TY - JOUR A1 - Nicolai, Marcel A1 - Bulling, Jannis A1 - Narayanan, M.M. A1 - Zeipert, Henning A1 - Prager, Jens A1 - Henning, Bernd T1 - Dynamic interface behavior in coupled plates: Investigating Lamb wave mode repulsion with a spring-based model N2 - This study investigates the phenomenon of mode repulsion in Lamb waves propagating through two coupled plates with an elastic interface. Using a spring-based coupling model and the Scaled Boundary Finite Element Method, the dispersion curves of the coupled system are analyzed under various interface conditions—weak coupling, sliding boundary, and perfect coupling. This research highlights how the mechanical stiffness of the interface influences the separation of modes and the emergence of repulsion regions. A novel focus on interface displacements reveals a unique dynamic behavior within the repulsion regions, driven by in-phase and out-of-phase oscillations of the coupled plates. The findings provide a physically grounded explanation of mode repulsion, linking it to the strain patterns in the interface. This insight lays the theoretical groundwork for future applications in material characterization and non-destructive evaluation, enabling more precise selection of Lamb wave modes for scientific and industrial purposes. KW - Lamb waves KW - Mode repulsion KW - Coupled plates KW - Elastic interface KW - Dispersion curves PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-642245 DO - https://doi.org/10.1016/j.ultras.2025.107799 SN - 0041-624X VL - 158 SP - 1 EP - 9 PB - Elsevier BV AN - OPUS4-64224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholl, Juliane A1 - Lisec, Jan A1 - Bagheri, Abbas A1 - Meiers, Emelie A1 - Russo, Francesco Friedrich A1 - Haase, Hajo A1 - Koch, Matthias T1 - Unveiling aging mechanisms of electrolytes in commercial end-of-life lithium-ion batteries N2 - In this study, 77 end-of-life (EOL) commercial lithium-ion batteries (LIBs) of various formats were systematically analyzed to investigate electrolyte degradation and the influence of pristine electrolyte compositions on aging behavior. Comprehensive chemical characterization was conducted using targeted and non-targeted mass spectrometry (MS), employing LC-MS/MS, GC-MS, and high-resolution MS (HRMS). This integrated approach enabled the identification of confirmed pristine components and complex degradation products. The results show that rechargeable pouch and cylindrical cells often deviate from conventional model systems, containing mixed lithium salt anions, ionic liquids (ILs), and high concentrations of triflates, triflimides, and bis(fluorosulfonyl)imide (FSI). These function as solvents, salts, or safety-enhancing additives. Specific IL degradation products were identified, and hypotheses formulated on previously unreported pathways. Furthermore, a novel series of oligomerization products of propylene carbonate (PC) was detected. In contrast, non-rechargeable coin cells revealed widespread use of per- and polyfluoroalkyl substances (PFAS) in their original electrolytes. Based on ex situ analyses, hypothetical PFAS degradation mechanisms are proposed here for the first time. The absence of carbonate oligomers and lithium salt-derived products, alongside the presence of standard carbonates, indicates lithium counterion coordination as a key factor in Lewis acid-catalyzed degradation. This study offers valuable insights into real-world battery aging. KW - Transformation products KW - Lithium-ion batteries KW - Fluorinated Compounds KW - Gas chromatography/ QTOF-MS KW - HILIC-LC-MS/MS KW - PFAS KW - Electrochemistry PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-644991 DO - https://doi.org/10.1016/j.jpowsour.2025.238613 SN - 0378-7753 VL - 661 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-64499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Kun A1 - Schukar, Marcus A1 - Hicke, Konstantin A1 - Lu, Xin T1 - Effect of humidity on fiber-optic temperature sensing N2 - This study investigates the influence of ambient humidity on the temperature sensitivity, measurement accuracy, and uncertainty of optical fibers with different coatings, using a Rayleigh-based distributed sensing technique. Polymer-coated fibers (acrylate and polyimide) and metal-coated fibers (copper and gold) were tested under controlled humidity (30%–90% RH) and temperature (20–60 °C) conditions. Rayleigh-based measurements revealed a slight but consistent decrease in temperature sensitivity with increasing humidity for all polymer-coated fibers, attributed to humidity-induced changes in coating stiffness and strain transfer. In contrast, metal-coated fibers exhibited humidity-independent behavior and superior stability. These findings highlight the non-negligible role of ambient humidity in fiber-optic temperature sensing, particularly in Rayleigh-based systems using hygroscopic coatings. The results provide practical guidance for fiber and coating selection in humid environments and offer broader insight into humidity–strain–temperature coupling mechanisms relevant to other fiber-optic sensing mechanisms. KW - Distributed sensing KW - Humidity effect KW - Temperature sensing KW - Optical fiber coatings KW - Temperature uncertainty PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-650040 DO - https://doi.org/10.1016/j.measurement.2025.119905 SN - 0263-2241 VL - 261 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-65004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Tim A1 - Huber, Norbert T1 - Microstructure and orientation effects on microcompression-induced plasticity in nanoporous gold N2 - Understanding the plastic deformation of nanoporous metals requires a detailed examination of their small-scale microstructural features. In this work, we present a computational study of micropillar compression in single crystal nanoporous gold (NPG) using crystal plasticity. This approach enables a systematic investigation of three key microstructural effects, including ligament size (50 ≤ 𝑙 ≤ 400 nm), solid fraction (0.2 ≤ 𝜑 ≤ 0.3), and initial crystal orientation ([001] and [111] ̄ ), on the plastic response far beyond yielding. After validation against experimental data, the study reveals that, in line with the ’smaller is stronger’ trend, besides the yield strength, the strain hardening rate also increases as ligament size decreases. Moreover, the strain hardening rate follows a power-law scaling with solid fraction, similar to the yield strength. The analysis of two distinct crystal orientations presents findings contrasting with previous assumptions. While the yielding onset remains orientation-independent, as expected, an increase in the strain hardening rate emerges for the harder [11-1] orientation with continued compression. An effect that becomes more pronounced with increasing solid fraction and decreasing ligament size. Under these conditions, harder orientations also amplify local stress heterogeneity. Notably, the stress distribution in NPG is nearly twice as wide as that observed in the single crystal bulk material (𝜑 = 1.0). Compared to the crystal plasticity approach, traditional isotropic plasticity predicts more uniform local stress fields. KW - Nanoporous gold KW - Microcompression KW - Plasticity KW - Size effect KW - Micromechanics PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-650137 DO - https://doi.org/10.1016/j.actamat.2025.121798 SN - 1359-6454 VL - 304 SP - 1 EP - 13 PB - Elsevier Inc. AN - OPUS4-65013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Durlo Tambara, Luís Urbano A1 - Nikoonasab, Ali A1 - Radtke, Martin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Gluth, Gregor T1 - Determination of the oxidation depths of ground granulated blast furnace slag-containing cement pastes using Mn K-edge X-ray absorption near-edge structure spectroscopy N2 - The redox potential of the pore solution of hardened cements containing ground granulated blast furnace slag (GGBFS) affects reinforcement corrosion and immobilization of radioactive waste. Here, Mn K-edge X-ray absorption near-edge structure (XANES) spectroscopy was applied to determine the depth profile of the oxidation state of manganese in hardened GGBFS-containing cement pastes. Manganese was oxidized in the outer regions of some of the pastes, but the depth to which this occurred was not identical with the ‘blue-green/white color change front’, usually interpreted as indicating oxidation of sulfur species. For CEM III/B, the color change of the material was gradual and thus unsuitable for a precise determination of the oxidation depth, while for the alkali-activated slag, a distinct color change front was found, but full oxidation of manganese and sulfur had not occurred in the brighter region. Mn K-edge XANES spectroscopy is thus a more reliable method than the determination of the visual color change front to follow the ingress of the oxidation front. KW - Manganese KW - Oxidation KW - Sulfide KW - Alkali-activated materials KW - Redox conditions PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-651469 DO - https://doi.org/10.1111/jace.70445 SN - 0002-7820 SN - 1551-2916 VL - 109 IS - 1 SP - 1 EP - 11 PB - Wiley CY - Oxford AN - OPUS4-65146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Campari, Alessandro A1 - Konert, Florian A1 - Razavi, Nima A1 - Sobol, Oded A1 - Alvaro, Antonio T1 - Hydrogen-assisted cracking: A deep learning approach for fractographic analysis N2 - Hydrogen handling equipment suffers from interaction with their operating environment, which degrades the mechanical properties and compromises component integrity. Hydrogen-assisted cracking is responsible for several industrial failures with potentially severe consequences. A thorough failure analysis can determine the failure mechanism, locate its origin, and identify possible root causes to avoid similar events in the future. Postmortem fractographic analysis can classify the fracture mode and determine whether the hydrogen-metal interaction contributed to the component’s breakdown. Experts in fracture classification identify characteristic marks and textural features by visual inspection to determine the failure mechanism. Although widely adopted, this process is time-consuming and influenced by subjective judgment and individual expertise. This study aims to automate fractographic analysis through advanced computer vision techniques. Different materials were tested in hydrogen atmospheres and inert environments, and their fracture surfaces were analyzed by scanning electron microscopy to create an extensive image dataset. A pre-trained Convolutional Neural Network was finetuned to accurately classify brittle and ductile fractures. In addition, Grad-CAM interpretability method was adopted to identify the image regions most influential in the model’s prediction and compare the saliency maps with expert annotations. This approach offered a reliable data-driven alternative to conventional fractographic analysis. KW - Failure analysis KW - Fractographic analysis KW - Hydrogen embrittlement KW - Material compatibility PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-646610 DO - https://doi.org/10.1016/j.commatsci.2025.114366 SN - 0927-0256 VL - 262 SP - 1 EP - 16 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-64661 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Risse, Kerstin A1 - Nikiforidis, Constantinos V. A1 - Morris, Imogen A1 - Thünemann, Andreas A1 - Drusch, Stephan T1 - Regulating the heat stability of protein-phospholipid stabilised oil-water emulsions by changing the phospholipid headgroup or fatty acyl chain N2 - Stabilising oil–water emulsions remains a central challenge across food, pharmaceutical and cosmetic applications. β-lactoglobulin (β-LG) and phospholipids (PLs) can act synergistically at oil-water interfaces: PLs adsorb rapidly, while β-LG forms a viscoelastic protein network that enhances long-term stability. However, competitive adsorption between proteins and PLs can disrupt interfacial structure. In addition, for commercial production, emulsions are often exposed to heat treatment during or after manufacture, for instance due to food safety requirements. Yet, the combined effects of PL structure and heat treatment on interfacial organisation and emulsion stability remain poorly understood. Here we show that PL saturation and processing temperature jointly determine interfacial organisation, protein-PL interactions and emulsion stability. Using β-LG-PL emulsions, we combined ζ-potential measurements, small-angle X-ray scattering (SAXS), micro-differential scanning calorimetry (μDSC), X-ray diffraction and confocal laser scanning microscopy (CLSM) to link interfacial composition with functional stability. Below the β-LG denaturation temperature (≤75 °C), saturated PLs promoted partial unfolding of β-LG at the interface without displacement, producing mixed protein-PL networks with enhanced viscoelasticity and stability. Unsaturated PLs displaced β-LG, yielding less elastic interfaces and promoting protein aggregation in the bulk. At ≥75 °C, increased hydrophobicity intensified protein-protein interactions irrespective of PL type. Our findings reveal that saturated PLs shift the β-LG denaturation temperature upward by restricting molecular mobility, without preventing quaternary-level protein-protein interactions. Thermal denaturation, regardless of PL type, promoted interfacial multilayer formation at 90 °C. These results provide a mechanistic framework for tailoring emulsion stability via lipid saturation and processing temperature. KW - Small-angle X-ray scattering KW - SAXS KW - Nanostructure KW - Reference Method KW - Colloid KW - Nanoparticle PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-648956 DO - https://doi.org/10.1016/j.jcis.2025.139530 SN - 0021-9797 VL - 705 SP - 1 EP - 25 PB - Elsevier Inc. AN - OPUS4-64895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kozachynskyi, Volodymyr A1 - Staubach, Dario A1 - Esche, Erik A1 - Biegler, Lorenz T. A1 - Repke, Jens-Uwe T1 - Parameter estimation in dynamic multiphase liquid–liquid equilibrium systems N2 - Modeling dynamic systems with a variable number of liquid phases is a challenging task, especially in scenarios where the model is designed for optimization tasks such as parameter estimation. Although there exist methods to model the appearance and disappearance of liquid phases in dynamic systems, they usually require integer variables. In this work, the smoothed continuous approach (SCA) is developed for use with a large number of solvers, since it relies only on continuous variables. To demonstrate the applicability of the new method, the SCA is then applied to model the batch esterification of acetic acid with 1-propanol to water and propyl acetate, and to estimate the reaction parameters. Since the mixture may separate into two liquid phases during the course of the reaction, the parameters are estimated with information on the liquid compositions of both separated liquid phases, which improves the accuracy of the parameter estimates and opens new possibilities for optimal experimental design. KW - Parameter Estimation KW - Uncertainty KW - Dynamic Modeling PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-650059 DO - https://doi.org/10.1016/j.compchemeng.2025.109485 SN - 0098-1354 VL - 206 SP - 1 EP - 16 PB - Elsevier Ltd. AN - OPUS4-65005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mikhlin, Yuri A1 - Muzikansky, Anya A1 - Zysler, Melina A1 - Thünemann, Andreas A1 - Zitoun, David T1 - Emerging electrochemistry of high-concentration colloids: Redox-activity, wide potential window and electrophoretic transport of iron oxide nanoparticles N2 - High-concentration, steric stabilizer free colloids and particularly their electrochemical behavior remains almost unexplored. Herein, we report on the electrochemistry (cyclic voltammetry, impedance spectroscopy, etc.) of highly concentrated aqueous colloidal dispersion up to 800 g/L of citrate-capped ∼11 nm Fe3-xO4 nanoparticles (NPs) without background electrolyte on glassy carbon electrodes. X-ray photoelectron spectroscopy was applied to analyze the reaction products. Solid-state Fe(II)/Fe(III) conversion was concluded to determine the cathodic and anodic faradaic reactions of the particles, with the currents depending on approximately square root of the concentration. The electrochemical reactions are coupled with the electrophoretic transfer of the negatively charged NPs on toward the anode, with the ohmic-type behavior in the bulk demonstrated by the nearly linear voltametric cathodic curves and frequency-independent impedance above ∼10–100 Hz. Accumulation and clogging of the NPs retards diffusion near anode. Hydrogen and especially oxygen evolution are arrested, and very large oxidation overpotentials result in extraordinary wide, up to 12 V, electrochemical window of water stability. The findings shed light onto basic features of the electrochemistry of high-concentration colloids without added electrolyte and their potential applications in redox flow batteries, electrophoretic deposition and beyond. KW - Nanoplastics KW - SAXS KW - Small-angle X-ray scattering PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-644340 DO - https://doi.org/10.1016/j.jcis.2025.139247 SN - 0021-9797 VL - 703 SP - 1 EP - 18 PB - Elsevier Inc. AN - OPUS4-64434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ferrari, Bruno A1 - Fantin, Andrea A1 - Said, D. A1 - Fitch, A. N. A1 - Suárez Ocano, Patricia A1 - Mishurova, Tatiana A1 - Roveda, Ilaria A1 - Kromm, Arne A1 - Darvishi Kamachali, Reza A1 - Bruno, Giovanni A1 - Evans, Alexander A1 - Requena, G. A1 - Agudo Jácome, Leonardo A1 - Serrano Munoz, Itziar T1 - The impact of scanning strategy on cell structures in PBF-LB/M/IN718: an in situ synchrotron x-ray diffraction study N2 - In additive manufacturing, any change of the process parameters, such as scanning strategy, directly affects the cooling rates, heat accumulation, and overall thermal history of the build. Consequently, parts built with different process parameters tend to have different levels of crystallographic texture, residual stress, and dislocation density. These features can influence the properties of the material and their development during post-processing operations. In this study, IN718 prisms were built by laser powder bed fusion (PBF-LB/M) using two different scanning strategies (continuous 67° rotations around the build direction, ROT, and alternating 0°/67° scans, ALT) to provide two different as-built conditions. In situ time-resolved synchrotron diffraction was performed during a solution heat treatment at 1027 °C for 1 h. Ex situ scanning electron microscopy was used to support and complement the in situ observations. An approach to quantify the effect of elemental microsegregation at the cell walls is developed based on the deconvolution of asymmetric γ-nickel matrix peaks. Following this approach, the scanning strategies are shown to affect the as-built fraction of cell walls in the material, resulting in a difference of approximately 5 %, in weight fraction, between ROT and ALT (19 % vs. 24 %, respectively). This microsegregation was observed to be rapidly homogenized during the heating ramp, and no significant changes to the peak shape in the γ peaks occurred during the isothermal part of the heat treatment, regardless of the scanning strategy. KW - Additive manufacturing KW - Inconel 718 KW - Synchrotron x-ray diffraction KW - Heat treatment KW - Laser powder bed fusion KW - Cellular microstructure PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-650958 DO - https://doi.org/10.1016/j.jmrt.2025.11.214 SN - 2238-7854 VL - 41 SP - 593 EP - 608 PB - Elsevier B.V. AN - OPUS4-65095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rossi, Andrea A1 - Corrao, Elena A1 - Alladio, Eugenio A1 - Drobne, Damjana A1 - Hodoroaba, Vasile-Dan A1 - Jurkschat, Kerstin A1 - Kononenko, Veno A1 - Madbouly, Loay Akmal A1 - Mrkwitschka, Paul A1 - Yasamin, Nakhli A1 - Novak, Sara A1 - Radnik, Jörg A1 - Saje, Špela A1 - Santalucia, Rosangela A1 - Sordello, Fabrizio A1 - Pellegrino, Francesco T1 - Multivariate optimization and characterization of graphene oxide via design of experiments and chemometric analysis N2 - Controlling the structure and properties of graphene oxide (GO) remains a challenge due to the poor reproducibility of conventional synthetic protocols and limited understanding of parameter-property relationships. In this study, we present an integrated analytical framework that combines Design of Experiments (DoE) with chemometric modelling to systematically assess the effects of eight synthesis variables on GO’s physicochemical and functional features. A Plackett–Burman experimental design enabled efficient screening of synthesis conditions, while comprehensive characterization (spanning UV–Vis spectroscopy, XPS, SEM–EDX, TEM–EDX, and XRD) was coupled with multivariate tools (Principal Component Analysis and Multiple Linear Regression) to identify statistically significant correlations between synthetic inputs and material responses. Notably, we demonstrate that UV–Vis spectra can serve as a robust proxy for oxidation state, offering a rapid and accessible alternative to surface-sensitive methods. The approach yields a predictive analytical toolkit for guiding GO synthesis and highlights a generalizable strategy for the rational design of flat nanomaterials. This work supports reproducible, resource-efficient material development aligned with Safe and Sustainable by Design (SSbD) principles. KW - Graphene oxide KW - 2D-materials KW - Design of Experiment KW - Synthesis KW - Chemometric analysis PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652576 DO - https://doi.org/10.1016/j.flatc.2025.100988 SN - 2452-2627 VL - 55 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-65257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mantouvalou, I. A1 - Bauer, L.J. A1 - Truong, V.-B. A1 - Wagener, Y. A1 - Förste, F. A1 - Maruchenko, O. A1 - Werner, S. A1 - Lizzi, F. A1 - Wieder, Frank A1 - Wolff, T. A1 - Kanngießer, B. A1 - Zaslansky, P. T1 - Quantitative micro-XRF combined with X-ray imaging reveals correlations between Zn concentration and dentin tubule porosity across entire teeth N2 - Bony materials are biogenic composites of protein fibers and mineral that create hierarchical structures. In the case of teeth, dentin is the main component and similar to other bones, it contains porosity at multiple length scales. It is traversed by micron-sized hollow channels known as dentinal tubules, essential for temperature and pain sensation. Tubule density and thus porosity vary throughout the macroscopic three-dimensional (3D) structure, with porosity increasing toward the pulp. The different densities in teeth are easily revealed non-destructively in 3D by X-ray imaging using computer tomography (CT). Yet elemental composition analysis is more difficult to obtain from within the centimeter-sized heterogeneous bulk material. We describe an approach of merging CT measurements of healthy, intact bovine teeth with micro-X-ray fluorescence (micro-XRF) images of matching serially sectioned slices. Through the combination of multi-resolution quantitative CT measurements with elemental mass fraction derivation, gradients in density and element distributions such as calcium (Ca), phosphorus (P), and zinc (Zn) are revealed across entire teeth in 3D. While the main constituents (Ca and P) are homogeneously distributed in the matrix, Zn concentration increases significantly and exponentially toward the pulp. We find an inverse association between dentin tissue density and Zn concentration localizing this element in or around tubules. Our data serve as a quantitative reference for density and Zn mass fractions in healthy, neither carious nor hypermineralized dentin, as a basis for comparisons across species in health and disease states. KW - Dentin density KW - Micro-computer tomography KW - Quantitative micro-X-ray fluorescence KW - Tubule porosity KW - Zn distribution PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654215 DO - https://doi.org/10.1002/VIW.20250173 SN - 2688-3988 SN - 2688-268X SP - 1 EP - 14 PB - Wiley Online Library AN - OPUS4-65421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klippel, Andrea A1 - Hofmann‐Böllinghaus, Anja A1 - Piechnik, Kira A1 - Heydick, Lukas A1 - Wu, Hongyi A1 - Köhler, Florian A1 - Klaffke, Benjamin T1 - Experimental Analysis of Fire Behavior in Pine Forests and Agricultural Fields: Large‐Scale Tests Conducted Within the European TREEADS Project N2 - Two large‐scale experiments investigated fire spread mechanisms in vegetation ground fires in a pine forest and an agricultural field within the European TREEADS project. The tests, conducted in Saxony‐Anhalt and Brandenburg, targeted regions with dry, sandy soils and extensive pine stands and aim to improve suppression strategies and wildfire research. The forest experiment was conducted on a 16 × 22 m plot with line ignition using a gasoline‐diesel mix. Fire spread was documented with drone‐based video and infrared imaging. Ninety‐six thermocouples and two gas sensors were mounted on trees, and a mobile FTIR spectrometer enabled real‐time smoke analysis. A tilled and foam‐treated strip prevented uncontrolled spread. Under stable weather conditions (23°C, light wind, low soil moisture), a consistent temperature rise and distinct combustion phases were observed. Smoldering dominated in areas with mosses, grasses, and deadwood, with intermittent flaming, limited flame heights (< 0.5 m), and substantial smoke production. Peak temperatures exceeded 500°C, and CO concentrations reached 238 ppm, though wind turbulence complicated gas sampling. The second experiment on a cut agricultural field near Nauen involved burning approximately 700 m2 using a 20 m ignition line aligned with wind direction. Drone‐based infrared monitoring captured rapid spread on the stubble surface. The results underscore the variability and measurement challenges of outdoor fires and highlight the necessity of continued large‐scale experiments to support physical and numerical wildfire modeling. These findings provide essential empirical data for evaluating vegetation‐specific burning behavior, improving sensor deployment strategies, and refining validation approaches for next‐generation wildfire spread models under central European fuel and weather conditions, and supporting decision‐making in wildfire management. KW - Wildfire KW - Pine KW - Crop PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654199 DO - https://doi.org/10.1002/fam.70045 SN - 0308-0501 SP - 1 EP - 11 PB - Wiley AN - OPUS4-65419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kanaris, Orestis A1 - Sobisch, Lydia-Yasmin A1 - Gödt, Annett A1 - Schreiber, Frank A1 - Nordholt, Niclas T1 - Consequences of benzalkonium chloride tolerance for selection dynamics and de novo resistance evolution driven by antibiotics N2 - Biocides are used in large amounts in industrial, medical, and domestic settings. Benzalkonium chloride (BAC) is a commonly used biocide, for which previous research revealed that Escherichia coli can rapidly adapt to tolerate BAC-disinfection, with consequences for antibiotic susceptibility. However, the consequences of BAC tolerance for selection dynamics and resistance evolution to antibiotics remain unknown. Here, we investigated the effect of BAC tolerance in E. coli on its response upon challenge with different antibiotics. Competition assays showed that subinhibitory concentrations of ciprofloxacin—but not ampicillin, colistin and gentamicin—select for the BAC-tolerant strain over the BAC-sensitive ancestor at a minimal selective concentration of 0.0013–0.0022 µg/mL. In contrast, the BAC-sensitive ancestor was more likely to evolve resistance to ciprofloxacin, colistin and gentamicin than the BAC-tolerant strain when adapted to higher concentrations of antibiotics in a serial transfer laboratory evolution experiment. The observed difference in the evolvability of resistance to ciprofloxacin was partly explained by an epistatic interaction between the mutations conferring BAC tolerance and a knockout mutation in ompF encoding for the outer membrane porin F. Taken together, these findings suggest that BAC tolerance can be stabilized in environments containing low concentrations of ciprofloxacin, while it also constrains evolutionary pathways towards antibiotic resistance. KW - AMR KW - Resistance evolution KW - Resistance selection PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653842 DO - https://doi.org/10.1038/s44259-025-00170-8 SN - 2731-8745 VL - 4 IS - 1 SP - 1 EP - 13 PB - Springer Science and Business Media LLC AN - OPUS4-65384 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schönsee, Eric A1 - Hüsken, Götz A1 - Kocherla, Amarteja A1 - Strangfeld, Christoph T1 - Influences of Surface Properties on the Reflection Intensity - Towards in Situ Monitoring During Early Age Hydration of CEM I N2 - Interlayer bonding in 3D concrete printing is influenced by the hydration progress and surface moisture of the previously printed layer. For effective quality control, continuous in situ monitoring of interlayer surface properties is required. This study investigated reflection intensity as a method for in situ measurements during the hydration of CEM I mixtures with varying retarder contents. Additional factors influencing the reflection intensity are also examined. Two laser line scanners with different wavelengths were used to track hydration over 72 h. Vicat tests and isothermal calorimetry served as reference methods. Across all the mixtures, the reflection intensity exhibited a repeatable pattern with five different stages. A sharp increase in intensity during the third stage was consistent with the acceleration period of hydration. These findings suggest that reflection intensity measurements could serve as a promising tool for evaluating interlayer bonding in 3D concrete printing. KW - In situ hydration monitoring KW - Cement KW - Optical methods KW - Reflection intensity KW - Additive manufacturing KW - Isothermal calorimetry PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653430 DO - https://doi.org/10.1007/s10921-025-01326-2 SN - 1573-4862 VL - 45 IS - 1 SP - 1 EP - 17 PB - Springer Nature AN - OPUS4-65343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wagner, Jan A1 - Häfner, P. A1 - Reimann, H.-A. A1 - Schartel, Bernhard T1 - Valorization of Natural Fibers in Flame Retarded Poly(lactic acid) N2 - Extensive research has explored natural fiber reinforced composites, typically focusing on a single fiber within a polymer matrix. Comprehensive comparisons across different natural fibers in the same polymer, which are critical for industrial material selection, remain limited. This work presents a systematic comparison of untreated hemp, flax, and sisal fibers incorporated at varying fiber lengths and loadings into flame retarded poly(lactic acid) (PLA). Fire behavior, thermal, and mechanical responses were investigated through thermogravimetry, UL 94, and cone calorimetry, alongside crystallinity, molecular weight (MW), and microstructural analysis. Fiber incorporation reduced the peak heat release rate (pHRR) by up to 30 % in 30 wt% hemp, attributed to protective layer formation, but increased flammability in UL 94. A phytic acid melamine salt combined with expandable graphite and 20 wt% hemp produced incomplete combustion at 50 kW/m², raising char residue from 4 to 24 wt% and halving pHRR. Petrella plots revealed that fiber addition alone lowered fire load and flashover propensity as effectively as phytic acid melamine; with hemp, phytic acid and expendable graphite, the flashover hazard and fire load were halved. MW was preserved while crystallinity and modulus increased with fiber content. Hemp delivered the most consistent reinforcement, while optimized processing enabled flax and sisal to improve stiffness. Performance gains were strongest when individual fibers were dispersed via optimized processing, preventing bundle fracture under load. Plasma modification of the fibers improved the maximum tensile strength in the composites. A practical guide is provided for valorizing natural fibers in PLA composites, demonstrating routes to bio-based, compostable materials with improved fire safety and mechanical performance suitable for industrial processing. KW - Poly(lactic acid) KW - Hemp KW - Sisal KW - Flax KW - Flame retardant KW - Phytic acid PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653038 DO - https://doi.org/10.1016/j.mtcomm.2025.114575 SN - 2352-4928 VL - 50 SP - 1 EP - 41 PB - Elsevier Ltd. AN - OPUS4-65303 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cairns, Warren R. L. A1 - Braysher, Emma C. A1 - Butler, Owen T. A1 - Cavoura, Olga A1 - Davidson, Christine M. A1 - Todoli Torro, Jose Luis A1 - von der Au, Marcus T1 - Atomic spectrometry update: review of advances in environmental analysis N2 - This review covers advances in the analysis of air, water, plants, soils and geological materials by a range of atomic spectrometric techniques including atomic emission, absorption, fluorescence and mass spectrometry. KW - Environmental analysis KW - Review KW - Trend Article PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653977 DO - https://doi.org/10.1039/D5JA90058A SN - 0267-9477 VL - 41 IS - 1 SP - 16 EP - 70 PB - Royal Society of Chemistry (RSC) AN - OPUS4-65397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stolar, Tomislav A1 - Alić, Jasna A1 - Casali, Lucia A1 - Gugin, Nikita A1 - Baláž, Matej A1 - Michalchuk, Adam A.L. A1 - Emmerling, Franziska ED - Stolar, Tomislav T1 - Mechanochemistry: Looking back and ahead N2 - Starting with the discovery of fire and the preparation of food in prehistoric times, mechanochemistry is the oldest form of chemistry that humans have controlled. Mechanochemical practices, such as grinding with a mortar and pestle, continued into the Middle Ages until dedicated scientific studies began in the 19th century. Since then,research in mechanochemistry has shown that many chemicalreactions can be performed via mechanical force without or with small amounts of solvent. Besides being time, material, and energy efficient, mechanochemical reactions often yield products that differ from those obtained in solution. Therefore, not only is mechanochemistry greener and more sustainable than conventional solution chemistry, but it also has the added value of providing new reactivity and selectivity. This is especially important today, when chemists need to invent high-performance materials, intermediates, and products with the use of sustainable feedstocks and develop environmental remediation pathways. At the same time, time-resolved in situ monitoring and computational modeling are necessary for addressing fundamental questions about the atomistic, molecular, and electronic nature of mechanochemical reactivity. Integrating digitalization, robotics, and artificial intelligence tools promises to increase the reproducibility and scalability of mechanochemical processes. Further evolution of mechanochemistry is expected to have a transformative effect on the chemical industry. KW - Mechanochemistry PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653962 DO - https://doi.org/10.1016/j.chempr.2025.102880 SN - 2451-9294 SP - 1 EP - 27 PB - Elsevier BV AN - OPUS4-65396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Onyenso, Gabriel A1 - AI-Zawity, Jiwar A1 - Farahbakhsh, Nastaran A1 - Schardt, Annika A1 - Yadigarli, Aydan A1 - Vakamulla Raghu, Swathi Naidu A1 - Engelhard, Carsten A1 - Müller, Mareike A1 - Schönherr, Holger A1 - Killian, Manuela S. T1 - Novel Ag-modified zirconia nanomaterials with antibacterial activity N2 - The outcome of an implant procedure largely depends on the implant's surface properties. Biomaterials are now designed to have surfaces with multifunctionality, such as favorable tissue integration and the ability to combat bacterial adhesion and colonization. Herein, we report on a simple approach to improve the antibacterial properties of zirconia nanotubes (ZrNTs) coatings by decorating with silver nanoparticles (AgNP), achieved through electrochemical anodization of a zirconium–silver alloy (Zr–Ag). The AgNPs were shown to partially consist of Ag2O, potentially enhancing the availability of Ag+ ions for antibacterial activity. The modified ZrNTs were characterized using SEM, EDS, ToF-SIMS, and XPS to determine their structural morphology and chemical composition, and were further subjected to antibacterial testing. The silver and zirconium ion release behavior was monitored via ICP-MS. ZrNTs decorated with AgNP exhibit strong antimicrobial activity (>99% bacterial killing) against both S. aureus and E. coli. Antimicrobial tests indicate that the antibacterial activity against the Gram-positive pathogen S. aureus was improved by a factor of 100 compared to unmodified ZrNTs, while unmodified ZrNTs already showed a comparable reduction of viable Gram-negative E. coli. This strategy illustrates a straightforward and effective modification that optimizes the interface between the host environment and the biomaterial surface to meet the very important criteria of biocompatibility and active antibacterial response. KW - Mass Spectrometry KW - Nanoparticles KW - Advanced Materials KW - ICP-MS KW - Antimicrobial material KW - ToF-SIMS PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653990 DO - https://doi.org/10.1039/d5ra07099f SN - 2046-2069 VL - 16 IS - 3 SP - 2286 EP - 2297 PB - Royal Society of Chemistry (RSC) AN - OPUS4-65399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schiaroli, Alice A1 - Camplese, Davide A1 - Scarponi, Giordano Emrys A1 - Eberwein, Robert A1 - Ustolin, Federico A1 - Cozzani, Valerio T1 - Modelling the behaviour of cryogenic liquid hydrogen tanks engulfed in fire N2 - The safe use of liquid hydrogen as a clean fuel requires a deep understanding of its behaviour in accident scenarios. Among other scenarios, the possible involvement of cryogenic liquid hydrogen tanks in engulfing fires is of particular concern, due to the potentially severe consequences. This study proposes a computational fluid dynamic model suitable to simulate the behaviour of liquid hydrogen tanks equipped with multi-layer insulation (MLI) engulfed in fire. An original approach has been developed to assess the progressive degradation of the performance of the thermal insulation, that is crucial in determining the tank pressurization and failure. The model is validated against full-scale experimental fire tests. The outcomes of the model reproduce the progressive pressurization and the opening time of the pressure relief valve within 2 % error. The results demonstrate the importance of accounting for the dynamic evolution of the progressive degradation of the insulation when evaluating tank pressurization, and they highlight the limitations of empirical, simplified state-of-the-art approaches. Furthermore, the analysis evidences the key role of the fire temperature in governing tank response, stressing the need for proper fire characterization to support reliable modelling of fire scenarios and the development of emergency planning and mitigation strategies ensuring the structural integrity of liquid hydrogen tanks during fire attacks. KW - LH2 KW - LNG KW - Fire KW - Tank PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652920 DO - https://doi.org/10.1016/j.psep.2025.108319 SN - 0957-5820 VL - 206 SP - 1 EP - 14 PB - Elsevier Ltd. AN - OPUS4-65292 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haugen, Øyvind P. A1 - Polanco-Garriz, Itziar A1 - Alcolea-Rodriguez, Victor A1 - Portela, Raquel A1 - Bæra, Rita A1 - Sadeghiankaffash, Hamed A1 - Hildebrandt, Jana A1 - Ciornii, Dmitri A1 - Altmann, Korinna A1 - Barbero, Francesco A1 - Fenoglio, Ivana A1 - Reinosa, Julián J. A1 - Fernández, José F. A1 - Katsumiti, Alberto A1 - Camassa, Laura M.A. A1 - Wallin, Håkan A1 - Zienolddiny-Narui, Shan A1 - Afanou, Anani K. T1 - Activation of Toll-like receptor 2 reveals microbial contamination beyond endotoxins on micro- and nanoplastics N2 - Current literature on health hazards associated with micro- and nanoplastics (MNPs) is largely influenced by studies that insufficiently account for potential microbial contamination of their test materials. This may lead to misinterpretation of outcomes, as the test materials may be incorrectly considered pristine MNPs. The present study screened eight MNP test materials for microbial contaminants using Toll-like receptor (TLR) reporter cells for TLR2 and TLR4 and the commonly used Limulus amebocyte lysate (LAL) assay. Our results show that MNPs testing negative for endotoxins, based on the absence of TLR4 activation and negative LAL results, may still contain microbial ligands that selectively activate TLR2. Moreover, five of the eight MNP test materials contained microbial ligands capable of activating TLR2 and/or TLR4. Compared to the LAL assay, TLR4-based screening effectively detected endotoxin contamination. Overall, we found that the TLR reporter cell assay provides broader coverage than the LAL assay in detecting microbial ligands, which appear to be highly prevalent in MNP test materials. KW - Nanoplastics KW - Microplastics KW - Microbial contamination PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653286 DO - https://doi.org/10.1016/j.tiv.2025.106190 SN - 0887-2333 VL - 112 SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-65328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Yi A1 - Xue, Boyang A1 - Riedel, Jens T1 - Enhancement of LIBS plasma in air with organic solvent vapors N2 - Laser-induced breakdown spectroscopy (LIBS) offers versatile, field-deployable elemental analysis; however, compact, high-repetition-rate nanosecond laser systems typically face constraints in power consumption and size, often compromising emission intensity and thus analytical performance. We demonstrate a significant improvement in LIBS signals through the controlled introduction of common organic solvent vapors into a sheath gas, with a diode-pumped solid-state laser (1064 nm, 2–28 kHz repetition rate, 450–600-μJ pulse energy). Optical and acoustic diagnostics reveal up to ca. 40-fold enhancement of the N II emission line at 567 nm when ambient air serves as the analyte. Maximal enhancement occurs at intermediate repetition rates of ca. 15 kHz, particularly at pulse energies approaching the optical breakdown threshold; this observation suggests a viable strategy for operating LIBS at lower pulse energies and higher repetition rates. Enhancement effects scale jointly with both vapor pressure and ionization energy of the organic species, with acetone and toluene markedly outperforming methanol and isopropanol. These findings provide a rational foundation for significantly improving the analytical performance of portable LIBS instruments without exceeding platform-specific constraints. KW - LIBS PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653758 DO - https://doi.org/10.1016/j.sab.2025.107309 SN - 0584-8547 VL - 236 SP - 1 EP - 6 PB - Elsevier B.V. AN - OPUS4-65375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Holzer, Marco A1 - Johansen, Sidsel M. A1 - Christensen, Johan F.S. A1 - Smedskjaer, Morten M. A1 - Cicconi, Maria Rita A1 - de Ligny, Dominique A1 - Müller, Ralf A1 - de Camargo, Andrea S.S. A1 - Maaß, Robert T1 - Direct connection between secondary relaxation mode and fracture toughness in alkali-aluminosilicate glasses N2 - Oxide glasses are intrinsically brittle, lacking sufficient atomic-scale mechanisms that can relax mechanical stresses in the vicinity of a propagating crack. As a result, fracture is typically well-captured by considering local bond rupture at the crack tip. Here we demonstrate that barrier energies related to the low-temperature 𝛾-relaxation mode in alkali-aluminosilicate glasses are inversely related to the fracture toughness measured via standardized three-point bending fracture experiments. This holds true for both a series with varying cations (Li, Na, K) and one with varying Li concentration. The structural rationale for this finding is gained via Raman spectroscopy. The findings suggest that a fundamental structural relaxation mode measured on bulk specimens can serve as an effective guideline for fracture toughness of oxide glasses. Data for additional silicate glasses support this conclusion. KW - Fracture toughness KW - Oxide glass KW - Mechanical properties KW - Alkali-aluminosilicate glasses KW - Internal friction PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-651540 DO - https://doi.org/10.1016/j.mtadv.2025.100669 SN - 2590-0498 VL - 29 SP - 1 EP - 10 PB - Elsevier Ltd. CY - Amsterdam, Niederlande AN - OPUS4-65154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rashidi, Reza A1 - Vaerst, Olivia A1 - Riechers, Birte A1 - Rösner, Harald A1 - Wilde, Gerhard A1 - Maaß, Robert T1 - Atomic-scale strain fluctuations as an origin for elastic microstructures in metallic glasses N2 - Metallic glasses (MGs) exhibit an elastic microstructure that spans from a few to hundreds of nanometers, the origin of which continues to remain poorly understood. Here we employ four-dimensional scanning transmission electron microscopy (4D-STEM) on a Zr65Cu25Al10 (at. %) bulk MG. Mapping local diffraction patterns over representative areas also probed elastically with automated nanoindentation, two comparable correlation length scales have been identified. Specifically, local diffraction patterns are analyzed with respect to their ellipticity, revealing systematic fluctuations between positive and negative volumetric strains. A power spectrum analysis of the strain fluctuations returns a dominant length scale of the order of 100 nm, which is very much compatible with what elastic property mapping indicates. Annealing reduces the magnitude of the statistical strain fluctuations, without strongly affecting the associated fluctuation length scale. These findings demonstrate that atomic-scale strains are very likely the origin of the structurally unexpected large elastic fluctuations obtained in nanoscale contact mechanics experiments. KW - Metallic glass KW - 4D-STEM KW - Strain anisotropy KW - Nanoindentation KW - Elastic microstructure KW - Heterogeneities PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654991 DO - https://doi.org/10.1016/j.actamat.2026.121982 SN - 1359-6454 VL - 308 SP - 1 EP - 8 PB - Elsevier Inc. AN - OPUS4-65499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gaal, Mate A1 - Wernicke, Pascal T1 - Improved air-coupled ultrasonic transmission using pulse compression N2 - Air-coupled ultrasonic testing avoids contamination and reduces maintenance costs, but suffers from poor signal-to-noise ratio (SNR) due to impedance mismatch. Rather than developing new transducers, this study improves SNR through signal processing by adapting pulse compression from radar.We propose a method using unipolar square pulses to make pulse compression compatible with non-linear transducers such as ferroelectrets and thermoacoustic emitters. Instead of relying on analytical models, a reference transmission measurement served as the matched filter, simplifying implementation and ensuring adaptability across transducer types. We evaluated unipolar coded excitation and pulse compression on ultrasonic transmission through a 25mm polyvinyl chloride plate, varying code length and pulse delay. Significant SNR gains were observed across transducers, particularly with longer delays. These results confirm that pulse compression enhances peak localization and supports testing under low-SNR conditions. Further experiments showed that pulse compression remains effective despite side lobe overlap and noise, provided the pulse delay is chosen appropriately. Although SNR prediction is limited by electrical and acoustic interference, the method consistently improves detection. Overall, the results demonstrate the feasibility of unipolar excitation coding for pulse compression in air-coupled ultrasonic testing, with practical value for thick or attenuating materials. KW - Air-coupled ultrasound KW - Coded excitation KW - Pulse compression KW - Transducers PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-655005 DO - https://doi.org/10.1109/OJUFFC.2026.3659047 SN - 2694-0884 VL - 6 SP - 9 EP - 16 PB - Institute of Electrical and Electronics Engineers (IEEE) AN - OPUS4-65500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gerrits, Ruben A1 - Stepec, Biwen An A1 - Bäßler, Ralph A1 - Becker, Roland A1 - Dimper, Matthias A1 - Feldmann, Ines A1 - Goff, Kira L. A1 - Günster, Jens A1 - Hofmann, Andrea A1 - Hesse, René A1 - Kirstein, Sarah A1 - Klein, Ulrich A1 - Mauch, Tatjana A1 - Neumann-Schaal, Meina A1 - Özcan Sandikcioglu, Özlem A1 - Taylor, Nicole M. A1 - Schumacher, Julia A1 - Shen, Yin A1 - Strehlau, Heike A1 - Weise, Matthias A1 - Wolf, Jacqueline A1 - Yurkov, Andrey A1 - Gieg, Lisa M. A1 - Gorbushina, Anna T1 - A 30-year-old diesel tank: Fungal-dominated biofilms cause local corrosion of galvanised steel N2 - The increased use of biodiesel is expected to lead to more microbial corrosion, fouling and fuel degradation issues. In this context, we have analysed the metal, fuel and microbiology of a fouled diesel tank which had been in service for over 30 years. The fuel itself, a B7 biodiesel blend, was not degraded, and—although no free water phase was visible—contained a water content of ~60 ppm. The microbial community was dominated by the fungus Amorphotheca resinae, which formed thick, patchy biofilms on the tank bottom and walls. The tank sheets, composed of galvanised carbon steel, were locally corroded underneath the biofilms, up to a depth of a third of the sheet thickness. On the biofilm-free surfaces, Zn coatings could still be observed. Taken together, A. resinae was shown to thrive in these water-poor conditions, likely enhancing corrosion through the removal of the protective Zn coatings. KW - Fungal biofilms KW - Biodiesel degradation mechanisms PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-655014 DO - https://doi.org/10.1038/s41529-025-00731-2 SN - 2397-2106 VL - 10 IS - 1 SP - 1 EP - 14 PB - Springer Science and Business Media LLC AN - OPUS4-65501 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gladrow, K. A1 - Unkovskiy, A. A1 - Yassine, J. A1 - Gaertner, N. A1 - Topolniak, Ievgeniia A1 - Henning, N. A1 - Schmidt, F. T1 - The effect of nitrogen atmosphere during post-curing on cytotoxicity, polishability, flexural strength, and surface hardness of 3D-printed denture bases: an in vitro study N2 - 3D printing is increasingly utilized in dentistry. Compared to traditional manufacturing methods, 3D printing provides advantages such as faster production times and the ability to create complex structures. Although biocompatible materials are available, many are only suitable for temporary applications. This study examines the impact of nitrogen-aided post-processing on the mechanical properties and cytotoxicity of 3D-printed denture bases, with the hypothesis that this post-processing will enhance material properties and decrease cytotoxicity. Specimens were fabricated from V-print dentbase (Voco GmbH, Cuxhaven, Germany) and post-processed either in nitrogen or air. The specimens were categorized into aged and non-aged groups. For comparison, specimens made from milled material were utilized. Vickers hardness, flexural strength, polishability, cytotoxicity, and degree of conversion were then assessed for all groups. The data were analyzed using a one-way ANOVA and Tukey HSD test for multiple comparisons, with a significance threshold of p < 0.05. Post-curing with nitrogen improved the degree of conversion, surface hardness, and biocompatibility of 3D-printed dental materials, confirming reduced cytotoxicity without impairing mechanical properties. Nitrogen increased polymerization and decreased harmful monomers, making it ideal for clinical applications in contact with the oral mucosa. Optimizing post-processing steps, such as curing in nitrogen, enhances biocompatibility while maintaining strength and hardness, ensuring better patient care in dental applications. KW - Biocompatibility KW - V-Print KW - Cytotoxicity KW - Nitrogen KW - Dentistry PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654504 DO - https://doi.org/10.1007/s10856-026-07006-5 SN - 1573-4838 VL - 37 IS - 1 SP - 1 EP - 13 PB - Springer Science and Business Media LLC AN - OPUS4-65450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hübner, Martin A1 - Dittmann, Florian A1 - Kromm, Arne A1 - Varfolomeev, Igor A1 - Kannengiesser, Thomas T1 - Enhancement of the fatigue strength by application of a low transformation temperature (LTT) welding consumable N2 - Low transformation temperature (LTT) welding consumables offer a possibility to enhance fatigue strength in welded components without post-treatment. By lowering the martensite start temperature (MS), the volume expansion during transformation near ambient temperature reduces welding related tensile residual stresses in fatigue-critical areas. To evaluate this effect, longitudinal stiffeners were used, a LTT and conventional filler serve as welding consumable, also high frequency mechanical impact (HFMI) treatment was carried out. Three single-pass and six additional-pass sample series were investigated on residual stress and fatigue strength. The additional welds were applied in fatigue crack critical areas with different weld shapes, achieved by varying welding parameters. Mechanical tests on reference samples evaluated the properties of the diluted LTT welds. Although reduced toughness was observed, no fatigue cracks occurred in LTT single-pass weld roots. The fatigue strength at two million cycles increased from 81 MPa to 121 MPa compared to conventional welds, while HFMI reached 146 MPa. With an additional LTT weld pass the results varied from 138 MPa to 196 MPa, depending to the shape and residual stress state. The results show that LTT fillers effectively enhance fatigue performance, and that weld geometry and parameter selection are as critical as the chemical composition for maximizing the LTT effect. CY - Genua, Italy DA - 22.06.2025 KW - Low transformation temperature (LTT) KW - Martensite start temperature KW - Residual stress KW - Longitudenal stiffener KW - Fatigue strength PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654520 DO - https://doi.org/10.1007/s40194-026-02356-8 SP - 1 EP - 14 PB - Springer Nature AN - OPUS4-65452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kleba-Ehrhardt, Rafael A1 - Dávila, Josué A1 - Geissler, Johann A1 - Mohr, Gunther A1 - Schmidt, Johannes A1 - Heinze, Christoph A1 - Hilgenberg, Kai A1 - Gurlo, Aleksander A1 - Karl, David T1 - Influence of Haynes 282 powder oxidation on powder properties and component quality in laser powder bed fusion N2 - Reuse of powder in powder bed additive manufacturing is a common practice to enhance sustainability and reduce costs. However, the reusability of metal powder is limited by the oxidation of the powders. Even in a protective atmosphere, each build job leads to gradual oxidation of the powder, which has led to concerns about its impact on powder and part properties. Consequently, strict confidence intervals for oxygen content in nickel-based alloy feedstocks are enforced in the industry. Despite this, there is currently a lack of in-depth studies investigating the specific influence of oxygen on Haynes 282, a widely used nickel-based alloy. This study examines artificially aged Haynes 282 powder batches with oxygen content of 160 ppm, 330 ppm, 1050 ppm, and 1420 ppm. Detailed powder characterization was performed, including morphology, chemical composition, particle size, flowability, and packing behavior. Components were fabricated via PBF-LB/M to evaluate density and mechanical properties. The results showed that higher oxidation levels improved powder flowability and packing density. However, in manufactured parts, irregular melt tracks and increased surface roughness were observed, which could easily be removed by post-processing. No significant differences in density or mechanical properties at room temperature, such as tensile strength and elongation, were found. These findings indicate that H282 powder potentially remains suitable for reuse, even when the batches exhibit increased oxygen content, supporting discussions on revising the existing oxygen content confidence intervals for nickel-based alloys. The results highlight the potential for optimizing recycling strategies and reducing material waste in additive manufacturing processes. KW - Additive manufacturing KW - Powder bed fusion KW - Powder characterization KW - Powder oxidation KW - Powder recycling PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654545 DO - https://doi.org/10.1016/j.addma.2025.105050 SN - 2214-8604 VL - 116 SP - 1 EP - 16 PB - Elsevier B.V. AN - OPUS4-65454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartczak, Dorota A1 - Sikora, Aneta A1 - Goenaga-Infante, Heidi A1 - Altmann, Korinna A1 - Drexel, Roland A1 - Meier, Florian A1 - Alasonati, Enrica A1 - Lelong, Marc A1 - Cado, Florence A1 - Chivas-Joly, Carine A1 - Fadda, Marta A1 - Sacco, Alessio A1 - Rossi, Andrea Mario A1 - Pröfrock, Daniel A1 - Wippermann, Dominik A1 - Barbero, Francesco A1 - Fenoglio, Ivana A1 - Booth, Andy M. A1 - Sørensen, Lisbet A1 - Igartua, Amaia A1 - Wouters, Charlotte A1 - Mast, Jan A1 - Barbaresi, Marta A1 - Rossi, Francesca A1 - Piergiovanni, Maurizio A1 - Mattarozzi, Monica A1 - Careri, Maria A1 - Caebergs, Thierry A1 - Piette, Anne-Sophie A1 - Parot, Jeremie A1 - Giovannozzi, Andrea Mario T1 - Multiparameter characterisation of a nano-polypropylene representative test material with fractionation, light scattering, high-resolution microscopy, spectroscopy, and spectrometry methods N2 - Reference and quality control materials with comparable physicochemical properties to nanoplastic contaminants present in environmental and food nanoplastics are currently lacking. Here we report a nanoplastic polypropylene material prepared using a top-down approach involving mechanical fragmentation of larger plastics. The material was found to be homogeneous and stable in suspension and has been characterised for average particle size, size distribution range, particle number concentration, polypropylene mass fraction and inorganic impurity Content using a wide range of analytical methods, including AF4, cFFF, PTA, (MA)DLS, MALS, SEM, AFM, TEM, STEM, EDS,Raman, ICP-MS and pyGC-MS. The material was found to have a broad size distribution, ranging from 50 nm to over 200 nm, with the average particle size value dependent on the technique used to determine it. Particle number concentration ranged from 1.7–2.4 × 1010 g−1 , according to PTA. Spectroscopy techniques confirmed that the material was polypropylene, with evidence of aging due to an increased level of oxidation. The measured mass fraction was found to depend on the marker used and ranged between 3 and 5 μg g−1 . Inorganic impurities such as Si, Al, Mg, K, Na, S, Fe, Cl and Ca were also identified at ng g−1 levels. Comparability and complementarity across the measurement methods and techniques is also discussed. KW - Polypropylene KW - Nanoplastics KW - Analytics KW - Reference material KW - Scattering methods PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654680 DO - https://doi.org/10.1039/D5EN00917K SN - 2051-8153 SP - 1 EP - 15 PB - Royal Society of Chemistry (RSC) AN - OPUS4-65468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Avila Calderon, Luis Alexander A1 - Schriever, Sina A1 - Hang, Y. A1 - Olbricht, Jürgen A1 - Portella, P. D. A1 - Skrotzki, Birgit T1 - Creep reference data of single-crystal Ni-based superalloy CMSX-6 N2 - The article presents creep data for the single-crystal, [001]-oriented nickel-based superalloy CMSX-6, tested at a temperature of 980 °C under initial stresses ranging from 140 MPa to 230 MPa. The constant-load creep experiments were performed in accordance with DIN EN ISO 204:2019–4 standard within an ISO 17025 accredited laboratory. A total of 12 datasets are included, each of which includes the percentage creep extension as a function of time. The data series and associated metadata were systematically documented using a data schema specifically developed for creep data of single-crystal Ni-based superalloys. This dataset serves multiple purposes: it can be used to compare with one's own creep test results on similar materials, to verify testing setups (e.g., by replicating tests on the same or comparable materials), to calibrate and validate creep models, and to support alloy development efforts. KW - NFDI MatWerk KW - Referenzdaten KW - Kriechen KW - CMSX-6 KW - Digitalisierung PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654056 DO - https://doi.org/10.1016/j.dib.2025.112436 VL - 65 SP - 1 EP - 11 PB - Elsevier AN - OPUS4-65405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rahner, E. A1 - Thiele, T. A1 - Voss, Heike A1 - Müller, F.A. A1 - Bonse, Jörn A1 - Gräf, S. T1 - Objective, high-throughput regularity quantification of laser-induced periodic surface structures (LIPSS) N2 - The growing demand for precise surface functionalization through laser-generated periodic surface structures highlights the necessity for efficient, reproducible, and objective evaluation methods to evaluate their structural regularity. We introduce ReguΛarity (v.1.2.7), a freely available, Python-based software with a graphical user interface for the automated, quantitative assessment of the regularity of laser-induced periodic surfaces structures (LIPSS), obtained from optical microscopy, SEM, or AFM. The software integrates image segmentation, one- and two-dimensional Fourier analyses, and gradient-based orientation determination to facilitate a comprehensive regularity analysis of grating-like (quasi-)periodic surface patterns with spatial periods Λ. This is achieved through the proposed regularity tuple R, composed of five key parameters: the normalized spread of the spatial period RΛ,2D (from 2D-FT), the normalized variation of the most frequent spatial period RΛ (from 1D-FT), the Gini coefficient G, the Dispersion of the LIPSS Orientation Angle δθ (DLOA), and the mean phase deviation . To demonstrate its applicability, we compare ideal sinusoidal patterns with SEM images obtained from LIPSS on stainless steel (AISI 316L) and aluminum alloy (AlMg5) surfaces, confirming the software’s ability to objectively distinguish between varying levels of structural regularity. ReguΛarity facilitates high-throughput analysis and data-driven process optimization in surface engineering and laser materials processing. KW - Laser-induced periodic surface structures (LIPSS) KW - Image processing KW - Regularity quantification KW - Fourier analysis KW - Structural homogeneity PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654070 DO - https://doi.org/10.1016/j.apsusc.2026.165919 SN - 0169-4332 VL - 726 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-65407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pittrich, Tim A1 - Jansen, Daniel A1 - Weise, Frank A1 - Stelzner, Ludwig A1 - Dehn, Frank T1 - Thermal decomposition in blended cement systems and its effect on fire-induced concrete spalling: Insights from XRD and TGA N2 - Blended cements are gaining increasing popularity due to their lower CO2-footprint in comparison to ordinary Portland cement (OPC). However, this growing use raises the potential risk of buildings made with blended cement concrete being exposed to fire, which can lead to heavy damages caused by explosive concrete spalling. It has already been shown that the cement type strongly influences the fire-induced concrete spalling and the thermally induced moisture transport, however, to understand the mechanisms behind these findings the thermal decomposition behavior of the cementitious matrix must be investigated more systematically. Therefore, the phase content of three blended cement pastes (CEM II/A-LL, CEM III/A and CEM II/B-Q) was studied in comparison with a Portland cement paste (CEM I) after temperature exposure to 20 ◦C, 105 ◦C, 300 ◦C and 500 ◦C. Clear differences in the initial phase composition and their dehydration behavior between the individual cement types were recognized. In conclusion, blended cements showed lower amounts of AFt and AFm phases and additionally lower amounts of portlandite and C-(A)-S-H were found in CEM III/A and CEM II/B-Q pastes. The results suggest that higher AFt and AFm contents in CEM I, which are associated with greater water release at relatively low temperatures may ultimately reduce the spalling risk. Furthermore, C-(A)-S-H in CEM III/A and CEM II/B-Q showed increased thermal stability and large amounts of non-hydrated phases were found in every blended cement paste. Both of those aspects might contribute to thermomechanical spalling and the overall increased spalling susceptibility observed in blended cement concrete. KW - Fire concrete spalling KW - High temperatures KW - Blended cements KW - Dehydration KW - XRD KW - TGA PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653698 DO - https://doi.org/10.1016/j.cscm.2026.e05784 SN - 2214-5095 VL - 24 SP - 1 EP - 14 PB - Elsevier Ltd. AN - OPUS4-65369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Robens-Radermacher, Annika A1 - Schmidt, Wolfram A1 - Unger, Jörg F. A1 - Mezhov, Alexander T1 - Characterization of temperature influence on the structural build-up of 3D printed concrete N2 - 3D concrete printing technologies enhance design freedom while reducing material use and costs without the need for formwork. Thereby, structural build-up is the key property governing stability and early strength evolution of 3D printed concrete after placement. Structural build-up is influenced by various factors, i.e., environmental conditions such as temperature. In this paper, the influence of ambient temperature on structural build-up was investigated through experimental and numerical approaches. Three experimental setups (small amplitude oscillatory shear, constant shear rate, and small amplitude oscillatory extensional tests) were applied to materials of increasing complexity under varying temperature conditions. A common modeling framework based on the maturity approach was developed to capture the time and temperature evolution. A stochastic framework was employed to estimate the unknown model parameters using experimental data. Experimental results demonstrate a significant temperature influence on structural build-up, consistent across all test setups and materials. The calibrated models successfully predict the structural build-up under different temperatures, confirming the applicability of the maturity approach to rheological parameters at early age. Furthermore, the stochastic parameter estimation allows a correct quantification of the uncertainties, enhancing model reliability. The comparison of two time evolution formulations indicates that a model with an additional linear stage is required for predicting the increase of the storage moduli ( $${G}{\prime}$$ G ′ , $${E}{\prime}$$ E ′ ). In conclusion, the study demonstrates that temperature significantly affects the structural build-up, and that the proposed modeling approach allows to predict this behavior. KW - Structural build-up KW - 3D concrete printing KW - Rheology KW - Temperature influence KW - Modeling KW - Green intelligent building PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654138 DO - https://doi.org/10.1617/s11527-025-02931-3 SN - 1359-5997 VL - 59 IS - 2 SP - 1 EP - 20 PB - Springer Science and Business Media LLC AN - OPUS4-65413 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yu, Jialu A1 - Oelze, Marcus A1 - Schannor, Mathias A1 - Nordstad, Simon A1 - Vogl, Jochen T1 - New Potential Haematite and Magnetite Reference Materials for Iron Isotope Measurements by Solution Nebulisation MCICPMS and by In Situ nsLAMCICPMS N2 - Iron isotope ratios of haematite (Fe2O3) and magnetite (Fe3O4) provide insights into geochemical, environmental and planetary processes. In most studies, Fe isotope measurements are commonly performed using solution nebulisation multi-collector inductively coupled plasma-mass spectrometry (SN-MC-ICP-MS). Nanosecond laser ablation multi-collector inductively coupled plasma-mass spectrometry (ns-LA-MC-ICP-MS) requires minimal sample preparation, and provides spatially resolved variation of iron isotopes at micro-scale. However, homogeneous and matrix-matched haematite/magnetite reference materials are lacking for precise in situ isotopic measurement. The iron isotope ratios of two potential reference materials resembling natural haematite (HMIE-NP-B01) and natural magnetite (MAKP-NP-B01) were characterised. Size fractions between 5–63 μm of the powdered Fe oxides were milled to nanoparticles, freeze-dried, homogenised, and pressed into pellets. The materials were then evaluated using SN-MC-ICP-MS and LA-MC-ICP-MS. Sample powders of the two materials were measured by SN-MC-ICPMS after sample digestion and column separation and pressed pellets were analysed directly via ns-LA-MC-ICP-MS. In both cases iron isotope delta values are reported relative to the certified reference material IRMM-014, used as the bracketing standard (calibrator). The solution measurements yielded δ56Fe values of -0.25 ± 0.08‰ (N = 13, 2s) for HMIE-NP-B01, and -0.05 ± 0.09‰ (N = 12, 2s) for MAKP-NP-B01, considered as the preferred Fe isotope delta values. In situ isotopic analysis via ns-LA-MC-ICP-MS yielded δ56Fe values of -0.28 ± 0.28‰ (N = 19, 2s) for HMIE-NP-B01 and -0.12 ± 0.24‰ (N = 22, 2s) for MAKP-NP-B01, consistent with the solution Fe isotope data. The homogeneity of Fe isotopes of the pellets was evaluated by ns-LA-MC-ICP-MS analyses of three different positions to further confirm that both materials are isotopically homogeneous. Both materials can be considered as potential quality control and bracketing reference materials for Fe isotopic measurements by in situ ns-LA-MC-ICP-MS analysis. KW - Laser ablation KW - Fe isotope KW - Fe-oxides PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654755 DO - https://doi.org/10.1111/ggr.70037 SN - 1639-4488 SP - 1 EP - 12 PB - John Wiley & Sons Ltd. AN - OPUS4-65475 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schusterbauer, Robert A1 - Mrkwitschka, Paul A1 - Sahre, Mario A1 - Corrao, Elena A1 - Zurutuza, Amaia A1 - Doolin, Alexander A1 - Pellegrino, Francesco A1 - Radnik, Jörg A1 - Donskyi, Ievgen S. A1 - Hodoroaba, Vasile-Dan T1 - Correlative Chemical Imaging to Reveal the Nature of Different Commercial Graphene Materials N2 - Proper physicochemical characterization of advanced materials and complex industrial composites remains a significant challenge, particularly for nanomaterials, whose nanoscale dimensions and mostly complex chemistry challenge the analysis. In this work, we employed a correlative analytical approach that integrates atomic force microscopy (AFM), scanning electron microscopy (SEM) coupled with energy‐dispersive X‐ray spectroscopy (EDS), time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS), Auger electron spectroscopy (AES), and Raman spectroscopy. This combination enables detailed chemical and structural characterization with sub‐micrometer spatial resolution. Three commercial graphene‐based materials of varying complexity were selected and investigated to test the analytical performance of this approach. Furthermore, one of the commercial graphene oxide samples was chemically functionalized via amination and fluorination. This allowed us to assess how surface modifications influence both the material properties and the limits of the applied analytical techniques. KW - Analytical methods KW - Commercial products KW - Correlative analysis KW - Graphene KW - Surface imaging PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654765 DO - https://doi.org/10.1002/smtd.202502344 SN - 2366-9608 SP - 1 EP - 10 PB - Wiley VHC-Verlag AN - OPUS4-65476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gugin, Nikita A1 - Schwab, Alexander A1 - Carraro, Francesco A1 - Tavernaro, Isabella A1 - Falkenhagen, Jana A1 - Villajos, Jose A1 - Falcaro, Paolo A1 - Emmerling, Franziska T1 - ZIF-8-based biocomposites via reactive extrusion: towards industrial-scale manufacturing N2 - Mechanochemistry, a sustainable synthetic method that minimizes solvent use, has shown great promise in producing metal–organic framework (MOF)-based biocomposites through ball milling. While ball milling offers fast reaction times, biocompatible conditions, and access to previously unattainable biocomposites, it is a batch-type process typically limited to gram-scale production, which is insufficient to meet commercial capacity. We introduce a scalable approach for the continuous solid-state production of MOF-based biocomposites. Our study commences with model batch reactions to examine the encapsulation of various biomolecules into Zeolitic Imidazolate Framework-8 (ZIF-8) via hand mixing, establishing a foundation for upscaling. Subsequently, the process is scaled up using reactive extrusion, enabling continuous and reproducible kilogram-scale production of bovine serum albumin (BSA)@ZIF-8 with tunable protein loading. Furthermore, we achieve the one-step formation of shaped ZIF-8 extrudates encapsulating clinical therapeutic hyaluronic acid (HA). Upon release of HA from the composite, the molecular weight of HA is preserved, highlighting the industrial potential of reactive extrusion for the cost-effective and reliable manufacturing of biocomposites for drug-delivery applications. KW - Mechanochemistry KW - Extrusion KW - Biocompoites KW - MOFs PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654777 DO - https://doi.org/10.1039/D5TA08276E SN - 2050-7496 SP - 1 EP - 14 PB - Royal Society of Chemistry AN - OPUS4-65477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kästle, Emanuel D. A1 - Duffner, Eric A1 - Popiela, Bartosz A1 - Ghaznavi, Ali T1 - Monitoring Failure of Composite Pressure Vessels with Acoustic Emissions N2 - Two carbon fiber reinforced type IV pressure vessels are subjected to step-wise pressurization until burst, while monitored using acoustic emissions (AE). Unlike most prior studies, AE data is collected throughout the entire damage progression. The vessels, manufactured with differing parameters, failed in distinct composite layers – A-type in the hoop layers and B-type in the helical layers. The AE signals are evaluated to study material degradation and identify fiber breaks as signs of critical damage accumulation. The signals are distributed randomly across the surface, with localized accumulation only minutes before rupture, close to the rupture plane. The difference in manufacturing parameters did not result in any clear difference in the AE activity. Felicity and Shelby ratios show consistent decline with increasing pressure, suggesting potential for damage assessment and burst prediction. It is discussed how these ratios are affected by coupling quality of the AE sensors, the shape of the pressurization profile and prior loadings. Different signal features based on the amplitude and the frequency content are extracted for a classification into failure mechanisms. Based on previous studies, AE signals corresponding to fiber breaks have a characteristic high-frequency spectrum and show a delay in occurrence, with an increase in the number of breaking fibers towards the end of the experiment. Indeed, high frequency signals tend to occur later and signals in specific peak-frequency ranges (350 – 400 kHz,  500 kHz) somewhat resemble the expected behavior. However, the dataset is too variable and too incongruent for any clear interpretations. Likely reasons are signal propagation effects, the complex composite structure, simultaneous occurrence of signals and measurement uncertainties. A review of relevant studies is provided to show that similar issues affect also previous works. Successfully identifying fiber breaks in large-scale, complex composite structures based on AE data, and turning this into an applicable health-monitoring technique, therefore remains a challenge. KW - Acoustic emission testing KW - Composite pressure vessels KW - Damage classification in fiber reinforced polymers KW - Felicity ratio KW - Composite failure PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654852 DO - https://doi.org/10.1007/s10921-025-01319-1 SN - 0195-9298 VL - 45 IS - 1 SP - 1 EP - 19 PB - Springer Science and Business Media LLC AN - OPUS4-65485 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wallis, Theophilus A1 - Ratanaphan, Sutatch A1 - Darvishi Kamachali, Reza T1 - Linking atomistic and phase-field modeling of grain boundaries I: Coarse-graining atomistic structures N2 - The longstanding gap between atomistic and mesoscale simulations partly lies in the absence of a direct, physically grounded connection between atomic structure and mesoscale fields. In this work, we present a robust coarse-graining approach to systematically investigate the connection between phase-field and atomistic simulations of grain boundaries (GBs). The atomistic structures of 408 GBs in BCC-Fe and -Mo were studies to compute and analyze a continuous atomic density field. We discover a fundamental relationship between the GB density---defined as the average atomic density at the GB plane---and the GB excess free volume, an integral property of the boundary. An almost perfect linear correlation between the GB atomic density and GB excess free volume is identified. We also show that the width of BCC GBs, when scaled by the lattice constant, approaches a universal constant value. The relationships among GB density, width, and energy are systematically examined for various GB planes, and the GB energy--density correlations are classified with respect to GB types. It turns out that the atomic planes forming the GB strongly influence both the GB density and excess volume. The current results establish a dependable framework to bridge across scales, enabling density-based phase-field modeling of GBs with atomistic fidelity and enhancing the predictive reliability of mesoscale simulations. KW - Density-based model KW - Grain boundary structure KW - Grain boundary thermodynamic KW - Atomistic simulations PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654872 DO - https://doi.org/10.1016/j.actamat.2025.121786 SN - 1359-6454 VL - 305 SP - 1 EP - 14 PB - Elsevier Inc. AN - OPUS4-65487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pavlidis, Sotirios A1 - Fischer, Eric W. A1 - Opis-Basilio, Amanda A1 - Bera, Ayan A1 - Guilherme Buzanich, Ana A1 - Álvarez-Sánchez, María A1 - Wittek, Severin A1 - Emmerling, Franziska A1 - Ray, Kallol A1 - Roemelt, Michael A1 - Abbenseth, Josh T1 - Ambiphilic Reactivity and Switchable Methyl Transfer at a T-Shaped Bi(NNN) Complex Enabled by a Redox-Active Pincer Ligand N2 - We report the transition-metal-like reactivity of a geometrically constrained, ambiphilic bismuth(III) trisamide. Planarization of the Bi(III) center unlocks Bi−C bond formation when reacted with mild electrophiles (alkyl iodides and triflates) accompanied by two-electron oxidation of the utilized NNN pincer nligand. The preservation of the bismuth oxidation state is confirmed by single-crystal X-ray diffraction and X-ray absorption spectroscopy and corroborated by theoretical calculations. Sequential reduction of the oxidized ligand framework alters the reactivity of a generated Bi−Me unit, enabling controlled access to methyl cation, radical, and anion equivalents. The full [Bi(Me)(NNN)]+/•/− redox series was comprehensively characterized using NMR and EPR spectroscopy as well as spectro-electrochemistry. This work represents the first example of ligand-assisted, redox-neutral C−X bond splitting at bismuth, establishing a new paradigm for synthetic bismuth chemistry. KW - Pincer ligand KW - XAS KW - Redox PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654948 DO - https://doi.org/10.1021/jacs.5c18955 SN - 0002-7863 VL - 148 IS - 2 SP - 2683 EP - 2692 PB - American Chemical Society (ACS) AN - OPUS4-65494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wallis, Theophilus A1 - Darvishi Kamachali, Reza T1 - Linking atomistic and phase-field modeling of grain boundaries II: Incorporating atomistic potentials into free energy functional N2 - The density-based phase-field model for grain boundary (GB) thermodynamics and kinetics has offered a broad range of applications in alloy and microstructure design. Originally, this model is based on a potential energy terms that is connected to the cohesive energy of a given substance. A more rigorous approach, however, is a full consideration of an interatomic potential over the possible range of distance and therefore density. In Manuscript I of this series, we developed and thoroughly analyzed the coarse-graining of atomistic GB structures. In this work (Manuscript II), we complete the coupling between atomic and mesoscale modeling of GBs by incorporating the full interatomic potentials into the density-based free energy functional. Using GB energies calculated from atomistic simulations, the coarse-graining approach and the atomistic-integrated density-based Gibbs free energy, we effectively evaluate the density gradient energy coefficient. We found that coupling the density-based model with atomistic potentials reveal physically-sound trends in the GB equilibrium properties. A universal equation was derived to describe the potential energy contribution to the GB energy and the gradient energy coefficient for BCC-Fe and -Mo GBs, similar to the universal equation for GB excess free volume presented in Manuscript I. The proposed approach provides a mesoscale density-based model rooted in atomic-scale characteristics for reliable predictions of GB properties. KW - Density-based model KW - Phase-field KW - Grain boundary structure KW - Grain boundary thermodynamics PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654904 DO - https://doi.org/10.1016/j.actamat.2025.121787 SN - 1359-6454 VL - 305 SP - 1 EP - 17 PB - Elsevier AN - OPUS4-65490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Helfenstein, J. A1 - Massey, M. A1 - Kretzschmar, R. A1 - Schade, U. A1 - Verel, R. A1 - Chadwick, O. A1 - Frossard, E. T1 - Spectroscopic analysis shows crandallite can be a major component of soil phosphorus N2 - Phosphorus (P) bioavailability is crucial for the productivity of natural and agricultural ecosystems, and soil P speciation plays a major role therein. Better understanding of P forms present in soil is thus essential to predict bioavailability. However, P speciation studies are only as powerful as the reference spectra used to interpret them, and most studies rely on a limited set of reference spectra. Most studies on soil P forms differentiate between Ca-bound P (e.g. apatite), organic P, Fe-bound P, and Al-bound P. In our analysis of a Ca, Al, and P rich soil from the Kohala region of Hawaii, we identified the mineral crandallite, CaAl3(PO4)2(OH)5·H2O, a mineral previously not considered to play a significant role in soils. Crandallite was first identified with powder X-ray diffraction. Subsequently reference spectra were collected, and the presence of crandallite was confirmed using micro-focused P K-edge X-ray absorption near edge structure (XANES) spectroscopy, micro-infrared spectroscopy, and solid-state 31P nuclear magnetic resonance (NMR) spectroscopy. Crandallite XANES spectra were distinct from other common XANES spectra due to the presence of features in the post-edge region of the spectrum. Linear combination fitting of bulk P K-edge XANES spectra allowed the determination of the proportion of crandallite to the total P content, indicating that crandallite comprises up to half, possibly even more of the soil P in the samples. Crandallite is therefore an important and potentially overlooked component of soil P, which pedogenically forms in soils with high P, Al, and Ca contents, where it could play an important role in P bioavailability. KW - Phosphorus KW - XANES spectrosocpy KW - Infrared spectroscopy KW - NMR spectrocopy PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654968 DO - https://doi.org/10.1016/j.geoderma.2026.117712 SN - 0016-7061 VL - 467 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-65496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tóth, Péter A1 - Hofmann‐Böllinghaus, Anja A1 - Dumont, Fabien A1 - Anderson, Johan A1 - Sjöström, Johan A1 - Bergius, Mikael A1 - Chiva, Roman A1 - Lalu, Octavian T1 - Finalisation of the European Approach to Assess the Fire Performance of Facades—Brief Information on the Outcome of the Project N2 - This research was conducted within the framework of project SI2.825082, funded by the European Commission—DG GROW. The project's objective was to finalise a European approach for assessing the fire performance of façades under medium and large fire exposure conditions. The national standards BS 8414‐1:2020/BS 8414‐2:2020 and DIN 4102‐20:2017 served as the foundation for developing the new assessment method. As part of the project, a theoretical round robin, initial testing activities and a large‐scale experimental round robin were carried out. The theoretical round robin aimed to examine how different laboratories interpreted the preliminary assessment method. Subsequently, the initial testing phase explored the design of the fire source, combustion chamber and secondary opening. The experimental round robin involved testing four façade systems across three laboratories using the assessment method documents, resulting in 12 tests for medium‐scale and 12 for large‐scale exposure—24 tests in total. These tests provided data to develop a calibration scheme and define appropriate performance criteria for classification. In this paper, the representatives of the project consortium summarise the research process and outline the proposed testing and evaluation methodology, which is intended to form the foundation of a future European testing standard for façades. The article also highlights the need for further research to establish rules for extended application of test results. KW - Facade KW - Testing PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654731 DO - https://doi.org/10.1002/fam.70042 SN - 0308-0501 SP - 1 EP - 27 PB - John Wiley & Sons Ltd. AN - OPUS4-65473 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiesner, Yosri A1 - Eisentraut, Paul A1 - Altmann, Korinna T1 - One Year Observation of Microplastic Concentrations in the River Rhine N2 - In recent years, the quantification of microplastics (MP) in aquatic environments has gained increasing attention, particularly regarding their environmental distribution and potential exposure levels. Environmentally relevant exposure data are still essential for a realistic risk assessment of the harmful health potential of microplastics in freshwater systems. This study addresses a large data set of MP concentrations analyzed and processed under statistical aspects and provides mass concentrations as well as associated size fractions of the detected MP. Over a 12 month period, samples were collected at three locations and analyzed across three particle size fractions (100−500 μm, 50−100 μm, and 10−50 μm) using thermalextraction desorption-gas chromatography/mass spectrometry (TED-GC/MS). The most prevalent polymers identified were polyethylene (PE), polypropylene (PP), polystyrene (PS), styrene−butadiene rubber (SBR), and natural rubber (NR). Statistical analyses, including principal component and cluster analysis, revealed size-dependent patterns,minor seasonal variation and spatial variations. These findings are particularly significant for ecotoxicological research and regulatory development, especially regarding tire abrasion a rarely quantified but potentially harmful MP source. The study contributes aluable data for future environmental monitoring and supports EU directives on wastewater and drinking water quality KW - TED-GC/MS KW - Microplastics KW - Environment KW - Monitoring KW - Reference data PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654669 DO - https://doi.org/10.1021/acsestwater.5c00530 SN - 2690-0637 SP - 1 EP - 10 PB - American Chemical Society (ACS) AN - OPUS4-65466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sobczak, M. A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Pieczonka, Ł. A1 - Ziegler, Mathias T1 - Impact damage characterization on CFRP parts using laser line scanning active thermography N2 - This study presents a dual-path data processing framework for the detection and characterization of barely visible impact damage (BVID) in carbon-fiber-reinforced polymer (CFRP) structures using laser line thermography (LLT). A robotic LLT system was used to scan impacted CFRP specimens, and the resulting thermal sequences were analyzed using two complementary methods: full thermogram reconstruction followed by Pulse Phase Thermography (PPT) to detect subsurface delaminations, and Time-Summed Gradient Filtering (TSGF) to enhance surface-breaking cracks. Both processing paths produced interpretable results that were fused into a unified combined image and overlay mask, enabling simultaneous visualization of different defect types from a single scan. Quantitative analysis was performed on the binary masks to extract defect dimensions and Signal-to-noise ratio (SNR) values. The results demonstrated that delaminations and multiple cracks could be accurately detected and spatially distinguished, with good agreement to reference methods such as flash thermography and vibrothermography. This work highlights the potential of LLT as a versatile and scalable inspection technique, where multimodal defect detection and segmentation can be achieved through targeted processing and data fusion strategies. KW - Active thermography KW - CFRP KW - Laser line scanning KW - Delamination KW - Cracks KW - BVID KW - NDT PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654097 DO - https://doi.org/10.1016/j.compositesb.2026.113425 SN - 1359-8368 VL - 313 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-65409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Nina A1 - Uhlig, Marvin A1 - Kromm, Arne A1 - Schröpfer, Dirk A1 - Höfer, Kevin A1 - Hensel, Jonas A1 - Kannengießer, Thomas T1 - Challenges in the evaluation of the weldability of old mild steels for future use N2 - For reasons of sustainability and cost efficiency, there is an increasing trend in the steel-processing industry to retrofit existing structures, avoiding costly shutdowns or dismantling. Although welding is a cost-effective joining method, it is rarely applied to old steels, whereas riveted or bolted connections are often uneconomical. Repair and refurbishment frequently require the replacement of damaged material or the creation of dissimilar old–new steel joints. Due to the varied manufacturing processes of historical steels, not all twentieth-century steels are inherently weldable, making an initial assessment of weldability essential. In this study, a historical non-deoxidized mild steel (produced by Siemens–Martin processing) originating from the construction of the Berlin Radio Tower (erected in 1926) was investigated using dilatometry to analyze its welding behavior. A database of welding CCT diagrams and HAZ simulations was established to support practice-oriented welding experiments, providing key insights into their weld-metallurgical behavior and weldability. Furthermore, initial welding trials were conducted, and the local residual stress states in dissimilar old–new steel joints were determined. These foundational investigations are critical for the development of innovative, load-adapted welding concepts for the repair and refurbishment of existing old-steel infrastructure in Germany. KW - Old mild steels KW - Repair welding KW - Weldability KW - Thermo-physical simulation KW - CCT diagrams PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654784 DO - https://doi.org/10.1007/s40194-026-02366-6 SN - 1878-6669 SP - 1 EP - 14 PB - Springer nature AN - OPUS4-65478 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - George, Janine A1 - Ouellet-Plamondon, Claudiane A1 - Reyes, Kristofer T1 - Introduction to the “Accelerate Conference 2023–2024” themed collection N2 - The collection showcases the ways in which automation, machine learning and robotics are transforming experimental materials science and chemistry into continuous, computationally integrated processes. It features innovations regarding autonomous laboratories, Bayesian optimisation, high-throughput experimentation and computation, and AI-driven literature extraction, which simplify and scale up materials discovery. Together, these works outline a modular, responsible framework for accelerating scientific progress through human-guided, data-driven autonomy. KW - Automation KW - Materials Acceleration Platforms KW - Synthesizability KW - Workflows KW - Large Language Models KW - Ontologies KW - Materials Discovery PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654658 DO - https://doi.org/10.1039/d5dd90057c SN - 2635-098X SP - 1 EP - 2 PB - Royal Society of Chemistry (RSC) AN - OPUS4-65465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Spitzer, Stefan A1 - Amyotte, P. A1 - Salzano, E. T1 - Explosion behavior of hybrid mixtures N2 - Flammable mixtures of dusts with gases or liquids occur in the process and energy industries. Most research about these so-called "hybrid mixtures" was, and still is, about coal dust with the admixture of methane because of their occurrence in the mining industry. In the modern industry, hybrid mixture explosions play an increasing role in many existing processes like spray-drying, or in emerging technologies like the direct reduction of iron ore with hydrogen or nuclear/fusion reactors. While some safety characteristics of one of the component substances stay the same or are unaffected by the concentrations that occur in the process, others are severely influenced by only traces of the other substance. This review paper shows in which processes and applications hybrid mixtures pose a risk and gives an overview of the research conducted in the last 150 years. Findings that are reproducible and represent current proven knowledge are stated and compared to each safety characteristic containing only solid particles, gases or liquids as combustible substances. Additionally, fundamental studies on the mechanisms of flame propagation in hybrid mixtures are reviewed. The significance of these studies in enhancing our understanding of explosion behaviors in hybrid mixtures is also discussed. An outlook on what has been missing so far in the literature, is also given comparing the knowledge of single substances with their mixtures, why this might not have been investigated, and where the challenges lie. KW - Hybrid mixtures KW - Safety characteristics KW - Combustion regimes KW - Industrial explosions PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654013 DO - https://doi.org/10.1016/j.pecs.2025.101276 SN - 0360-1285 VL - 113 SP - 1 EP - 24 PB - Elsevier CY - Amsterdam AN - OPUS4-65401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krause, Christina A1 - Szymoniak, Paulina A1 - Lohstroh, W. A1 - Juranyi, F. A1 - Zamponi, M. A1 - Frick, B. A1 - Al-Sabbagh, Dominik A1 - Emmerling, Franziska A1 - Zorn, R. A1 - Schönhals, Andreas T1 - Complex molecular dynamics of symmetric model discotic liquid crystals: Comparison of Hexakis(hepta-alkanoyloxy)triphenylene (HOT6) with Hexakis(hexa-alkyloxy)triphenylene (HAT6) N2 - This study investigates the complex molecular dynamics of discotic liquid crystals (DLCs) by comparing two structurally similar compounds: Hexakis(hepta-alkanoyloxy)triphenylene (HOT6) and Hexakis(hexa-alkyloxy)triphenylene (HAT6) having the same triphenyl core and the same length of the alkyl side chain. The difference of both materials is that the alkyl chain is linked by an oxygen bridge to the triphenylene core for HAT6 and by a ester group for HOT6. Using a combination of broadband dielectric spectroscopy, differential scanning calorimetry, X-ray scattering, and neutron scattering techniques, the research explores the glass transition phenomena and relaxation processes in these materials. HOT6, featuring ester linkages, exhibits distinct dynamic behavior compared to HAT6, including two separate glass transitions indicated by the 1- and 2-relaxation found by dielectric spectroscopy which are assigned to the glassy dynamics of the alkyl side chain in the intercolumnar space and that of the columns, respectively. The study reveals that the ester group in HOT6 leads to increased molecular rigidity and altered packing in the intercolumnar space, as evidenced by X-ray scattering and the vibrational density of states. Neutron scattering confirms localized methyl group rotations and a further relaxation process which relates to the -relaxation revealed by dielectric spectroscopy. The findings contribute to a deeper understanding of glassy dynamics in partially ordered systems and highlight the influence of molecular architecture on relaxation behavior in DLCs. KW - Discotic Liquid Crystals PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-655171 DO - https://doi.org/10.1039/d5sm01247c SP - 1 EP - 17 PB - Royal Society of Chemistry (RSC) AN - OPUS4-65517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rodriguez, Santiago A1 - Kumanski, Sylvain A1 - Ayed, Zeineb A1 - Fournet, Aurélie A1 - Bouanchaud, Charlène A1 - Sagar, Amin A1 - Allemand, Frédéric A1 - Baulin, Vladimir A. A1 - Resch‐Genger, Ute A1 - Cortés, Juan A1 - Sibille, Nathalie A1 - Chirot, Fabien A1 - Wegner, Karl David A1 - Antoine, Rodolphe A1 - Le Guével, Xavier A1 - Bernadó, Pau T1 - Programming the Optoelectronic Properties of Atomically Precise Gold Nanoclusters Using the Conformational Landscape of Intrinsically Disordered Proteins N2 - The rational design of hybrid nanomaterials with precisely controlled properties remains a central challenge in materials science. While atomically precise gold nanoclusters (Au‐NCs) offer molecule‐like control over a metallic core, tuning their optoelectronic behavior via surface engineering is often empirically driven. Here, we establish a design principle by demonstrating that the conformational landscape of intrinsically disordered proteins (IDP) can be used as a programmable scaffold to rationally modulate the photophysical properties of a covalently bound Au‐NC. We synthesized a series of bioconjugates between Au 25 nanoclusters and bioengineered IDPs containing a variable number of cysteine anchoring points. A combination of mass spectrometry, small‐angle X‐ray scattering, and modeling on the conjugates indicates that increasing the number of covalent anchors systematically restricts the conformational ensemble, inducing a progressively more compact protein shell around nanoclusters. This structural rigidification at the interface directly translates into a 15‐fold enhancement of the Au‐NC near‐infrared photoluminescence and a six‐fold increase in its average lifetime. Our findings demonstrate that the conformational plasticity of IDPs and the capacity to engineer them can be harnessed as a molecular tuning knob, moving to a new regime of programmable soft‐matter control over the properties of quantum‐confined nanomaterials for tailored biotechnological applications. KW - Fluorescence KW - Custer KW - Nano KW - Advanced material KW - Characterization KW - Fluorescence quantum yield KW - Integrating sphere spectroscopy KW - Thiol ligands KW - Gold KW - Surface chemistry KW - SWIR KW - Mass spectrometry KW - Protein PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-655086 DO - https://doi.org/10.1002/chem.202502991 SN - 0947-6539 SP - 1 EP - 9 PB - Wiley VHC-Verlag AN - OPUS4-65508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -