TY - JOUR A1 - Rockel, Daniel A1 - Sanchez Olivares, G. A1 - Schartel, Bernhard T1 - Improving the Flame Retardancy of Aluminium Trihydroxide in Thermoplastic Starch Biocomposites Using Waste Fibers and Silicon-Based Synergists N2 - The synergistic behavior of different silicon compounds is investigated in flame retardant biocomposites with aluminum trihydroxide (ATH) as the main flame retardant. The paper shows a new approach towards sustainable biocomposites through the implementation of thermoplastic starch (TPS), leather fibers from industrial waste streams, and non-hazardous flame retardants and synergists. In these multicomponent systems, the different components address different modes of action in the fire scenario. When ATH is partially substituted by glass frits or layered silicates, fire performance is enhanced without changing the total amount of filler in the polymer. In a biocomposite with 25 phr of fiber and 90 phr of ATH, substituting 5 phr of ATH for layered silicates increased the LOI from 31.5 vol % to 34.8 vol %, decreased the peak of heat release by 20%, and increased the UL 94 rating from V-1 to V-0. KW - Biocomposites KW - Sustainability KW - Waste streams KW - Flame retardancy KW - Synergism KW - Modes of action PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605711 DO - https://doi.org/10.1021/acssusresmgt.4c00053 SN - 2837-1445 VL - 1 IS - 6 SP - 1131 EP - 1145 PB - ACS AN - OPUS4-60571 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sunder, S. A1 - Jauregui Rozo, Maria A1 - Inasu, S. A1 - Schartel, Bernhard A1 - Ruckdäschel, H. T1 - A systematic investigation of the transfer of polyphosphate/inorganic silicate flame retardants from epoxy resins to layered glass fiber-reinforced composites and their post-furnace flexural properties N2 - The systematic transfer of solvent-free, additive flame retardant (FR) formulations from epoxy resins to glass fiber-reinforced epoxy composites (GFRECs) through prepregs is difficult. Additionally, obtaining data on their post-fire mechanics is often challenging. Utilizing melamine polyphosphate (MPP), ammonium polyphosphate (APP), and silane-coated ammonium polyphosphate (SiAPP) FRs with low-melting inorganic silicates (InSi) in an 8:2 proportion and 10% loading by weight in a diglycidyl ether of bisphenol A (DGEBA) resin, a systematic investigation of the processing properties, room-temperature mechanics, and temperature-based mechanics of the systems was performed. The resin was cured with a dicyandiamide hardener (DICY) and a urone accelerator. The results revealed no substantial impact of these FRs at the current loading on the resin's glass transition temperature or processability. However, the fire residues from cone calorimetry tests of the composites containing FRs were found to be only 15-20% of the thickness of the resins, implying a suppression of intumescence upon transfer. At room temperature, the decrease in the flexural modulus for the composites containing FRs was negligible. Exposure of the composites in a furnace at 400°C as a preliminary study before ignition tests was shown to cause significant flexural moduli reductions after 2.5 min of exposure and complete delamination after 3 min making further testing unviable. This study emphasizes the need for future research on recovering modes of action upon transfer of FR formulations from resins to composites. Based on the challenges outlined in this investigation, sample adaptation methods for post-fire analysis will be developed in a future study. KW - DGEBA KW - Prepregs KW - Glass fiber-reinforced composites KW - Post-fire testing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605239 DO - https://doi.org/10.1002/pc.28416 SN - 1548-0569 SN - 0272-8397 VL - 45 IS - 10 SP - 9389 EP - 9406 PB - Wiley AN - OPUS4-60523 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tabaka, Weronika A1 - Meinel, Dietmar A1 - Schartel, Bernhard T1 - Sacrifice Few to Save Many: Fire Protective Interlayers in Carbon- Fiber-Reinforced Laminates N2 - The fire protection of carbon-fiber-reinforced polymer (CFRP) laminates often relies on flame-retardant coatings, but in some applications, their efficacy may diminish upon direct fire exposure due to rapid pyrolysis. This study introduces an innovative approach by integrating protective interlayers within the laminate structure to enhance the fire resistance. Various materials, including ceramic composite WHIPOX, titanium foil, poly(etherimide) (PEI) foil, basalt fibers, rubber mat, and hemp fibers, were selected as protective interlayers. These interlayers were strategically placed within the laminate layout to form a sacrificial barrier, safeguarding the integrity of the composite. Bench-scale fire resistance tests were conducted, where fire (180 kW/m2) was applied directly to the one side of the specimen by a burner while a compressive load was applied at the same time. Results indicate significant prolongation of time to failure for CFRP laminates with protective interlayers, which is up to 10 times longer. This innovative approach represents a potential advance in fire protection strategies for CFRP laminates, offering improved resilience against fire-induced structural failure. KW - Composites in fire KW - Fire resistance KW - Fire retardant interlayers KW - Laminate design KW - Carbon fibre reinforced PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601943 DO - https://doi.org/10.1021/acsomega.4c01408 SN - 2470-1343 VL - 9 IS - 22 SP - 23703 EP - 23712 PB - ACS AN - OPUS4-60194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mieller, Björn A1 - Valavi, Masood A1 - Caldeira Rêgo, Celso Ricardo T1 - An Automatized Simulation Workflow for Powder Pressing Simulations Using SimStack N2 - Automated computational workflows are a powerful concept that can improve the usability and reproducibility of simulation and data processing approaches. Although used very successfully in bioinformatics, workflow environments in materials science are currently commonly applied in the field of atomistic simulations. This work showcases the integration of a discrete element method (DEM) simulation of powder pressing in the convenient SimStack workflow environment. For this purpose, a Workflow active Node (WaNo) was developed to generate input scripts for the DEM solver using LIGGGHTS Open Source Discrete Element Method Particle Simulation code. Combining different WaNos in the SimStack framework makes it possible to build workflows and loop over different simulation or evaluation conditions. The functionality of the workflows is explained, and the added user value is discussed. The procedure presented here is an example and template for many other simulation methods and issues in materials science and engineering. KW - Simulation workflow KW - Discrete element method PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604791 DO - https://doi.org/10.1002/adem.202400872 SP - 1 EP - 7 PB - Wiley AN - OPUS4-60479 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Suárez Ocano, Patricia A1 - Manzoni, Anna Maria A1 - Lopez-Galilea, I. A1 - Ruttert, B. A1 - Laplanche, G. A1 - Agudo Jácome, Leonardo T1 - Influence of cooling rate on the microstructure and room temperature mechanical properties in the refractory AlMo0.5NbTa0.5TiZr superalloy N2 - Refractory chemically complex alloys with bcc-based microstructures show great potential for high-temperature applications but most of them exhibit limited room-temperature ductility, which remains a challenge. One such example is the AlMo0.5NbTa0.5TiZr alloy, mainly consisting of a nano-scaled structure with an ordered B2 matrix and a high-volume fraction of aligned cuboidal and coherently embedded A2 precipitates. This work aims to investigate how the cooling rate after hot isostatic pressing of the AlMo0.5NbTa0.5TiZr alloy affects its microstructure and its resulting hardness and fracture toughness at room temperature. A slow cooling rate of 5 °C/min leads to a coarse microstructure consisting of aligned slabs (mean A2 precipitate ≈ 25 nm) with a nanohardness of about 8 GPa. In contrast, after the fastest cooling rate (30 °C/min), the A2 precipitates become more cubic with an edge length of ≈ 16 nm, resulting in an increase in nanohardness by 10 %. The fracture toughness is roughly independent of the cooling rate and its mean value (≈ 4.2 MPa∙m1/2) resembles that of some B2 intermetallics and other A2/B2 alloys. As the lattice misfit between the A2 and B2 phases is known to play a key role in microstructure formation and evolution, its temperature dependence between 20 and 900 °C was investigated. These findings offer insights into the evolution of the microstructure and room-temperature mechanical properties of the AlMo0.5NbTa0.5TiZr alloy, which could help the development of advanced chemically complex alloys. KW - High entropy alloy KW - Lattice misfit KW - Scanning electron microscopy KW - Transmission electron microscopy KW - X-ray diffraction KW - Refractory alloy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572809 DO - https://doi.org/10.1016/j.jallcom.2023.169871 SN - 0925-8388 VL - 949 SP - 169871 PB - Elsevier B.V. AN - OPUS4-57280 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lenz, J. U. A1 - Pospiech, D. A1 - Komber, H. A1 - Korwitz, A. A1 - Kobsch, O. A1 - Paven, M. A1 - Albach, R. W. A1 - Günther, Martin A1 - Schartel, Bernhard T1 - Effective halogen-free flame-retardant additives for crosslinked rigid polyisocyanurate foams: Comparison of chemical structures N2 - The impact of phosphorus-containing flame retardants (FR) on rigid polyisocyanurate (PIR) foams is studied by systematic variation of the chemical structure of the FR, including non-NCO-reactive and NCO-reactive dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide (BPPO)- and 9,10 dihydro-9-oxa-10 phosphaphenanthrene-10-oxide (DOPO)-containing compounds, among them a number of compounds not reported so far. These PIR foams are compared with PIR foams without FR and with standard FRs with respect to foam properties, thermal decomposition, and fire behavior. Although BPPO and DOPO differ by just one oxygen atom, the impact on the FR properties is very significant: when the FR is a filler or a dangling (dead) end in the PIR polymer network, DOPO is more effective than BPPO. When the FR is a subunit of a diol and it is fully incorporated in the PIR network, BPPO delivers superior results. KW - Flame retardant; KW - Dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide; BPPO KW - 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide; DOPO KW - Polyisocyanurate; PIR KW - Rigid foam KW - Cone calorimeter KW - Pudovik reaction PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567712 DO - https://doi.org/10.3390/ma16010172 SN - 1996-1944 VL - 16 IS - 1 SP - 1 EP - 22 PB - MDPI CY - Basel AN - OPUS4-56771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Battig, Alexander A1 - Sanchez-Olivares, G. A1 - Rockel, Daniel A1 - Maldonado-Santoyo, M. A1 - Schartel, Bernhard T1 - Waste not, want not: The use of leather waste in flame retarded EVA N2 - Leather is among the most ancient, widely used materials worldwide. Industrial-scale leather production produces large quantities of organic waste attained during shaving and buffing steps during processing. In this study, leather wastes (LW) are used as fillers in flame retarded polymer composites. LW is investigated as a multifunctional bio-filler that enhances the fire performance of flame retarded poly(ethylene–vinyl acetate) (EVA) containing phosphorus flame retardants (P-FRs) ammonium polyphosphate (APP) or a melamine-encapsulated APP (eAPP). Using LW from tanneries as adjuvants to enhance P-FRs in EVA reduces industrial wastes that otherwise require costly waste management solutions. Materials are characterized multi-methodically via mechanical tests, electron microscopy, rheology, thermogravimetric analysis, evolved gas analysis, and condensed phase FTIR, also reaction-to-small-flames and cone calorimeter tests. EVA containing 10 wt-% LW and 20 wt-% P-FRs achieve 20% reductions in fire loads versus EVA, and up to 10% reduction in effective heats of combustion versus EVA with equal (30 wt-%) P-FR loadings. Enhanced char stabilization of EVA composites with LW and P-FRs lowered peaks of heat release rates up to 53% compared to EVA, and up to 40% compared to equal P-FRs loadings. Synergisms between LW and P-FRs in EVA are quantified. A chemical decomposition mechanism is proposed. KW - Leather waste KW - Tannery industry KW - EVA KW - Fire protection KW - Flame retardancy KW - Charring PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-532977 DO - https://doi.org/10.1016/j.matdes.2021.110100 SN - 0264-1275 VL - 210 SP - 1 EP - 16 PB - Elsevier CY - Amsterdam AN - OPUS4-53297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strommer, Bettina A1 - Schulze, Dietmar A1 - Schartel, Bernhard A1 - Böhning, Martin T1 - Networking Skills: The Effect of Graphene on the Crosslinking of Natural Rubber Nanocomposites with Sulfur and Peroxide Systems N2 - Tailored crosslinking in elastomers is crucial for their technical applications. The incorporation of nanoparticles with high surface-to-volume ratios not only leads to the formation of physical networks and influences the ultimate performance of nanocomposites, but it also affects the chemical crosslinking reactions. The influence of few-layer graphene (FLG) on the crosslinking behavior of natural rubber is investigated. Four different curing systems, two sulfur-based with different accelerator-to-sulfur ratios, and two peroxide-based with different peroxide concentrations, are combined with different FLG contents. Using differential scanning calorimetry (DSC), vulcametry (MDR) and swelling measurements, the results show an accelerating effect of FLG on the kinetics of the sulfur-based curing systems, with an exothermic reaction peak in DSC shifted to lower temperatures and lower scorch and curing times in the MDR. While a higher accelerator-to-sulfur ratio in combination with FLG leads to reduced crosslinking densities, the peroxide crosslinkers are hardly affected by the presence of FLG. The good agreement of crosslink densities obtained from the swelling behavior confirms the suitability of vulcameter measurements for monitoring the complex vulcanization process of such nanocomposite systems in a simple and efficient way. The reinforcing effect of FLG shows the highest relative improvements in weakly crosslinked nanocomposites. KW - Nanocomposite KW - Elastomers KW - Graphene KW - Crosslinking KW - Network KW - Rubber KW - Vulcanization PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560409 DO - https://doi.org/10.3390/polym14204363 VL - 14 IS - 20 PB - MDPI AN - OPUS4-56040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sanchez Olivares, G. A1 - Battig, Alexander A1 - Goller, Sebastian M. A1 - Rockel, Daniel A1 - Ramirez Gonzáles, V. A1 - Schartel, Bernhard T1 - Imparting Fire Retardancy and Smoke Suppression to Leather during Tanning Processes N2 - Leather is considered a luxury good when used in seating and upholstery. To improve safety, flame retardancy in leather is usually achieved through various finishing processes such as spray or roller coating. These treatments require processing steps that cost time and are laborintensive. One avenue to achieving flame retardancy in leather is to add flame retardants during the tanning process. However, the influence on flame retardancy exerted by specific intumescent additives specifically added during leather tanning has yet to be investigated. This work explores the roles played by intumescent additive compounds in flame retarding leather when they are added during tanning instead of applied as a coating. Via a systematic investigation of various compound mixtures, the flame retardant effects in the condensed and the gas phases are elucidated. The results show a strong impact of melamine in the gas phase and of polyphosphates in the condensed phase. Their impact was quantified in fire and smoke analysis, showing a 14% reduction in the peak of heat release rate, strongly reduced burning lengths, and a 20% reduction in total smoke release compared to nontreated leather. These results illuminate the key role played by specific compounds in the flame retardancy of leather, particularly when they are added specifically during the tanning process instead of being applied as a coating. This method has great potential to reduce processing steps, lower costs, and improve material safety. KW - Leather KW - Fire protection KW - Intumescent additives KW - Smoke suppression PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564777 DO - https://doi.org/10.1021/acsomega.2c05633 SN - 2470-1343 VL - 7 IS - 48 SP - 44156 EP - 44169 PB - ACS AN - OPUS4-56477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strommer, Bettina A1 - Schulze, Dietmar A1 - Schartel, Bernhard A1 - Böhning, Martin T1 - The quantification of anisotropy in graphene/natural rubber nanocomposites: Evaluation of the aspect ratio, concentration, and crosslinking N2 - In the processing of nanocomposites, high shear stresses at elevated tempera-tures orient two-dimensional nanoparticles like graphene. This orientationleads to anisotropic mechanical, thermal or barrier properties of the nanocom-posite. This anisotropy is addressed in this study by comparing graphene (few-layer graphene, FLG) with a nanoscaled carbon black (nCB) at a filler contentof 3 phr, by varying the vulcanization, and by comparing different FLG con-tents. Transmission electron microscopy gives insight into the qualitative ori-entation in the nanocomposite with FLG or nCB. The storage moduli paralleland normal to the orientation reveal the direction dependency of reinforce-ment through dynamic mechanical analysis (DMA). Dimensional swellingmeasurements show a restriction of the expansion parallel to the FLG orienta-tion, and an increased expansion normal to the orientation. The vulcanizationsystem and crosslinking determine the respective level of property values, andhigher crosslinking densities increase the anisotropy in DMA resulting invalues of up to 2.9 for the quantified anisotropy factor. With increasing FLGcontent, the anisotropy increases. A comparison of the results reveals swellingmeasurements as the most suitable method for the determination of anisot-ropy. Compared to recent literature, the presented processing induces higheranisotropy, leading to higher reinforcing effects in the direction of orientation KW - Natural rubber KW - Graphene KW - Nanocomposite KW - Mechanical properties KW - Swelling PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571522 DO - https://doi.org/10.1002/app.53753 SN - 1097-4628 VL - 140 IS - 16 SP - 1 EP - 15 PB - Wiley online library CY - Hoboken, New Jersey (USA) AN - OPUS4-57152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Turski Silva Diniz, Analice A1 - Marti, J. M. A1 - Schartel, Bernhard T1 - High Heat Resistance Can Be Deceiving: Dripping Behavior of Polyamide 4.6 in Fire N2 - Polyamide 4.6 (PA46) is a high-heat-resistant polymer, but it has no dripping resistance under fire. Three commercial grades of PA46 are investigated under UL 94 vertical fire test conditions. Their performances are discussed based on the materials’ structural, thermal, and rheological properties. PA46 presents flaming drops, whereas dripping is prevented in the flame-retarded PA46. Friction-modified PA46 has increased flaming dripping. Temperature profiles of the specimens under fire and the temperature of the drops are measured by thermocouples. A UL 94 vertical test configuration consisting of two flame applications is designed to assess the quantitative dripping behavior of the set of materials by the particle finite element method (PFEM). Polymer properties (activation energy and Arrhenius coefficient of decomposition, char yield, density, effective heat of combustion, heat of decomposition, specific heat capacity, and thermal conductivity) in addition to rheological responses in high temperatures are estimated and measured as input parameters for the simulations. The dripping behavior obtained by simulated materials corresponds with the experimental results in terms of time and drop size. A consistent picture of the interplay of the different phenomena controlling dripping under fire appears to deliver a better understanding of the role of different materials’ properties KW - Dripping KW - UL 94 KW - PFEM KW - High heat resistance KW - Polyamide 4.6 KW - Flammability PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586015 DO - https://doi.org/10.1002/mame.202300091 SN - 1439-2054 SN - 1438-7492 VL - 308 IS - 10 SP - 1 EP - 11 PB - Wiley-VCH AN - OPUS4-58601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yesilcicek, Yasemin A1 - Haas, S. A1 - Suárez Ocano, Patricia A1 - Zaiser, E. A1 - Hesse, René A1 - Többens, D. M. A1 - Glatzel, U. A1 - Manzoni, Anna Maria T1 - Controlling Lattice Misfit and Creep Rate Through the γ' Cube Shapes in the Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy with Hf and W Additions N2 - Trace elements play an important role in the fine-tuning of complex material properties. This study focuses on the correlation of microstructure, lattice misfit and creep properties. The compositionally complex alloy Al10Co25Cr8Fe15Ni36Ti6 (in at. %) was tuned with high melting trace elements Hf and W. The microstructure consists of a γ matrix, γ' precipitates and the Heusler phase and it is accompanied by good mechanical properties for high temperature applications. The addition of 0.5 at.% Hf to the Al10Co25Cr8Fe15Ni36Ti6 alloy resulted in more sharp-edged cubic γ′ precipitates and an increase in the Heusler phase amount. The addition of 1 at.% W led to more rounded γ′ precipitates and the dissolution of the Heusler phase. The shapes of the γ' precipitates of the alloys Al9.25Co25Cr8Fe15Ni36Ti6Hf0.25W0.5 and Al9.25Co25Cr8Fe15Ni36Ti6Hf0.5W0.25, that are the alloys of interest in this paper, create a transition from the well-rounded precipitates in the alloy with 1% W containing alloy to the sharp angular particles in the alloy with 0.5% Hf. While the lattice misfit has a direct correlation to the γ' precipitates shape, the creep rate is also related to the amount of the Heusler phase. The lattice misfit increases with decreasing corner radius of the γ' precipitates. So does the creep rate, but it also increases with the amount of Heusler phase. The microstructures were investigated by SEM and TEM, the lattice misfit was calculated from the lattice parameters obtained by synchrotron radiation measurements. KW - High entropy alloy KW - Lattice misfit KW - Creep KW - Transmission electron microscopy KW - X-ray diffraction PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565655 DO - https://doi.org/10.1007/s44210-022-00009-1 SP - 1 EP - 9 PB - Springer AN - OPUS4-56565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Suárez Ocano, Patricia A1 - Agudo Jácome, Leonardo A1 - Lopez-Galilea, I. A1 - Darvishi Kamachali, Reza A1 - Fries, S. G. T1 - Data regarding the experimental findings compared with CALPHAD calculations of the AlMo0.5NbTa0.5TiZr refractory high entropy superalloy N2 - This contribution contains the raw data used to compare experimental results with thermodynamic calculations using the CALPHAD method, which is related to the research article “The AlMo0.5NbTa0.5TiZr refractory high entropy superalloy: experimental findings and comparison with calculations using the CALPHAD method” [1] , and therefore this article can be used as a basis for interpreting the data contained therein. The AlMo0.5NbTa0.5TiZr refractory superalloy was characterized in the cast and annealed condition (1400 °C for 24 h) in order to measure grain size and to identify and measure the size and area fraction of the phases present. The raw data of this article include X-ray diffraction (XRD) measurements, microstructural characterization by scanning and transmission electron microscopy (SEM and TEM), and elemental analysis by energy dispersive X-ray spectroscopy (EDX). XRD includes the determination of phases and the lattice parameters (A2, B2, and hexagonal structure). Microstructural analysis by scanning and transmission electron microscopy includes (1) identification of composition, size, and volume fraction of the present phases and (2) determination of grain size. Based on these experimental data, it is possible to identify similarities and discrepancies with the data calculated using the CALPHAD method for the alloy under study in Ref. [1] , which provides the basis for better and more efficient development of reliable databases. KW - Transmission electron microscopy KW - Scanning electron microscopy KW - Microstructural characterization KW - Refractory high entropy alloys PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568009 DO - https://doi.org/10.1016/j.dib.2022.108858 SN - 2352-3409 VL - 46 SP - 1 EP - 19 PB - Elsevier CY - Amsterdam AN - OPUS4-56800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fornacon-Wood, C. A1 - Stühler, M. R. A1 - Gallizioli, C. A1 - Manjunatha, B. R. A1 - Wachtendorf, Volker A1 - Schartel, Bernhard A1 - Plajer, A. J. T1 - Precise construction of weather-sensitive poly(ester-alt-thioesters) from phthalic thioanhydride and oxetane N2 - We report the selective ring opening copolymerisation (ROCOP) of oxetane and phthalic thioanhydride by a heterobimetallic Cr(III)K catalyst precisely yielding semi-crystalline alternating poly(esteralt- thioesters) which show improved degradability due to the thioester links in the polymer backbone. KW - Sulfur containing polymers KW - Durability KW - Weathering KW - Synthesis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-590762 DO - https://doi.org/10.1039/d3cc03315e SN - 1364-548X VL - 59 IS - 76 SP - 11353 EP - 11356 PB - RSC AN - OPUS4-59076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Battig, Alexander A1 - Abdou-Rahaman Fadul, Naïssa A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Schartel, Bernhard T1 - Multifunctional graphene nanofiller in flame retarded polybutadiene/chloroprene/carbon black composites N2 - To curtail flammability risks and improve material properties, flame retardants (FRs) and fillers are mixed into rubbers. High loadings of aluminum trihydroxide (ATH) and carbon black (CB) are the most used FRs and reinforcing additive, respectively, in rubbers. To reduce loading without losing mechanical properties, partial substitution of ATH as well as CB by low amounts of multilayer graphene (MLG) nanoparticles is investigated. The high aspect ratio MLG is made of ten graphene sheets. In polybutadiene/chloroprene (BR/CR) nanocomposites 3 phr MLG replaced 15 phr CB and/or 3 phr ATH. Material and mechanical properties as well as fire behavior of the nanocomposites are compared to BR/CR with 20 phr CB both with and without 50 phr ATH. MLG appears as a promising nanofiller to improve the functional properties: replacement of CB improved rheological, curing, and mechanical properties; substitution of ATH improved nanocomposite properties without affecting flame retardancy. KW - Nanocomposites KW - Rubber KW - Multilayer graphene KW - Carbon black KW - Polybutadiene/chloroprene KW - Graphene PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523468 DO - https://doi.org/10.1515/epoly-2021-0026 SN - 1618-7229 VL - 21 IS - 1 SP - 244 EP - 262 PB - De Gruyter AN - OPUS4-52346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Musl, O. A1 - Sulaeva, I. A1 - Sumerskii, I. A1 - Mahler, A.K. A1 - Rosenau, T. A1 - Falkenhagen, Jana A1 - Potthast, A. T1 - Mapping of the Hydrophobic Composition of Lignosulfonates N2 - Lignosulfonates are industrial biorefinery products that are characterized by significant variability and heterogeneity in their structural composition. Typically, they exhibit high dispersities in molar mass (molar mass distribution-MMD) and in functionalities (functionality-type distribution - FTD), which crucially affect their material usage. In terms of FTD, state-of-the-art Lignin analytics still rely mainly on the determination of functional group contents, which are statistical averages with limited explanatory power. In contrast, our online hydrophobic interaction chromatography−size-exclusion chromatography 2D-LC approach combines the determination of both MMD and FTD in a single measurement to provide a comprehensive picture of the characteristic composition of industrial lignosulfonates information hitherto inaccessible by state-of-the-art lignin analytics. In this way, the complex inter - relationships between these two important structural parameters can be studied in an unprecedented manner. In this study, we reveal the considerable differences in terms of hydrophobic composition and its dispersity present in a range of different industrial lignosulfonates - data desperately needed in tailoring and refining of lignosulfonate composition for material usage. KW - Lignosulfonates KW - Amphiphilicity KW - Hydrophobic interaction chromatography KW - Two-dimensional chromatography (2D-LC) KW - Charge-to-size-ratio PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538612 DO - https://doi.org/10.1021/acssuschemeng.1c06469 VL - 9 IS - 49 SP - 16786 EP - 16795 PB - ASC Publications AN - OPUS4-53861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Suárez Ocano, Patricia A1 - Fries, S. G. A1 - Lopez-Galilea, I. A1 - Darvishi Kamachali, Reza A1 - Roik, J. A1 - Agudo Jácome, Leonardo T1 - The AlMo0.5NbTa0.5TiZr refractory high entropy superalloy: Experimental findings and comparison with calculations using the CALPHAD method N2 - Detailed microstructural characterization of the AlMo0.5NbTa0.5TiZr refractory high entropy superalloy in the as-cast state is reported for first time and compared with the state annealed at 1400 oC for 24 h. The former shows a dendritic structure, with a mixture of A2/B2 phases < 20 nm in both the dendritic and interdendritic regions. A mostly amorphous phase, rich in Al and Zr, is found within the interdendritic region. The annealed state reproduced the combination of A2/B2/Al-Zr-rich phases reported previously. Calculations from two relevant ThermoCalc databases were compared with the experimental results. Equilibrium calculations were compared with results for the annealed alloy, whereas solidification paths calculated using Scheil-Gulliver model were used for comparison with the as-cast alloy. A previously hypothesized spinodal decomposition during cooling as the mechanism responsible for the patterned A2/B2 microstructure is confirmed via the CALPHAD calculations, pointing to its use as an efficient design tool for such alloys. Finally, the comparison between the experimental and computational findings allowed better understanding the solidification path and equilibrium stability of this alloy, giving a base to make better decisions on the field of new refractory superalloy design. KW - CALPHAD database analysis KW - Refractory superalloys KW - Chemically complex alloy KW - Characterization KW - Microstructure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545906 DO - https://doi.org/10.1016/j.matdes.2022.110593 SN - 1873-4197 VL - 217 SP - 1 EP - 13 PB - Elsevier CY - Amsterdam AN - OPUS4-54590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Battig, Alexander A1 - Müller, Patrick A1 - Bertin, Annabelle A1 - Schartel, Bernhard T1 - Hyperbranched Rigid Aromatic Phosphorus-Containing Flame Retardants for Epoxy Resins N2 - A rigid aromatic phosphorus-containing hyperbranched flame retardant structure is synthesized from 10-(2,5 dihydroxyphenyl)-10H-9-oxa- 10-phosphaphenanthrene-10-oxide (DOPO-HQ), tris(4-hydroxyphenyl)phosphine oxide (THPPO), and 1,4-terephthaloyl chloride (TPC). The resulting poly-(DOPO-HQ/THPPO-terephthalate) (PDTT) is implemented as a flame retardant into an epoxy resin (EP) at a 10 wt% loading. The effects on EP are compared with those of the monomer DOPO-HQ and triphenylphosphine oxide (OPPh3) as low molar mass flame retardants. The glass transition temperature, thermal decomposition, flammability (reaction to small flame), and burning behavior of the thermosets are investigated using differential scanning calorimetry, thermogravimetric analysis, pyrolysis combustion flow calorimetry, UL 94-burning chamber testing, and cone calorimeter measurements. Although P-contents are low at only 0.6 wt%, the study aims not at attaining V-0, but at presenting a proof of principle: Epoxy resinswith PDTT show promising fire performance, exhibiting a 25% reduction in total heat evolved (THE), a 30% reduction in peak heat release rate (PHRR) due to flame inhibition (21% reduction in effective heat of combustion (EHC)), and an increase in Tg at the same time. This study indicates that rigid aromatic hyperbranched polymeric structures offer a promising route toward multifunctional flame retardancy. KW - Hyperbranched KW - Aromatic KW - Phosphorus KW - Phosphine oxide KW - DOPO KW - Flame retardant KW - Xpoxy resin KW - Rigid PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525910 DO - https://doi.org/10.1002/mame.202000731 SN - 1439-2054 VL - 306 IS - 4 SP - 731 PB - Wiley AN - OPUS4-52591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dudziak, Mateusz A1 - Topolniak, Ievgeniia A1 - Silbernagl, Dorothee A1 - Altmann, Korinna A1 - Sturm, Heinz T1 - Long-time behavior of surface properties of microstructures fabricated by multiphoton lithography N2 - The multiphoton lithography (MPL) technique represents the future of 3D microprinting, enabling the production of complex microscale objects with high precision. Although the MPL fabrication parameters are widely evaluated and discussed, not much attention has been given to the microscopic properties of 3D objects with respect to their surface properties and time-dependent stability. These properties are of crucial importance when it comes to the safe and durable use of these structures in biomedical applications. In this work, we investigate the surface properties of the MPL-produced SZ2080 polymeric microstructures with regard to the physical aging processes during the post-production stage. The influence of aging on the polymeric microstructures was investigated by means of Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS). As a result, a time-dependent change in Young’s Modulus, plastic deformation, and adhesion and their correlation to the development in chemical composition of the surface of MPL-microstructures are evaluated. The results presented here are valuable for the application of MPL-fabricated 3D objects in general, but especially in medical technology as they give detailed information of the physical and chemical time-dependent dynamic behavior of MPL-printed surfaces and thus their suitability and performance in biological systems. KW - Multiphoton lithography KW - Additive manufacturing KW - Microfabrication KW - SZ2080 negative photo-resist KW - Young´s modulus KW - Aging KW - Surface properties KW - X-ray photoelectron spectroscopy KW - Atomic force microscopy KW - Force-distance-curve PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542166 DO - https://doi.org/10.3390/nano11123285 SN - 2079-4991 VL - 11 IS - 12 SP - 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-54216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sommer, Konstantin A1 - Agudo Jácome, Leonardo A1 - Hesse, René A1 - Bettge, Dirk T1 - Revealing the nature of melt pool boundaries in additively manufactured stainless steel by nano-sized modulation N2 - In the current study, the 3D nature of the melt pool boundaries (MPBs) in a 316 L austenitic steel additively manufactured by laser-based powder bed fusion (L-PBF) is investigated. The change of the cell growth direction and its relationship to the MPBs is investigated by transmission electron microscopy. A hitherto unreported modulated substructure with a periodicity of 21 nm is further discovered within the cell cores of the cellular substructure, which results from a partial transformation of the austenite, which is induced by a Ga+ focused ion beam. While the cell cores show the modulated substructure, cell boundaries do not. The diffraction pattern of the modulated substructure is exploited to show a thickness ≥200 nm for the MPB. At MPBs, the cell walls are suppressed, leading to continuously connecting cell cores across the MPB. This continuous MPB is described either as overlapping regions of cells of different growing directions when a new melt pool solidifies or as a narrow planar growth preceding the new melt pool. KW - Additive manufacturing KW - Austenitic steel 316L KW - Melt pool boundary KW - Microstructural characterization KW - Transmission electron microscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547295 DO - https://doi.org/10.1002/adem.202101699 SN - 1527-2648 VL - 24 IS - 6 SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chan, Yin Yam A1 - Ma, C. A1 - Zhou, F. A1 - Hu, Y. A1 - Schartel, Bernhard T1 - A liquid phosphorous flame retardant combined with expandable graphite or melamine in flexible polyurethane foam N2 - A systematic series of flexible polyurethane foams (FPUF) with different concentrations of flame retardants, bis([dimethoxyphosphoryl]methyl) phenyl phosphate (BDMPP), and melamine (MA) or expandable graphite (EG) was prepared. The mechanical properties of the FPUFs were evaluated by a universal testing machine. The pyrolysis behaviors and the evolved gas analysis were done by thermogravimetric analysis (TGA) and TGA coupled with Fourier-transform infrared (TG-FTIR), respectively. The fire behaviors were studied by limiting oxygen index (LOI), UL 94 test for horizontal burning of cellular materials (UL 94 HBF), and cone calorimeter measurement. Scanning electronic microscopy (SEM) was used to examine the cellular structure's morphology and the postfire char residue of the FPUFs. LOI and UL 94 HBF tests of all the flame retarded samples show improved flame retardancy. BDMPP plays an essential role in the gas phase because it significantly reduces the effective heat of combustion (EHC). This study highlights the synergistic effect caused by the combination of BDMPP and EG. The measured char yield from TGA is greater than the sum of individual effects. No dripping phenomenon occurs during burning for FPUF-BDMPP-EGs, as demonstrated by the result of the UL 94 HBF test. EG performs excellently on smoke suppression during burning, as evident in the result of the cone calorimeter test. MA reduces the peak heat release rate (pHRR) significantly. The synergistic effect of the combination of BDMPP and EG as well as MA offers an approach to enhance flame retardancy and smoke suppression. KW - Bis([dimethoxyphosphoryl]methyl) phenyl phosphate KW - Expandable graphite KW - Flexible polyurethane foam KW - melamine KW - phosphorous flame retardant PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-541840 DO - https://doi.org/10.1002/pat.5519 SN - 1099-1581 VL - 33 IS - 1 SP - 326 EP - 339 PB - Wiley AN - OPUS4-54184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manzoni, Anna Maria A1 - Mohring, Wencke A1 - Hesse, René A1 - Agudo Jácome, Leonardo A1 - Stephan-Scherb, C. T1 - Early material damage in equimolar CrMnFeCoNi in mixed oxidizing/sulfiding hot gas atmosphere N2 - The challenges to use more varied fuels at medium and high temperatures above 500 °C need to be addressed by tuning the materials toward a better resistance against increased corrosion. As a first step the corrosion processes need to be better understood, especially in the case of the unavoidable and highly corrosive sulfur-based gases. Herein, oxidation/sulfidation of an equimolar CrMnFeCoNi high-entropy alloy is studied at an early stage after hot gas exposure at 600 °C for 6 h in 0.5% SO2 and 99.5% Ar. The oxidation process is studied by means of X-ray diffraction, scanning and transmission electron microscopy, and supported by thermodynamic calculations. It is found that the sulfur does not enter the bulk material but interacts mainly with the fast-diffusing manganese at grain boundary triple junctions at the alloy surface. Submicrometer scaled Cr–S–O-rich phases close to the grain boundaries complete the sulfur-based phase formation. The grains are covered in different Fe-, Mn-, and Cr-based spinels and other oxides. KW - High entropy alloy KW - Sulfiding KW - Corrosion KW - Transmission electron microscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543495 DO - https://doi.org/10.1002/adem.202101573 SN - 1527-2648 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54349 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Falkenhagen, Jana T1 - The role of transesterifications in reversible polycondensations and a reinvestigation of the Jacobson-Beckmann-Stockmayer experiments N2 - The polycondensations of adipic acid and 1,10-decanediol catalyzed by toluene sulfonic acid (TSA) were reinvestigated using MALDI TOF mass spectrometry and NMR spectroscopy. Unexpected reactions of TSA were detected along with incomplete conversion of the monomers. Furthermore, transesterification reactions of end-capped poly(1,10-decanediol adipate) and end-capped poly(ε-caprolactone) catalyzed by TSA were studied. Despite the quite different (ionic) reaction mechanisms, it was found that for polycondensations performed in bulk intermolecular transesterification is more efficient than the intramolecular “back-biting”; this scenario was not considered in the Jacobson–Stockmayer theory of reversible polycondensations. These results also confirm that the Jacobson–Stockmayer explanation of reversible polycondensations solely on the basis of ring chain equilibration is not only devoid of any experimental evidence, but also in contradiction to the results elaborated in this work. KW - Polylactide KW - MALDI-TOF MS KW - Polycondensation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543402 DO - https://doi.org/10.1039/d1py01679b SN - 1759-9962 SP - 1 EP - 9 PB - RSC Publ. CY - Cambridge AN - OPUS4-54340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geburtig, Anja A1 - Wachtendorf, Volker A1 - Falkenhagen, Jana T1 - Combined impact of UV radiation and nitric acid on high‐density polyethylene containers as a laboratory test N2 - In a laboratory test, transparent high‐density polyethylene (HDPE) jerrycans have been exposed to both UV radiation and 55 wt‐% nitric acid solution at (41 ± 2)°C, for up to 20 days. For comparison, UV radiant exposure (21 days) and nitric acid exposure (up to 6 weeks) were performed separately, at nearly equal temperatures. The damages are compared with FTIR spectroscopy in ATR and HT‐gel permeation chromatography(GPC) on a molecular level and with hydraulic internal pressure testing as a component test. For the used jerrycans, relevant oxidation can only be found after the combined exposure. This is caused by the decomposition of nitric acid into nitrous gases by UV radiation, which is also observed at lower concentrations (28 wt‐%). After 6 days of laboratory exposure, this is rated as critical, which corresponds to about 1/10 year in Central Europe, according to the UV radiant exposure. The gradual increase in oxidative damage shows the reproducibility of the test. KW - Molecular mass distribution KW - High-density polyethylene KW - Nitric acid KW - UV radiation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550141 DO - https://doi.org/10.1002/pts.2673 SN - 0894-3214 SP - 1 EP - 7 PB - John Wiley & Sons Ltd AN - OPUS4-55014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dudziak, Mateusz A1 - Bhatia, Riya A1 - Dey, R. A1 - Falkenhagen, Jana A1 - Ullrich, M. S. A1 - Thomsen, C. A1 - Schartel, Bernhard T1 - Wastewater phosphorus enriched algae as a sustainable flame retardant in polylactide N2 - Revolutionizing our polymer industry for adaption to a sustainable carbon circular economy has become one of today’s most demanding challenges. Exploiting renewable resources to replace fossil-fuel—based plastics with biopolymers such as poly(lactic acid) (PLA) is inevitable while using waste streams as a raw material resource at least is promising. When it comes to using PLA as technical polymer, its high flammability must be addressed by flame retardants compatible with the thermoplastic processing of PLA and its compostability. This study proposes microalgae enriched with phosphorus from wastewater (P-Algae) as an elegant way towards a kind of sustainable organophosphorus flame retardant. The concept is demonstrated by investigating the processing, pyrolysis, flammability, and fire behavior of PLA/P-Algae, while varying the P-Algae content and comparing P-Algae with four alternative bio-fillers (phosphorylated lignin, biochar, thermally treated sewage sludge, and metal phytate) with different P-contents as meaningful benchmarks. KW - PLA KW - Flame Retardancy KW - Phosphorylated Algae KW - Wastewater flame retardants KW - Zink phytate KW - Phosphorylated lignin KW - Thermally treated sludge PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604150 DO - https://doi.org/10.1016/j.polymdegradstab.2024.110885 SN - 1873-2321 SN - 0141-3910 VL - 227 SP - 1 EP - 11 PB - Elsevier Ltd. AN - OPUS4-60415 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fornacon-Wood, Christoph A1 - Stühler, Merlin R. A1 - Millanvois, Alexandre A1 - Steiner, Luca A1 - Weimann, Christiane A1 - Silbernagl, Dorothee A1 - Sturm, Heinz A1 - Paulus, Beate A1 - Plajer, Alex J. T1 - Fluoride recovery in degradable fluorinated polyesters N2 - We report a new class of degradable fluorinated polymers through the copolymerization of tetrafluorophthalic anhydride and propylene oxide or trifluoropropylene oxide which show up to 20 times quicker degradation than the non-fluorinated equivalents and allow for fluoride recovery. KW - Fluoropolymers KW - Recycling KW - PFAS KW - AFM force distance curves KW - AFM plastic deformation KW - AFM friction analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-606768 DO - https://doi.org/10.1039/d4cc02513j VL - 60 SP - 7479 EP - 7482 PB - Royal Society of Chemistry AN - OPUS4-60676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waniek, Tassilo A1 - Omar, Hassan A1 - Szymoniak, Paulina A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - The influence of water released from particles in epoxy‐based nanocomposites N2 - AbstractRecent studies have hypothesized that the reinforcing effects of boehmite nanoparticles (BNPs) in polymer nanocomposites (PNCs) are partly related to the particles themselves and partly to the water released from the BNP during curing. In this work, PNCs made from dried BNP (dBNP) with concentrations up to 15 wt% are investigated to differentiate particle and water related effects. The observed trend of the storage modulus in dynamic mechanical thermal analysis measurements was found to be independent of the drying procedure. Stiffness maps from intermodulation atomic force microscopy showed that dBNP leads to a stiffening of the interphase surrounding the particles compared with the unaffected epoxy matrix, while a softer interphase was reported for PNCs with as received BNP. A slight decrease in the glass transition temperature was observed by broadband dielectric spectroscopy related to a lowered crosslink density due to the particles. A significantly higher decrease was reported for PNCs with BNP, attributed to water influencing the curing process. In conclusion, the stiffening of PNC with BNP is related to the particles themselves, while the release of water causes the formation of a soft interphase in the vicinity of the particles and a significant decrease in crosslink density. KW - AFM stiffness of interface KW - Aluminium oxide hydroxide KW - Boehmit nanoparticle KW - Glass transition temperature KW - Broadband dielectric spectroscopy KW - Crosslink density control KW - Structure–property relationship KW - Nanocomposites KW - Thermoset PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-606772 DO - https://doi.org/10.1002/app.55937 SN - 0021-8995 SP - 1 EP - 16 PB - Wiley AN - OPUS4-60677 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nikolic, Nela A1 - Dal Co, Alma A1 - Kiviet, Daniel J. A1 - Bergmiller, Tobias A1 - Littmann, Sten A1 - Kuypers, Marcel M. M. A1 - Ackermann, Martin A1 - Schreiber, Frank T1 - Cell-to-cell variation and specialization in sugar metabolism in clonal bacterial populations N2 - While we have good understanding of bacterial metabolism at the population level, we know little about the metabolic behavior of individual cells: do single cells in clonal populations sometimes specialize on different metabolic pathways? Such metabolic specialization could be driven by stochastic gene expression and could provide individual cells with growth benefits of specialization. We measured the degree of phenotypic specialization in two parallel metabolic pathways, the assimilation of glucose and arabinose. We grew Escherichia coli in chemostats, and used isotope-labeled sugars in combination with nanometer-scale secondary ion mass spectrometry and mathematical modeling to quantify sugar assimilation at the single-cell level. We found large variation in metabolic activities between single cells, both in absolute assimilation and in the degree to which individual cells specialize in the assimilation of different sugars. Analysis of transcriptional reporters indicated that this variation was at least partially based on cell-to-cell variation in gene expression. Metabolic differences between cells in clonal populations could potentially reduce metabolic incompatibilities between different pathways, and increase the rate at which parallel reactions can be performed. KW - Metabolism KW - Escherichia coli KW - Phenotypic diversity KW - Phenotypic heterogeneity PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-438873 UR - http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007122 DO - https://doi.org/10.1371/journal.pgen.1007122 SN - 1553-7404 VL - 13 IS - 12 SP - e1007122, 1 EP - e1007122, 24 PB - Public Library of Science CY - Cambridge, United Kingdom AN - OPUS4-43887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marchant, H. K. A1 - Tegetmeyer, H. E. A1 - Ahmerkamp, S. A1 - Holtappels, M. A1 - Lavik, G. A1 - Graf, J. A1 - Schreiber, Frank A1 - Mussmann, M. A1 - Strous, M. A1 - Kuypers, M. M. M. T1 - Metabolic specialization of denitrifiers in permeable sediments controls N2O emissions N2 - Coastal oceans receive large amounts of anthropogenic fixed nitrogen (N), most of which is denitrified in the sediment before reaching the open ocean. Sandy sediments, which are common in coastal regions, seem to play an important role in catalysing this N‐loss. Permeable sediments are characterized by advective porewater transport, which supplies high fluxes of organic matter into the sediment, but also leads to fluctuations in oxygen and nitrate concentrations. Little is known about how the denitrifying communities in these sediments are adapted to such fluctuations. Our combined results indicate that denitrification in eutrophied sandy sediments from the world's largest tidal flat system, the Wadden Sea, is carried out by different groups of microorganisms. This segregation leads to the formation of N2O which is advectively transported to the overlying waters and thereby emitted to the atmosphere. At the same time, the production of N2O within the sediment supports a subset of Flavobacteriia which appear to be specialized on N2O reduction. If the mechanisms shown here are active in other coastal zones, then denitrification in eutrophied sandy sediments may substantially contribute to current marine N2O emissions. KW - Nitrous oxide KW - Denitrification KW - Cross-feeding PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-463061 UR - https://onlinelibrary.wiley.com/doi/full/10.1111/1462-2920.14385 DO - https://doi.org/10.1111/1462-2920.14385 SN - 1462-2920 SN - 1462-2912 VL - 20 IS - 12 SP - 4486 EP - 4502 PB - John Wiley & Sons Ltd AN - OPUS4-46306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Greco, A. A1 - Starostin, V. A1 - Karapanagiotis, C. A1 - Hinderhofer, A. A1 - Gerlach, A. A1 - Pithan, L. A1 - Liehr, Sascha A1 - Schreiber, Frank A1 - Kowarik, Stefan T1 - Fast fitting of reflectivity data of growing thin films using neural networks N2 - X-ray reflectivity (XRR) is a powerful and popular scattering technique that can give valuable insight into the growth behavior of thin films. This study Shows how a simple artificial neural network model can be used to determine the thickness, roughness and density of thin films of different organic semiconductors [diindenoperylene, copper(II) phthalocyanine and alpha-sexithiophene] on silica from their XRR data with millisecond computation time and with minimal user input or a priori knowledge. For a large experimental data set of 372 XRR curves, it is shown that a simple fully connected model can provide good results with a mean absolute percentage error of 8–18% when compared with the results obtained by a genetic least mean squares fit using the classical Parratt formalism. Furthermore, current drawbacks and prospects for improvement are discussed. KW - Artificial neural networks KW - X-ray reflectivity PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-498997 DO - https://doi.org/10.1107/S1600576719013311 SN - 1600-5767 VL - 52 SP - 1342 EP - 1347 PB - Wiley AN - OPUS4-49899 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Varadarajan, A. A1 - Allan, R. A1 - Valentin, J. A1 - Castañeda Ocampo, O. A1 - Somerville, V. A1 - Buhmann, M. A1 - West, J. A1 - Skipp, Paul A1 - van der Mei, H. A1 - Ren, Q. A1 - Schreiber, Frank A1 - Webb, J. A1 - Pietsch, Franziska A1 - Ahrens, C. T1 - An integrated model system to gain mechanistic insights into biofilm-associated antimicrobial resistance in Pseudomonas aeruginosa MPAO1 N2 - Pseudomonas aeruginosa MPAO1 is the parental strain of the widely utilized transposon mutant collection for this important clinical pathogen. Here, we validate a model system to identify genes involved in biofilm growth and biofilm-associated antibiotic resistance. Our model employs a genomics-driven workflow to assemble the complete MPAO1 genome, identify unique and conserved genes by comparative genomics with the PAO1 reference strain and genes missed within existing assemblies by proteogenomics. Among over 200 unique MPAO1 genes, we identified six general essential genes that were overlooked when mapping public Tn-seq data sets against PAO1, including an antitoxin. Genomic data were integrated with phenotypic data from an experimental workflow using a user-friendly, soft lithography-based microfluidic flow chamber for biofilm growth and a screen with the Tn-mutant library in microtiter plates. The screen identified hitherto unknown genes involved in biofilm growth and antibiotic resistance. Experiments conducted with the flow chamber across three laboratories delivered reproducible data on P. aeruginosa biofilms and validated the function of both known genes and genes identified in the Tn-mutant screens. Differential Protein abundance data from planktonic cells versus biofilm confirmed the upregulation of candidates known to affect biofilm formation, of structural and secreted proteins of type VI secretion systems, and provided proteogenomic evidence for some missed MPAO1 genes. This integrated, broadly applicable model promises to improve the mechanistic understanding of biofilm formation, antimicrobial tolerance, and resistance evolution in biofilms. KW - Biofilms PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515108 DO - https://doi.org/10.1038/s41522-020-00154-8 VL - 6 IS - 1 SP - Article number: 46 PB - Springer Nature CY - Singapore AN - OPUS4-51510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chacón, Luz A1 - Kuropka, B. A1 - González-Tortuero, E. A1 - Schreiber, Frank A1 - Rojas-Jiménez, K. A1 - Rodríguez-Rojas, A. T1 - Mechanisms of low susceptibility to the disinfectant benzalkonium chloride in a multidrug-resistant environmental isolate of Aeromonas hydrophila N2 - Excessive discharge of quaternary ammoniumdisinfectants such as benzalkonium chloride (BAC) into aquatic systems can trigger several physiological responses in environmental microorganisms. In this study, we isolated a less-susceptible strain of Aeromonas hydrophila to BAC, designated as INISA09, froma wastewater treatment plant in Costa Rica. We characterized its phenotypic response upon exposure to three di􀀀erent concentrations of BAC and characterizedmechanisms related to its resistance using genomic and proteomic approaches. The genome of the strain, mapped against 52 di􀀀erent sequenced A. hydrophila strains, consists of approximately 4.6Mb with 4,273 genes. We found a massive genome rearrangement and thousands of missense mutations compared to the reference strain A. hydrophila ATCC 7966. We identified 15,762 missense mutations mainly associated with transport, antimicrobial resistance, and outer membrane proteins. In addition, a quantitative proteomic analysis revealed a significant upregulation of several efflux pumps and the downregulation of porins when the strain was exposed to three BAC concentrations.Other genes related tomembrane fatty acid metabolism and redox metabolic reactions also showed an altered expression. Our findings indicate that the response of A. hydrophila INISA09 to BAC primarily occurs at the envelop level, which is the primary target of BAC. Our study elucidates the mechanisms of antimicrobial susceptibility in aquatic environments against a widely used disinfectant and will help better understand howbacteria can adapt to biocide pollution. To our knowledge, this is the first study addressing the resistance to BAC in an environmental A. hydrophila isolate. We propose that this bacterial species could also serve as a new model to study antimicrobial pollution in aquatic environments. KW - Antimicrobial resistance KW - Bacteria KW - Disinfection KW - Biocides PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578555 DO - https://doi.org/10.3389/fmicb.2023.1180128 SN - 1664-302X VL - 14 SP - 1 EP - 18 PB - Frontiers SA CY - Lausanne AN - OPUS4-57855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pietsch, Franziska A1 - O'Neill, A. J. A1 - Ivask, A. A1 - Jenssen, H. A1 - Inkinen, J. A1 - Kahru, A. A1 - Ahonen, M. A1 - Schreiber, Frank T1 - Selection of resistance by antimicrobial coatings in the healthcare setting N2 - Antimicrobial touch surfaces have been introduced in healthcare settings with the aim of supporting existing hygiene procedures, and to help combat the increasing threat of antimicrobial resistance. However, concerns have been raised over the potential selection pressure exerted by such surfaces, which may drive the evolution and spread of antimicrobial resistance. This review highlights studies that indicate risks associated with resistance on antimicrobial surfaces by different processes, including evolution by de-novo mutation and horizontal gene transfer, and species sorting of inherently resistant bacteria dispersed on to antimicrobial surfaces. The review focuses on antimicrobial surfaces made of copper, silver and antimicrobial peptides because of the practical application of copper and silver, and the promising characteristics of antimicrobial peptides. The available data point to a potential for resistance selection and a subsequent increase in resistant strains via cross-resistance and co-resistance conferred by metal and antibiotic resistance traits. However, translational studies describing the development of resistance to antimicrobial touch surfaces in healthcare-related environments are rare, and will be needed to assess whether and how antimicrobial surfaces lead to resistance selection in These settings. Such studies will need to consider numerous variables, including the antimicrobial concentrations present in coatings, the occurrence of biofilms on surfaces, and the humidity relevant to dry-surface environments. On-site tests on the efficacy of antimicrobial Coatings should routinely evaluate the risk of selection associated with their use. KW - Antimicrobial resistance KW - Antimicrobial coating KW - Touch surfaces KW - Healthcare KW - Infections KW - COST action CA15114 AMICI PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510926 DO - https://doi.org/10.1016/j.jhin.2020.06.006 SN - 0195-6701 VL - 106 IS - 1 SP - 115 EP - 125 PB - Elsevier Ltd AN - OPUS4-51092 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Srivastava, Priyanka A1 - Tavernaro, Isabella A1 - Scholtz, Lena A1 - Genger, C. A1 - Welker, P. A1 - Schreiber, Frank A1 - Meyer, Klas A1 - Resch-Genger, Ute T1 - Dual color pH probes made from silica and polystyrene nanoparticles and their performance in cell studies N2 - Ratiometric green–red fluorescent nanosensors for fluorometrically monitoring pH in the acidic range were designed from 80 nm-sized polystyrene (PS) and silica (SiO2) nanoparticles (NPs), red emissive reference dyes, and a green emissive naphthalimide pH probe, analytically and spectroscopically characterized, and compared regarding their sensing performance in aqueous dispersion and in cellular uptake studies. Preparation of these optical probes, which are excitable by 405 nm laser or LED light sources, involved the encapsulation of the pH-inert red-fuorescent dye Nile Red (NR) in the core of self-made carboxylated PSNPs by a simple swelling procedure and the fabrication of rhodamine B (RhB)-stained SiO2-NPs from a silane derivative of pH-insensitive RhB. Subsequently, the custom-made naphthalimide pH probe, that utilizes a protonation-controlled photoinduced electron transfer process, was covalently attached to the carboxylic acid groups at the surface of both types of NPs. Fluorescence microscopy studies with the molecular and nanoscale optical probes and A549 lung cancer cells confirmed the cellular uptake of all probes and their penetration into acidic cell compartments, i.e., the lysosomes, indicated by the switching ON of the green naphthalimide fluorescence. This underlines their suitability for intracellular pH sensing, with the SiO2-based nanosensor revealing the best performance regarding uptake speed and stability. KW - Sensors KW - Silica and polystyrene nanoparticles KW - pH probe KW - Fluorescence spectroscopy KW - Cell studies KW - Dye KW - Particle synthesis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569198 DO - https://doi.org/10.1038/s41598-023-28203-0 SN - 2045-2322 VL - 13 IS - 1 SP - 1321 EP - 1336 PB - Nature CY - London AN - OPUS4-56919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nordholt, Niclas A1 - Kanaris, Orestis A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Persistence against benzalkonium chloride promotes rapid evolution of tolerance during periodic disinfection N2 - Biocides used as disinfectants are important to prevent the transmission of pathogens, especially during the current antibiotic resistance crisis. This crisis is exacerbated by phenotypically tolerant persister subpopulations that can survive transient antibiotic Treatment and facilitate resistance evolution. Here, we show that E. coli displays persistence against a widely used disinfectant, benzalkonium chloride (BAC). Periodic, persister-mediated failure of disinfection rapidly selects for BAC tolerance, which is associated with reduced cell Surface charge and mutations in the lpxM locus, encoding an enzyme for lipid A biosynthesis. Moreover, the fitness cost incurred by BAC tolerance turns into a fitness benefit in the presence of antibiotics, suggesting a selective advantage of BAC-tolerant mutants in antibiotic environments. Our findings highlight the links between persistence to disinfectants and resistance evolution to antimicrobials. KW - Persistence KW - Biocides KW - Evolution KW - Cross-resistance KW - Biocide tolerance KW - Disinfection PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538532 DO - https://doi.org/10.1038/s41467-021-27019-8 SN - 2041-1723 VL - 12 IS - 1 SP - 6792 PB - Springer AN - OPUS4-53853 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nordholt, Niclas A1 - O'Hara, Kate A1 - Resch-Genger, Ute A1 - Blaskovich, M. A1 - Rühle, Bastian A1 - Schreiber, Frank T1 - A fluorescently labelled quaternary ammonium compound (NBD-DDA) to study resistance mechanisms in bacteria N2 - Quaternary ammonium compounds (QACs) are widely used as active agents in disinfectants, antiseptics, and preservatives. Despite being in use since the 1940s, there remain multiple open questions regarding their detailed mode-of-action and the mechanisms, including phenotypic heterogeneity, that can make bacteria less susceptible to QACs. To facilitate studies on resistance mechanisms towards QACs, we synthesized a fluorescent quaternary ammonium compound, namely N-dodecyl-N,N-dimethyl-[2-[(4-nitro-2,1,3-benzoxadiazol-7-yl)amino]ethyl]azanium-iodide (NBD-DDA). NBD-DDA is readily detected by flow cytometry and fluorescence microscopy with standard GFP/FITC-settings, making it suitable for molecular and single-cell studies. As a proof-of-concept, NBD-DDA was then used to investigate resistance mechanisms which can be heterogeneous among individual bacterial cells. Our results reveal that the antimicrobial activity of NBD-DDA against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa is comparable to that of benzalkonium chloride (BAC), a widely used QAC, and benzyl-dimethyl-dodecylammonium chloride (BAC12), a mono-constituent BAC with alkyl-chain length of 12 and high structural similarity to NBD-DDA. Characteristic time-kill kinetics and increased tolerance of a BAC tolerant E. coli strain against NBD-DDA suggest that the mode of action of NBD-DDA is similar to that of BAC. As revealed by confocal laser scanning microscopy (CLSM), NBD-DDA is preferentially localized to the cell envelope of E. coli, which is a primary target of BAC and other QACs. Leveraging these findings and NBD-DDA‘s fluorescent properties, we show that reduced cellular accumulation is responsible for the evolved BAC tolerance in the BAC tolerant E. coli strain and that NBD-DDA is subject to efflux mediated by TolC. Overall, NBD-DDA’s antimicrobial activity, its fluorescent properties, and its ease of detection render it a powerful tool to study resistance mechanisms of QACs in bacteria and highlight its potential to gain detailed insights into its mode-of-action. KW - Antimicrobial resistance KW - Bacteria KW - Disinfection KW - Biocides PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563811 DO - https://doi.org/10.3389/fmicb.2022.1023326 SN - 1664-302X IS - 13 SP - 1 EP - 13 PB - Frontiers Media CY - Lausanne AN - OPUS4-56381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Valentin, J. A1 - Straub, H. A1 - Pietsch, Franziska A1 - Lemare, M. A1 - Ahrens, C. A1 - Schreiber, Frank A1 - Webb, J. A1 - van der Mei, H. A1 - Ren, Q. T1 - Role of the flagellar hook in the structural development and antibiotic tolerance of Pseudomonas aeruginosa biofilms N2 - Pseudomonas aeruginosa biofilms exhibit an intrinsic resistance to antibiotics and constitute a considerable clinical threat. In cystic fibrosis, a common feature of biofilms formed by P. aeruginosa in the airway is the occurrence of mutants deficient in flagellar motility. This study investigates the impact of flagellum deletion on the structure and antibiotic tolerance of P. aeruginosa biofilms, and highlights a role for the flagellum in adaptation and cell survival during biofilm development. Mutations in the flagellar hook protein FlgE influence greatly P. aeruginosa biofilm structuring and antibiotic tolerance. Phenotypic analysis of the flgE knockout mutant compared to the wild type (WT) reveal increased fitness under planktonic conditions, reduced initial adhesion but enhanced formation of microcolony aggregates in a microfluidic environment, and decreased expression of genes involved in exopolysaccharide formation. Biofilm cells of the flgE knock-out mutant display enhanced tolerance towards multiple antibiotics, whereas its planktonic cells show similar resistance to the WT. Confocal microscopy of biofilms demonstrates that gentamicin does not affect the viability of cells located in the inner part of the flgE knock-out mutant biofilms due to reduced penetration. These findings suggest that deficiency in flagellar proteins like FlgE in biofilms and in cystic fibrosis infections represent phenotypic and evolutionary adaptations that alter the structure of P. aeruginosa biofilms conferring increased antibiotic tolerance. KW - Antimicrobial resistance KW - Bacteria KW - Biofilms KW - Biocides PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-541113 DO - https://doi.org/10.1038/s41396-021-01157-9 SN - 1751-7370 VL - 16 IS - 4 SP - 1176 EP - 1186 PB - Springer Nature AN - OPUS4-54111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Franziska, Pietsch A1 - Nordholt, Niclas A1 - Heidrich, Gabriele A1 - Schreiber, Frank T1 - Prevalent Synergy and Antagonism Among Antibiotics and Biocides in Pseudomonas aeruginosa N2 - Antimicrobials can exert specific physiological effects when used in combination that are different from those when applied alone. While combination effects have been extensively mapped for antibiotic-antibiotic combinations, the combination effects of antibiotics with antimicrobials used as biocides or antiseptics have not been systematically investigated. Here, we investigated the effects of combinations of antibiotics (meropenem, gentamicin, and ciprofloxacin) and substances used as biocides or antiseptics [octenidine, benzalkonium chloride, cetrimonium bromide, chlorhexidine, Povidone-iodine, silver nitrate (AgNO3), and Ag-nanoparticles] on the planktonic growth rate of Pseudomonas aeruginosa. Combination effects were investigated in growth experiments in microtiter plates at different concentrations and the Bliss interaction scores were calculated. Among the 21 screened combinations, we find prevalent combination effects with synergy occurring six times and antagonism occurring 10 times. The effects are specific to the antibiotic-biocide combination with meropenem showing a tendency for antagonism with biocides (6 of 7), while gentamicin has a tendency for synergy (5 of 7). In conclusion, antibiotics and biocides or antiseptics exert physiological combination effects on the pathogen P. aeruginosa. These effects have consequences for the efficacy of both types of substances and potentially for the selection of antimicrobial resistant strains in clinical applications with combined exposure (e.g., wound care and coated biomaterials). KW - Synergy KW - Antagonism KW - Suppression KW - Biocides KW - Antibiotics KW - Pseudomonas aeruginosa PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520845 DO - https://doi.org/10.3389/fmicb.2020.615618 VL - 11 SP - Article 615618 PB - Frontiers CY - Lausanne AN - OPUS4-52084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Valentin, Jules D. P. A1 - Altenried, Stefanie A1 - Varadarajan, Adithi R. A1 - Ahrens, Christian H. A1 - Schreiber, Frank A1 - Webb, Jeremy S. A1 - van der Mei, Henny C. A1 - Ren, Qun T1 - Identification of Potential Antimicrobial Targets of Pseudomonas aeruginosa Biofilms through a Novel Screening Approach N2 - Pseudomonas aeruginosa is an opportunistic pathogen of considerable medical importance, owing to its pronounced antibiotic tolerance and association with cystic fibrosis and other life-threatening diseases. The aim of this study was to highlight the genes responsible for P. aeruginosa biofilm tolerance to antibiotics and thereby identify potential new targets for the development of drugs against biofilm-related infections. By developing a novel screening approach and utilizing a public P. aeruginosa transposon insertion library, several biofilm-relevant genes were identified. The Pf phage gene (PA0720) and flagellin gene (fliC) conferred biofilm-specific tolerance to gentamicin. Compared with the reference biofilms, the biofilms formed by PA0720 and fliC mutants were completely eliminated with a 4-fold-lower gentamicin concentration. Furthermore, the mreC, pprB, coxC, and PA3785 genes were demonstrated to play major roles in enhancing biofilm tolerance to gentamicin. The analysis of biofilm-relevant genes performed in this study provides important novel insights into the understanding of P. aeruginosa antibiotic tolerance, which will facilitate the detection of antibiotic resistance and the development of antibiofilm strategies against P. aeruginosa. KW - Antimicrobial resistance KW - Bacteria KW - Biofilms KW - Pseudomonas aeruginosa PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570205 DO - https://doi.org/10.1128/spectrum.03099-22 SP - 1 EP - 5 PB - ASM Journals AN - OPUS4-57020 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Keshmiri, Hamid A1 - Armin, F. A1 - Elsayad, K. A1 - Schreiber, Frank A1 - Moreno, M. T1 - Leaky and waveguide modes in biperiodic holograms N2 - This study details a theoretical analysis of leaky and waveguide modes in biperiodic all-dielectric holograms. By tuning diffraction orders and subsequently confining local density of optical states at two distinct resonance wavelengths, we present a new class of highly sensitive refractive index biosensing platforms that are capable of resolving 35.5 to 41.3 nm/RIU of spectral shift for two separate biological analytes. KW - Antimicrobial resistance KW - Bacteria KW - Photonics KW - Diffractive gratings PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527632 DO - https://doi.org/10.1038/s41598-021-89971-1 SN - 2045-2322 (online) VL - 11 IS - 1 SP - 10991 PB - Springer Nature AN - OPUS4-52763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geißler, Daniel A1 - Nirmalananthan-Budau, Nithiya A1 - Scholtz, Lena A1 - Tavernaro, Isabella A1 - Resch-Genger, Ute T1 - Analyzing the surface of functional nanomaterials — how to quantify the total and derivatizable number of functional groups and ligands N2 - Functional nanomaterials (NM) of different size, shape, chemical composition, and surface chemistry are of increasing relevance for many key technologies of the twenty-first century. This includes polymer and silica or silica-coated nanoparticles (NP) with covalently bound surface groups, semiconductor quantum dots (QD), metal and metal oxide NP, and lanthanide-based NP with coordinatively or electrostatically bound ligands, as well as surface-coated nanostructures like micellar encapsulated NP. The surface chemistry can significantly affect the physicochemical properties of NM, their charge, their processability and performance, as well as their impact on human health and the environment. Thus, analytical methods for the characterization of NM surface chemistry regarding chemical identification, quantification, and accessibility of functional groups (FG) and surface ligands bearing such FG are of increasing importance for quality control of NM synthesis up to nanosafety. Here, we provide an overview of analytical methods for FG analysis and quantification with special emphasis on bioanalytically relevant FG broadly utilized for the covalent attachment of biomolecules like proteins, peptides, and oligonucleotides and address methodand material-related challenges and limitations. Analytical techniques reviewed include electrochemical titration methods, optical assays, nuclear magnetic resonance and vibrational spectroscopy, as well as X-ray based and thermal analysis methods, covering the last 5–10 years. Criteria for method classification and evaluation include the need for a signal-generating label, provision of either the total or derivatizable number of FG, need for expensive instrumentation, and suitability for process and production control during NM synthesis and functionalization. KW - Functional group quantification KW - Surface ligand KW - Nanomaterial KW - Optical detection KW - Electrochemical titration KW - Nanosafety (Safe-by-design) PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533597 DO - https://doi.org/10.1007/s00604-021-04960-5 VL - 188 IS - 10 SP - 1 EP - 28 PB - Springer Nature AN - OPUS4-53359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Pfüger, Mika A1 - Velasco-Vélez, Juan-Jesús A1 - Sahre, Mario A1 - Radnik, Jörg A1 - Bernicke, Michael A1 - Bernsmeier, Denis A1 - Hodoroaba, Vasile-Dan A1 - Krumrey, Michael A1 - Strasser, Peter A1 - Kraehnert, Ralph A1 - Hertwig, Andreas T1 - Assessing optical and electrical properties of highly active IrOx catalysts for the electrochemical oxygen evolution reaction via spectroscopic ellipsometry N2 - Efficient water electrolysis requires highly active electrodes. The activity of corresponding catalytic coatings strongly depends on material properties such as film thickness, crystallinity, electrical conductivity, and chemical surface speciation. Measuring these properties with high accuracy in vacuum-free and nondestructive methods facilitates the elucidation of structure−activity relationships in realistic environments. Here, we report a novel approach to analyze the optical and electrical properties of highly active oxygen evolution reaction (OER) catalysts via spectroscopic ellipsometry (SE). Using a series of differently calcined, mesoporous, templated iridium oxide films as an example, we assess the film thickness, porosity, electrical resistivity, electron concentration, electron mobility, and interband and intraband transition energies by modeling of the optical spectra. Independently performed analyses using scanning electron microscopy, energy-dispersive X-ray spectroscopy, ellipsometric porosimetry, X-ray reflectometry, and absorption spectroscopy indicate a high accuracy of the deduced material properties. A comparison of the derived analytical data from SE, resonant photoemission spectroscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy with activity measurements of the OER suggests that the intrinsic activity of iridium oxides scales with a shift of the Ir 5d t2g sub-level and an increase of p−d interband transition energies caused by a transition of μ1-OH to μ3-O species. KW - Spectroscopic ellipsometry KW - Electrocatalysis KW - Oxygen evolution reaction KW - Mesoporous iridium oxide films KW - Non-destructive ambient analysis KW - Intrinsic OER activity KW - Complementary methodology and metrology PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516288 DO - https://doi.org/10.1021/acscatal.0c03800 SN - 2155-5435 VL - 10 IS - 23 SP - 14210 EP - 14223 PB - American Chemical Society AN - OPUS4-51628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Anja A1 - Buchberger, G. A1 - Stifter, D. A1 - Duchoslav, J. A1 - Hertwig, Andreas A1 - Bonse, Jörn A1 - Heitz, J. A1 - Schwibbert, Karin T1 - Spatial Period of Laser-Induced Surface Nanoripples on PET Determines Escherichia coli Repellence N2 - Bacterial adhesion and biofilm formation on surfaces are associated with persistent microbial contamination, biofouling, and the emergence of resistance, thus, calling for new strategies to impede bacterial surface colonization. Using ns-UV laser treatment (wavelength 248 nm and a pulse duration of 20 ns), laser-induced periodic surface structures (LIPSS) featuring different submicrometric periods ranging from ~210 to ~610 nm were processed on commercial poly(ethylene terephthalate) (PET) foils. Bacterial adhesion tests revealed that these nanorippled surfaces exhibit a repellence for E. coli that decisively depends on the spatial periods of the LIPSS with the strongest reduction (~91%) in cell adhesion observed for LIPSS periods of 214 nm. Although chemical and structural analyses indicated a moderate laser-induced surface oxidation, a significant influence on the bacterial adhesion was ruled out. Scanning electron microscopy and additional biofilm studies using a pili-deficient E. coli TG1 strain revealed the role of extracellular appendages in the bacterial repellence observed here. KW - Laser-induced periodic surface structures (LIPSS) KW - Laser processing KW - Polyethylene terephthalate KW - Biofilm formation KW - Cell appendages KW - Biomimetic KW - F pili PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537431 DO - https://doi.org/10.3390/nano11113000 VL - 11 IS - 11 SP - 3000 PB - MDPI AN - OPUS4-53743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Florian, Camilo A1 - Fischer, Daniel A1 - Freiberg, K. A1 - Duwe, M. A1 - Sahre, Mario A1 - Schneider, S. A1 - Hertwig, Andreas A1 - Krüger, Jörg A1 - Rettenmayr, M. A1 - Beck, Uwe A1 - Undisz, A. A1 - Bonse, Jörn T1 - Single Femtosecond Laser-Pulse-Induced Superficial Amorphization and Re-Crystallization of Silicon N2 - Superficial amorphization and re-crystallization of silicon in <111> and <100> orientation after irradiation by femtosecond laser pulses (790 nm, 30 fs) are studied using optical imaging and transmission electron microscopy. Spectroscopic imaging ellipsometry (SIE) allows fast data acquisition at multiple wavelengths and provides experimental data for calculating nanometric amorphous layer thickness profiles with micrometric lateral resolution based on a thin-film layer model. For a radially Gaussian laser beam and at moderate peak fluences above the melting and below the ablation thresholds, laterally parabolic amorphous layer profiles with maximum thicknesses of several tens of nanometers were quantitatively attained. The accuracy of the calculations is verified experimentally by high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (STEM-EDX). Along with topographic information obtained by atomic force microscopy (AFM), a comprehensive picture of the superficial re-solidification of silicon after local melting by femtosecond laser pulses is drawn. KW - Femtosecond laser KW - Silicon KW - Amorphization KW - Crystallization KW - Spectroscopic imaging ellipsometry PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523687 UR - https://www.mdpi.com/1996-1944/14/7/1651 DO - https://doi.org/10.3390/ma14071651 SN - 1996-1944 VL - 14 IS - 7 SP - 1651-1 EP - 1651-21 PB - MDPI AG CY - Basel, Switzerland AN - OPUS4-52368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weigert, Florian A1 - Müller, A. A1 - Häusler, I. A1 - Geißler, Daniel A1 - Skroblin, D. A1 - Unger, Wolfgang A1 - Radnik, Jörg A1 - Resch-Genger, Ute T1 - Combining HR‑TEM and XPS to elucidate the core–shell structure of ultrabright CdSe/CdS semiconductor quantum dots N2 - Controlling thickness and tightness of surface passivation shells is crucial for many applications of core–shell nanoparticles (NP). Usually, to determine shell thickness, core and core/shell particle are measured individually requiring the availability of both nanoobjects. This is often not fulfilled for functional nanomaterials such as many photoluminescent semiconductor quantum dots (QD) used for bioimaging, solid state lighting, and display technologies as the core does not show the applicationrelevant functionality like a high photoluminescence (PL) quantum yield, calling for a whole nanoobject approach. By combining high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS), a novel whole nanoobject approach is developed representatively for an ultrabright oleic acid-stabilized, thick shell CdSe/CdS QD with a PL quantum yield close to unity. The size of this spectroscopically assessed QD, is in the range of the information depth of usual laboratory XPS. Information on particle size and monodispersity were validated with dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) and compared to data derived from optical measurements. In addition to demonstrating the potential of this novel whole nanoobject approach for determining architectures of small nanoparticles, the presented results also highlight challenges faced by different sizing and structural analysis methods and method-inherent uncertainties. KW - Photoluminescence KW - Single particle KW - Microscopy KW - Particle architecture KW - Thickness KW - SAXS KW - Shell KW - XPS KW - TEM KW - Semiconductor KW - Quantum dot KW - Photophysics KW - Quantum yield PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517911 DO - https://doi.org/10.1038/s41598-020-77530-z VL - 10 IS - 1 SP - 20712 PB - Springer Nature AN - OPUS4-51791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schutter, Jan David A1 - Eberhardt, Karl A1 - Elert, Anna Maria A1 - Radnik, Jörg A1 - Geißler, Daniel A1 - Özcan Sandikcioglu, Özlem T1 - Synthesis and characterization of lipopolysaccharide (LPS) anchored polystyrene microparticles as a synthetic model system for attachment studies N2 - Outer membrane lipopolysaccharides (LPS) play a crucial role in determining attachment behavior and pathogenicity of bacteria. The aim of this study was to develop a simple procedure for anchoring bacterial lipopolysaccharides to polystyrene (PS) microparticles as a model system for in situ attachment studies. By using a swellcapture methodology, commercially available LPS of Pseudomonas aeruginosa (strain ATCC 27316 serotype 10.22) was anchored onto PS microparticles in a proof-of-concept study. A detailed chemical and morphological characterization has proven the success of LPS incorporation. It was shown that the coverage and structure of the LPS film was concentration dependent. The procedure can easily be adapted to LPS of other bacterial strains to generate a synthetic model toolkit for attachment studies. KW - Bacterial lipopolysaccharides KW - Pseudomonas aeruginosa KW - Polystyrene microparticles KW - Swell-capture KW - Biomimicry PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579818 DO - https://doi.org/10.1016/j.colsurfb.2023.113301 SN - 0927-7765 VL - 226 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-57981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Omar, Hassan A1 - Hiid, Gundula A1 - Szymoniak, Paulina A1 - Hertwig, Andreas A1 - Schönhals, Andreas T1 - Growth kinetics of the adsorbed layer of poly(bisphenol A carbonate) and its effect on the glass transition behavior in thin films N2 - The glass transition behavior of thin films of poly(bisphenol A carbonate) (PBAC) was studied employing ellipsometry. The glass transition temperature increases with the reduction of the film thickness. This result is attributed to the formation of an adsorbed layer with a reduced mobility compared to bulk PBAC. Therefore, for the first time, the growth kinetics of the adsorbed layer of PBAC was investigated, prepared by leaching samples from a 200 nm thin film which were annealed for several times at three different temperatures. The thickness of each prepared adsorbed layer was measured by multiple scans using atomic force microscopy (AFM). Additionally, an unannealed sample was measured. Comparison of the measurements of the unannealed and the annealed samples provides proof of a pre-growth regime for all annealing temperatures which was not observed for other polymers. For the lowest annealing temperature after the pre-growth stage only a growth regime with a linear time dependence is observed. For higher annealing temperatures the growth kinetics changes from a linear to a logarithmic growth regime at a critical time. At the longest annealing times the films showed signs of dewetting where segments of the adsorbed film were removed from the substrate (dewetting by desorption). The dependence of the surface roughness of the PBAC surface on annealing time also confirmed that the films annealed at highest temperatures for the longest times desorbed from the substrate. KW - Ultra thin polymer films PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-574531 DO - https://doi.org/10.1039/D3RA02020G SN - 2046-2069 VL - 13 IS - 21 SP - 14473 EP - 14483 PB - RSC Publishing CY - London AN - OPUS4-57453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ermilova, Elena A1 - Weise, Matthias A1 - Hertwig, Andreas T1 - Application of imaging ellipsometry and white light interference microscopy for detection of defects in epitaxially grown 4H-SiC layers N2 - Critical defects, also known as device killers, in wide bandgap semiconductors significantly affect the performance of power electronic devices. We used the methods imaging ellipsometry (IE) and white light interference microscopy (WLIM) in a hybrid optical metrology study for fast and non-destructive detection, classification, and characterisation of defects in 4H–SiC homoepitaxial layers on 4H–SiC substrates. Ellipsometry measurement results are confirmed by WLIM. They can be successfully applied for wafer characterisation already during production of SiC epilayers and for subsequent industrial quality control. T2 - EOS Annual Meeting (EOSAM 2022) CY - Porto DA - 12.09.2022 KW - Imaging ellipsometry KW - White light interference microscopy KW - 4H–SiC KW - Defects PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-574209 DO - https://doi.org/10.1051/jeos/2023018 SN - 1990-2573 VL - 19 IS - 1 SP - 1 EP - 8 PB - EDP Sciences AN - OPUS4-57420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Bernsmeier, D. A1 - Schmack, R. A1 - Häusler, I. A1 - Hertwig, Andreas A1 - Kraffert, K. A1 - Nissen, J. A1 - Kraehnert, R. T1 - Colloidal bimetallic platinum–ruthenium nanoparticles in ordered mesoporous carbon films as highly active electrocatalysts for the hydrogen evolution reaction N2 - Hydrogen features a very high specific energy density and is therefore a promising candidate for clean fuel from renewable resources. Water electrolysis can convert electrical energy into storable and transportable hydrogen gas. Under acidic conditions, platinum is the most active and stable monometallic catalyst for the hydrogen evolution reaction (HER). Yet, platinum is rare and needs to be used efficiently. Here, we report a synthesis concept for colloidal bimetallic platinum–ruthenium and rhodium–ruthenium nanoparticles (PtRuNP, RhRuNP) and their incorporation into ordered mesoporous carbon (OMC) films. The films exhibit high surface area, good electrical conductivity and well-dispersed nanoparticles inside the mesopores. The nanoparticles retain their size, crystallinity and composition during carbonization. In the hydrogen evolution reaction (HER), PtRuNP/OMC catalyst films show up to five times higher activity per Pt than Pt/C/Nafion® and PtRu/C/Nafion® reference catalysts. KW - Ordered mesoporous carbon KW - Bimetallic noble metal nanoparticles KW - Platinum-ruthenium colloid KW - Electrolysis KW - Hydrogen evolution reaction PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506868 DO - https://doi.org/10.1039/C9CY02285F SN - 2044-4753 VL - 10 IS - 7 SP - 2057 EP - 2068 PB - Royal Society of Chemistry AN - OPUS4-50686 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geißler, Daniel A1 - Wegmann, Marc A1 - Jochum, T. A1 - Somma, V. A1 - Sowa, M. A1 - Scholz, J. A1 - Fröhlich, E. A1 - Hoffmann, Katrin A1 - Niehaus, J. A1 - Roggenbuck, D. A1 - Resch-Genger, Ute T1 - An automatable platform for genotoxicity testing of nanomaterials based on the fluorometric γ-H2AX assay reveals no genotoxicity of properly surface-shielded cadmium-based quantum dots N2 - The large number of nanomaterial-based applications emerging in the materials and life sciences and the foreseeable increasing use of these materials require methods that evaluate and characterize the toxic potential of these nanomaterials to keep safety risks to people and environment as low as possible. As nanomaterial toxicity is influenced by a variety of parameters like size, shape, chemical composition, and surface chemistry, high throughput screening (HTS) platforms are recommended for assessing cytotoxicity. Such platforms are not yet available for genotoxicity testing. Here, we present first results obtained for application-relevant nanomaterials using an automatable genotoxicity platform that relies on the quantification of the phosphorylated histone H2AX (γ-H2AX) for detecting DNA double strand breaks (DSBs) and the automated microscope system AKLIDES® for measuring integral fluorescence intensities at different excitation wavelengths. This platform is used to test the genotoxic potential of 30 nm-sized citrate-stabilized gold nanoparticles (Au-NPs) as well as micellar encapsulated iron oxide nanoparticles (FeOx-NPs) and different cadmium (Cd)-based semiconductor quantum dots (QDs), thereby also searching for positive and negative controls as reference materials. In addition, the influence of the QD shell composition on the genotoxic potential of these Cd-based QDs was studied, using CdSe cores as well as CdSe/CdS core/shell and CdSe/CdS/ZnS core/shell/shell QDs. Our results clearly revealed the genotoxicity of the Au-NPs and its absence in the FeOx-NPs. The genotoxicity of the Cd-QDs correlates with the shielding of their Cd-containing core, with the core/shell/shell architecture preventing genotoxicity risks. The fact that none of these nanomaterials showed cytotoxicity at the chosen particle concentrations in a conventional cell viability assay underlines the importance of genotoxicity studies to assess the hazardous potential of nanomaterials. KW - Nanomaterial KW - Genotoxicity testing KW - γ-H2AX assay KW - Quantum dot PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486318 DO - https://doi.org/10.1039/C9NR01021A SN - 2040-3372 SN - 2040-3364 VL - 11 IS - 28 SP - 13458 EP - 13468 PB - The Royal Society of Chemistry AN - OPUS4-48631 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -