% sodium chloride (NaCl) under in vitro conditions showed an absorption maximum of lmax abs = 479 nm as detected with spectrophotometer Specord 200 and an emission peak at lmax em = 538 nm recorded with the emCCD detection system of a custom-made microscope-based single particle setup using a 500 nm long-pass filter. Further measurements revealed pH- and concentration-dependent emission spectra of NaFl. Under ex vivo conditions, confocal laser scanning microscopy of fluorescein tumor samples revealed a slight bathochromic shift and a broadening of the emission band. Conclusion: Tumor uptake of NaFl leads to changes in the optical properties – a bathochromic shift and broadening of the emission band – possibly caused by the dye’s high pH sensitivity and concentration-dependent reabsorption acting as an innerfilter of the dye’s emission, particularly in the short wavelength region of the Emission spectrum where absorption and fluorescence overlap. Understanding the ex vivo optical properties of fluorescein is crucial for testing and validating its further applicability as an optical probe for intravital microscopy, immunofluorescence localization studies, and flow cytometry analysis. KW - Fluorescence KW - Optical probe KW - Sensor KW - Fluorescein KW - PH KW - Imaging KW - Tissue KW - Cancer KW - Medical diagnostics KW - Tumor KW - In vivo KW - Ex vivo KW - Quantum yield KW - Dye KW - Quality assurance KW - Microscopy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527843 DO - https://doi.org/10.3389/fonc.2021.654300 SN - 2234-943X VL - 11 SP - 1 EP - 8 PB - Frontiers Media CY - Lausanne AN - OPUS4-52784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jaeger, Carsten A1 - Ritter, D. A1 - Goeritzer, M. A1 - Thiele, A. A1 - Blumrich, A. A1 - Beyhoff, N. A1 - Luettges, K. A1 - Smeir, E. A1 - Kasch, J. A1 - Grune, J. A1 - Müller, O. A1 - Klopfleisch, R. A1 - Foryst-Ludwig, A. A1 - Kintscher, U. T1 - Liver X Receptor Agonist AZ876 Induces Beneficial Endogenous Cardiac Lipid Reprogramming and Protects Against Isoproterenol-Induced Cardiac Damage JF - Journal of the American Heart Association N2 - Background - It is known that dietary intake of polyunsaturated fatty acids may improve cardiac function. However, relatively high daily doses are required to achieve sufficient cardiac concentrations of beneficial omega‐3 fatty acids. The liver X receptor (LXR) is a nuclear hormone receptor and a crucial regulator of lipid homeostasis in mammals. LXR activation has been shown to endogenously reprogram cellular lipid profiles toward increased polyunsaturated fatty acids levels. Here we studied whether LXR lipid reprogramming occurs in cardiac tissue and exerts cardioprotective actions. Methods and Results - Male 129SV mice were treated with the LXR agonist AZ876 (20 µmol/kg per day) for 11 days. From day 6, the mice were injected with the nonselective β‐agonist isoproterenol for 4 consecutive days to induce diastolic dysfunction and subendocardial fibrosis while maintaining systolic function. Treatment with isoproterenol led to a marked impairment of global longitudinal strain and the E/e' ratio of transmitral flow to mitral annular velocity, which were both significantly improved by the LXR agonist. Histological examination showed a significant reduction in isoproterenol‐induced subendocardial fibrosis by AZ876. Analysis of the cardiac lipid composition by liquid chromatography‐high resolution mass spectrometry revealed a significant increase in cardiac polyunsaturated fatty acids levels and a significant reduction in saturated fatty acids by AZ876. Conclusions - The present study provides evidence that the LXR agonist AZ876 prevents subendocardial damage, improves global longitudinal strain and E/e' in a mouse model of isoproterenol‐induced cardiac damage, accompanied by an upregulation of cardiac polyunsaturated fatty acids levels. Cardiac LXR activation and beneficial endogenous cardiac lipid reprogramming may provide a new therapeutic strategy in cardiac disease with diastolic dysfunction. KW - Heart failure KW - Lipids KW - Liver X receptor KW - Diastolic dysfunction KW - Nuclear receptor PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529352 DO - https://doi.org/10.1161/JAHA.120.019473 VL - 10 IS - 14 SP - e019473 AN - OPUS4-52935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Marco A1 - Röder, Bettina A1 - Paul, Martin A1 - Weller, Michael G. T1 - Sintered glass monoliths as supports for affinity columns JF - Separations N2 - A novel stationary phase for affinity separations is presented. This material is based on sintered borosilicate glass readily available as semi-finished filter plates with defined porosity and surface area. The material shows fast binding kinetics and excellent long-term stability under real application conditions due to lacking macropores and high mechanical rigidity. The glass surface can be easily modified with standard organosilane chemistry to immobilize selective binders or other molecules used for biointeraction. In this paper, the manufacturing of the columns and their respective column holders by 3D printing is shown in detail. The model system protein A/IgG was chosen as an example to examine the properties of such monolithic columns under realistic application conditions. Several specifications, such as (dynamic) IgG capacity, pressure stability, long-term performance, productivity, non-specific binding, and peak shape, are presented. It could be shown that due to the very high separation speed, 250 mg antibody per hour and column can be collected, which surpasses the productivity of most standard columns of the same size. The total IgG capacity of the shown columns is around 4 mg (5.5 mg/mL), which is sufficient for most tasks in research laboratories. The cycle time of an IgG separation can be less than 1 min. Due to the glass material’s excellent pressure resistance, these columns are compatible with standard HPLC systems. This is usually not the case with standard affinity columns, limited to manual use or application in low-pressure systems. The use of a standard HPLC system also improves the ability for automation, which enables the purification of hundreds of cell supernatants in one day. The sharp peak shape of the elution leads to an enrichment effect, which might increase the concentration of IgG by a factor of 3. The final concentration of IgG can be around 7.5 mg/mL without the need for an additional nano-filtration step. The purity of the IgG was > 95% in one step and nearly 99% with a second polishing run. KW - Affinity Chromatography KW - Affinity Extraction KW - Affinity Separation KW - Protein Purification KW - Down Stream Processing KW - Antibody Purification KW - Diagnostic Antibodies KW - Therapeutic Antibodies KW - Automated Purification KW - HPLC KW - FPLC KW - IgG determination KW - Concentration step KW - Monoclonal Antibodies KW - Polyclonal Antibodies KW - Human Plasma KW - Glass Support KW - Borosilicate Glass KW - Monolith KW - Sintered Material KW - Additive Manufacturing KW - Column holder KW - Construction KW - Open Science KW - Citizen Science KW - Protein A KW - Regeneration KW - High-Speed Separations KW - Robustness PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527581 DO - https://doi.org/10.3390/separations8050056 SN - 2297-8739 VL - 8 IS - 5 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-52758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Horf, M. A1 - Gebbers, R. A1 - Vogel, S. A1 - Ostermann, Markus A1 - Piepel, M.-F. A1 - Olfs, H.-W. T1 - Determination of Nutrients in Liquid Manures and Biogas Digestates by Portable Energy-Dispersive X-ray Fluorescence Spectrometry JF - Sensors N2 - Knowing the exact nutrient composition of organic fertilizers is a prerequisite for their appropriate application to improve yield and to avoid environmental pollution by over-fertilization. Traditional standard chemical analysis is cost and time-consuming and thus it is unsuitable for a rapid analysis before manure application. As a possible alternative, a handheld X-ray fluorescence (XRF) spectrometer was tested to enable a fast, simultaneous, and on-site analysis of several elements. A set of 62 liquid pig and cattle manures as well as biogas digestates were collected, intensively homogenized and analysed for the macro plant nutrients phosphorus, potassium, magnesium, calcium, and sulphur as well as the micro nutrients manganese, iron, copper, and zinc using the standard lab procedure. The effect of four different sample preparation steps (original, dried, filtered, and dried filter residues) on XRF measurement accuracy was examined. Therefore, XRF results were correlated with values of the reference analysis. The best R2 s for each element ranged from 0.64 to 0.92. Comparing the four preparation steps, XRF results for dried samples showed good correlations (0.64 and 0.86) for all elements. XRF measurements using dried filter residues showed also good correlations with R2 s between 0.65 and 0.91 except for P, Mg, and Ca. In contrast, correlation Analysis for liquid samples (original and filtered) resulted in lower R2 s from 0.02 to 0.68, except for K (0.83 and 0.87, respectively). Based on these results, it can be concluded that handheld XRF is a promising measuring system for element analysis in manures and digestates. KW - XRF KW - Animal slurry KW - Fertilizer KW - Soil KW - Precision farming PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527622 DO - https://doi.org/10.3390/s21113892 VL - 21 IS - 11 SP - 3892 PB - MDPI CY - Basel, Switzerland AN - OPUS4-52762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schoknecht, Ute A1 - Mathies, Helena A1 - Lisec, Jan T1 - Leaching and transformation of film preservatives in paints induced by combined exposure to ultraviolet radiation and water contact under controlled laboratory conditions JF - Water N2 - Stormwater from urban areas can transport biocidally active substances and related transformation products from buildings into the environment. The occurrence of these substances in urban runoff depends on the availability of water, and on ultraviolet radiation exposure that causes photolytic reactions. In a systematic laboratory study, painted test specimens were exposed to either ultraviolet radiation, water contact, or a combination of both. Leaching of the biocidally active substances carbendazim, diuron, octylisothiazolinone, terbutryn, and selected transformation products of terbutryn and diuron were observed under various exposure conditions. Remaining concentrations of these substances in the paint were quantified. It was demonstrated that the distribution of active substances and transformation products in eluates and in the coatings themselves differs with exposure conditions. Strategies for environmental monitoring of biocide emissions need to consider the most relevant transformation products. However, environmental concentrations of biocidally active substances and transformation products depend on earlier exposure conditions. As a consequence, monitoring data cannot describe emission processes and predict expected leaching of biocidally active substances from buildings if the data are collected only occasionally. KW - Substance release KW - Construction products KW - Biocides KW - Transformation KW - UV radiation KW - Water contact PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-532114 DO - https://doi.org/10.3390/w13172390 SN - 2073-4441 VL - 13 IS - 17 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-53211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Munir, R. A1 - Lisec, Jan A1 - Jaeger, Carsten A1 - Zaidi, N. T1 - Abundance, fatty acid composition and saturation index of neutral lipids in colorectal cancer cell lines JF - The Journal of the Polish Biochemical Society and of the Polish Academy of Sciences N2 - Lipid droplets, the dynamic organelles that store Triglycerides (TG) and cholesterol esters (CE), are highly accumulated in colon cancer cells. This work studies the TG and CE subspecies profile in colon carcinoma cell lines, SW480 derived from primary tumor, and SW620 derived from a metastasis of the same tumor. It was previously reported that the total TG and CE content is dramatically higher in SW620 cells; however, TG and CE subspecies profile has not been investigated in detail. The work presented here confirms that the total TG and CE Content is significantly higher in the SW620 cells. Moreover, the fatty acid (FA) composition of TG is significantly altered in the SW620 cells, with significant decrease in the abundance of saturated triglycerides. This resulted in a significantly decreased TG saturation index in the SW620 cells. The saturation index of CE was also significantly decreased in the SW620 cells. KW - Mass Spectroscopy KW - Metabolomics KW - Cancer PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533504 DO - https://doi.org/10.18388/abp.2020_5465 VL - 68 IS - 1 SP - 1 EP - 4 PB - ABP Acta Biochimica Polonica AN - OPUS4-53350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -