TY - CONF A1 - Kröll, Mirco T1 - Benefits of novel tools open to Industry from Open Innovation Testbeds. Effects of harmonised procedures in (digital) Tribology N2 - The work on Tribology, digitalisation, and the harmonised procedures developed in i-TRIBOMAT Open Innovation Testbed was presented. The project develops procedures and shares ideas on how to deal with characterisation techniques and provide services to end users in different places and locations, which is realised by adopting a common and widely agreed procedures. i-TRIBOMAT is active also via YouTube platform to enhance communication and spread the word amongst the interested parties and society. T2 - Workshop of NanoMECommons project: "Materials characterisation challenges to support the industry transition in the digital era" CY - Online meeting DA - 13.12.2021 KW - Tribology KW - i-TRIBOMAT KW - Characterisation KW - Digitalisation KW - Interoperability KW - Harmonisation KW - Green Deal PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548909 DO - https://doi.org/10.5281/zenodo.6339985 SP - 14 EP - 17 AN - OPUS4-54890 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Rupprecht, C. A1 - Ziegler, Mathias T1 - Hochaufgelöste thermografische Detektion eingeschlossener Defekte mit Hilfe von 2Dstrukturierten Beleuchtungsmustern N2 - Für die aktive Thermografie als zerstörungsfreie Prüfmethode galt lange Zeit die Faustformel, dass die Auflösung interner Defekte/Inhomogenitäten auf ein Verhältnis von Defekttiefe/Defektgröße ≤ 1 beschränkt ist. Die Ursache hierfür liegt in der diffusiven Natur der Wärmeleitung in Festkörpern. Sogenannte Super-Resolution-Ansätze erlauben seit Kurzem die Überwindung dieser physikalischen Grenze um ein Vielfaches. Damit ergibt sich die attraktive Möglichkeit die Thermografie von einem rein oberflächensensitiven Prüfverfahren hin zu einem Verfahren mit verbesserter Tiefenreichweite zu entwickeln. Wie weit diese Entwicklung getrieben werden kann, ist Gegenstand aktueller Forschung. Wir konnten bereits zeigen, dass diese klassische Grenze für 1D- und 2D Defektgeometrien mit Hilfe des Abscannens des Prüfkörpers mittels einzelner Laserspots und der anschließenden Anwendung von photothermischer Super-Resolution-Rekonstruktion überwunden werden kann. Bei dieser Methode wird eine Kombination aus sequenzieller räumlich strukturierter Beleuchtung und numerischen Optimierungsmethoden eingesetzt. Dies geschieht allerdings auf Kosten der experimentellen Komplexität, die zu einer langen Messdauer, großen Datensätzen und langwieriger numerischer Auswertung führt. In dieser Arbeit berichten wir über einen neuen experimentellen Ansatz, bei dem räumlich strukturierte 2D-Beleuchtungsmuster in Verbindung mit Compressed-Sensing und Computational-Imaging-Methoden verwendet werden, um die experimentelle Komplexität deutlich zu verringern und die Methode für die Untersuchung größerer Prüfflächen nutzbar zu machen. Der experimentelle Ansatz basiert dabei auf der wiederholten (blinden) photothermischen Anregung mit räumlich strukturierten 2D-Mustern unter Verwendung moderner Projektortechnik und eines Hochleistungslasers. In der anschließenden numerischen Rekonstruktion werden mehrere Messungen unter Ausnutzung der Joint-Sparsity der Defekte innerhalb des Prüfkörpers mittels nichtlinearer konvexer Optimierungsmethoden kombiniert. Als Ergebnis kann eine 2D-sparse Defekt-/Inhomogenitätskarte erstellt werden. T2 - DGZfP-Jahrestagung 2022 CY - Kassel, Germany DA - 23.05.2022 KW - Thermografie KW - Super resolution KW - NDT KW - ZfP KW - Eingeschlossene Defekte KW - Projektor PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548945 SN - 978-3-947971-25-1 VL - 177 SP - 1 EP - 16 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung AN - OPUS4-54894 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Olscher, C. A1 - Jandric, A. A1 - Zafiu, C. A1 - Part, Florian T1 - Evaluation of marker materials and spectroscopic methods for tracer-based sorting of plastic wastes N2 - Plastics are a ubiquitous material with good mechanical, chemical and thermal properties, and are used in all industrial sectors. Large quantities, widespread use, and insufficient management of plastic wastes lead to low recycling rates. The key challenge in recycling plastic waste is achieving a higher degree of homogeneity between the different polymer material streams. Modern waste sorting plants use automated sensor-based sorting systems capable to sort out commodity plastics, while many engineering plastics, such as polyoxymethylene (POM), will end up in mixed waste streams and are therefore not recycled. A novel approach to increasing recycling rates is tracer-based sorting (TBS), which uses a traceable plastic additive or marker that enables or enhances polymer type identification based on the tracer’s unique fingerprint (e.g., fluorescence). With future TBS applications in mind, we have summarized the literature and assessed TBS techniques and spectroscopic detection methods. Furthermore, a comprehensive list of potential tracer substances suitable for thermoplastics was derived from the literature. We also derived a set of criteria to select the most promising tracer candidates (3 out of 80) based on their material properties, toxicity profiles, and detectability that could be applied to enable the circularity of, for example, POM or other thermoplastics. KW - Circular economy KW - Post-consumer plastic waste KW - Plastic waste recycling KW - Tracer-based sorting KW - Sensor-based sorting KW - Spectroscopy KW - Fluorescent markers KW - Thermoplastics KW - Polyoxymethylene PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555624 DO - https://doi.org/10.3390/polym14153074 SN - 2073-4360 VL - 14 SP - 1 EP - 20 PB - MDPI CY - Basel AN - OPUS4-55562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hobmeier, K. A1 - Oppermann, M. A1 - Stasinski, N. A1 - Kremling, A. A1 - Pflüger-Grau, K. A1 - Kunte, Hans-Jörg A1 - Marin Sanguino, A. T1 - Metabolic engineering of Halomonas elongata: Ectoine secretion is increased by demand and supply driven approaches N2 - The application of naturally-derived biomolecules in everyday products, replacing conventional synthetic manufacturing, is an ever-increasing market. An example of this is the compatible solute ectoine, which is contained in a plethora of treatment formulations for medicinal products and cosmetics. As of today, ectoine is produced in a scale of tons each year by the natural producer Halomonas elongata. In this work, we explore two complementary approaches to obtain genetically improved producer strains for ectoine production. We explore the effect of increased precursor supply (oxaloacetate) on ectoine production, as well as an implementation of increased ectoine demand through the overexpression of a transporter. Both approaches were implemented on an already genetically modified ectoine-excreting strain H. elongata KB2.13 (ΔteaABC ΔdoeA) and both led to new strains with higher ectoine excretion. The supply driven approach led to a 45% increase in ectoine titers in two different strains. This increase was attributed to the removal of phosphoenolpyruvate carboxykinase (PEPCK), which allowed the conversion of 17.9% of the glucose substrate to ectoine. For the demand driven approach, we investigated the potential of the TeaBC transmembrane proteins from the ectoine-specific Tripartite ATP-Independent Periplasmic (TRAP) transporter as export channels to improve ectoine excretion. In the absence of the substrate-binding protein TeaA, an overexpression of both subunits TeaBC facilitated a three-fold increased excretion rate of ectoine. Individually, the large subunit TeaC showed an approximately five times higher extracellular ectoine concentration per dry weight compared to TeaBC shortly after its expression was induced. However, the detrimental effect on growth and ectoine titer at the end of the process hints toward a negative impact of TeaC overexpression on membrane integrity and possibly leads to cell lysis. By using either strategy, the ectoine synthesis and excretion in H. elongata could be boosted drastically. The inherent complementary nature of these approaches point at a coordinated implementation of both as a promising strategy for future projects in Metabolic Engineering. Moreover, a wide variation of intracelllular ectoine levels was observed between the strains, which points at a major disruption of mechanisms responsible for ectoine regulation in strain KB2.13. KW - Osmoadaptation KW - Metabolic engineering PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555644 DO - https://doi.org/10.3389/fmicb.2022.968983 SN - 1664-302X VL - 13 SP - 1 EP - 13 PB - Frontiers Media CY - Lausanne AN - OPUS4-55564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shaheen, Sabahat A1 - Hicke, Konstantin T1 - Geometric phase in distributed fiber optic sensing N2 - The geometric phase in the beat signal from coherent interference of two frequency-offset light beams is measured using a novel distributed optical fiber sensing setup. In a fiber optic medium, with changing beam intensities, to the best of our knowledge, ours is the first measurement of the mentioned geometric phase. Experimental results of applying a 100-Hz sinusoidal stimulus to a polarization scrambler and a piezoelectric transducer inline to an optical fiber are presented. The results may enable novel distributed fiber sensing techniques. KW - Distributed fiber optic sensing KW - Geometric phase measurement KW - Distributed vibration sensing KW - C-OTDR PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556053 DO - https://doi.org/10.1364/OL.464259 VL - 47 IS - 15 SP - 3932 EP - 3935 PB - Optica CY - Washington D.C., USA AN - OPUS4-55605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heuser, Lina A1 - Nofz, Marianne T1 - Alkali and alkaline earth zinc and lead borate glasses: Structure and properties N2 - Low melting Li2O-PbO-B2O3, Me2O-ZnO-B2O3, Me = Li, Na, K, Rb and CaO-ZnO-B2O3 glasses were studied with Raman and infrared spectroscopies to advance the structural understanding of zinc borate glasses as potential candidates for substitution of lead containing glasses. Although the effect of type of alkali ions on the number (N4) of fourfold coordinated boron (B4) in the glasses is small, the alkali ions direct the type of borate groups, i.e., pentaborate in lithium, sodium, and calcium zinc borate glasses, as well as diborate in potassium and rubidium containing ones. Both groups were simultaneously found in Li2O-PbO-B2O3. Alkali ions are mainly responsible for the formation of B4-units and metaborate. Zinc ions favorably compensate non-bridging oxygen and partially form ZnO4. With decreasing N4 and field strength of the alkali ions the atomic packing density, glass transition temper ature and Young’s Modulus also decrease. The coefficient of thermal expansion increases with decreasing N4. KW - Raman spectroscopy KW - IR spectroscopy KW - Alkali zinc borate glasses KW - Lead borate glasses KW - Physical properties KW - Young’s Modulus PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556109 DO - https://doi.org/10.1016/j.nocx.2022.100109 SN - 2590-1591 VL - 15 SP - 1 EP - 12 PB - Elsevier CY - Amsterdam AN - OPUS4-55610 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klewe, Tim A1 - Völker, Tobias A1 - Götz, J. A1 - Landmann, M. A1 - Wilsch, Gerd A1 - Kruschwitz, Sabine T1 - Sorting of construction and demolition waste by combining LIBS with NIR spectroscopy N2 - In a joint project of partners from industry and research, the automated recycling of construction and demolition waste (CDW) is investigated and tested by combing laser-induced breakdown spectroscopy (LIBS) and near-infrared (NIR) spectroscopy. Joint processing of information (data fusion) is expected to significantly improve the sorting quality of various materials like concrete, main masonry building materials, organic components, etc., and may enable the detection and separation of impurities such as SO3-cotaining building materials (gypsum, aerated concrete, etc.). The project focuses primarily on the Berlin site to analyze the entire value chain, minimize economic/technological barriers and obstacles at the cluster level, and sustainably increase recovery and recycling rates. First measurements with LIBS and NIR spectroscopy show promising results in distinguishing various material types and indicate the potential for a successful combination. In addition, X-ray fluorescence (XRF) spectroscopy is being performed to obtain more information about the quantitative elemental composition of the different building materials. Future work will apply the developed sorting methodology in a fully automated measurement setup with CDW on a conveyor belt. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - LIBS KW - NDT KW - Circular economy KW - Recycling KW - Material classification PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555531 UR - http://www.ndt.net/?id=27220 VL - 2022/09 SP - 1 EP - 9 PB - NDT.net CY - Bad Breisig AN - OPUS4-55553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paskin, A. A1 - Couasnon, T. A1 - Perez, J. P. H. A1 - Lobanov, S. S. A1 - Blukis, R. A1 - Reinsch, Stefan A1 - Benning, L. G. T1 - Nucleation and Crystallization of Ferrous Phosphate Hydrate via an Amorphous Intermediate N2 - The fundamental processes of nucleation and crystallization are widely observed in systems relevant to material synthesis and biomineralization; yet most often, their mechanism remains unclear. In this study, we unravel the discrete stages of nucleation and crystallization of Fe3(PO4)2·8H2O (vivianite). We experimentally monitored the formation and transformation from ions to solid products by employing correlated, time-resolved in situ and ex situ approaches. We show that vivianite crystallization occurs in distinct stages via a transient amorphous precursor phase. The metastable amorphous ferrous phosphate (AFEP) intermediate could be isolated and stabilized. We resolved the differences in bonding environments, structure, and symmetric changes of the Fe site during the transformation of AFEP to crystalline vivianite through synchrotron X-ray absorption spectroscopy at the Fe K-edge. This intermediate AFEP phase has a lower water content and less distorted local symmetry, compared to the crystalline end product vivianite. Our combined results indicate that a nonclassical, hydration-induced nucleation and transformation driven by the incorporation and rearrangement of water molecules and ions (Fe2+ and PO4 3−) within the AFEP is the dominating mechanism of vivianite formation at moderately high to low vivianite supersaturations (saturation index ≤ 10.19). We offer fundamental insights into the aqueous, amorphous-to-crystalline transformations in the Fe2+−PO4 system and highlight the different attributes of the AFEP, compared to its crystalline counterpart. KW - Nucleation KW - Crystallization KW - Vivianite KW - Ferrous phosphate hydrate PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580696 DO - https://doi.org/10.1021/jacs.3c01494 SN - 0002-7863 VL - 145 IS - 28 SP - 15137 EP - 15151 PB - ACS Publications AN - OPUS4-58069 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Menero-Valdés, P. A1 - Chronakis, Michail Ioannis A1 - Fernández, B. A1 - Quarles Jr., C. D. A1 - González-Iglesias, H. A1 - Meermann, Björn A1 - Pereiro, R. T1 - Single Cell–ICP–ToF-MS for the Multiplexed Determination of Proteins: Evaluation of the Cellular Stress Response N2 - An automated and straightforward detection and data treatment strategy for the determination of the protein relative concentration in individual human cells by single cell–inductively coupled plasma–time-of-flight mass spectrometry (sc-ICP-ToF-MS) is proposed. Metal nanocluster (NC)-labeled specific antibodies for the target proteins were employed, and ruthenium red (RR) staining, which binds to the cells surface, was used to determine the number of cell events as well as to evaluate the relative volume of the cells. As a proof of concept, the expression of hepcidin, metallothionein-2, and ferroportin employing specific antibodies labeled with IrNCs, PtNCs, and AuNCs, respectively, was investigated by sc-ICP-ToF-MS in human ARPE-19 cells. Taking into account that ARPE-19 cells are spherical in suspension and RR binds to the surface of the cells, the Ru intensity was related to the cell volume (i.e., the cell volume is directly proportional to (Ru intensity)3/2), making it possible to determine not only the mass of the target proteins in each individual cell but also the relative concentration. The proposed approach is of particular interest in comparing cell cultures subjected to different supplementations. ARPE-19 cell cultures under two stress conditions were compared: a hyperglycemic model and an oxidative stress model. The comparison of the control with treated cells shows not only the mass of analyzed species but also the relative changes in the cell volume and concentration of target proteins, clearly allowing the identification of subpopulations under the respective treatment. KW - Peptides and Proteins KW - Immunology KW - Metals PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581630 DO - https://doi.org/10.1021/acs.analchem.3c02558 VL - 95 IS - 35 SP - 13322 EP - 13329 PB - ACS Publications AN - OPUS4-58163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zare Pakzad, S. A1 - Nasr Esfahani, M. A1 - Tasdemir, Z. A1 - Wollschläger, Nicole A1 - Li, T. A1 - Li, X. A1 - Yilmaz, M. A1 - Leblebici, Y. A1 - Erdem Alaca, B. T1 - Nanomechanical Modeling of the Bending Response of Silicon Nanowires N2 - Understanding the mechanical behavior of silicon nanowires is essential for the implementation of advanced nanoscale devices. Although bending tests are predominantly used for this purpose, their findings should be properly interpreted through modeling. Various modeling approaches tend to ignore parts of the effective parameter set involved in the rather complex bending response. This oversimplification is the main reason behind the spread of the modulus of elasticity and strength data in the literature. Addressing this challenge, a surface-based nanomechanical model is introduced in this study. The proposed model considers two important factors that have so far remained neglected despite their significance: (i) intrinsic stresses composed of the initial residual stress and surface-induced residual stress and (ii) anisotropic implementation of surface stress and elasticity. The modeling study is consolidated with molecular dynamics-based study of the native oxide surface through reactive force fields and a series of nanoscale characterization work through in situ threepoint bending test and Raman spectroscopy. The treatment of the test data through a series of models with increasing complexity demonstrates a spread of 85 GPa for the modulus of elasticity and points to the origins of ambiguity regarding silicon nanowire properties, which are some of the most commonly employed nanoscale building blocks. A similar conclusion is reached for strength with variations of up to 3 GPa estimated by the aforementioned nanomechanical models. Precise consideration of the nanowire surface state is thus critical to comprehending the mechanical behavior of silicon nanowires accurately. Overall, this study highlights the need for a multiscale theoretical framework to fully understand the size-dependent mechanical behavior of silicon nanowires, with fortifying effects on the design and reliability assessment of future nanoelectromechanical systems. KW - Silicon nanowires KW - Native oxide KW - Surface stress KW - Surface elasticity KW - Mechanical behavior PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581676 DO - https://doi.org/10.1021/acsanm.3c02077 SP - 1 EP - 14 PB - ACS Publications AN - OPUS4-58167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ivanov, V.V. A1 - Tielemann, Christopher A1 - Avramova, K. A1 - Reinsch, Stefan A1 - Tonchev, V. T1 - Modelling crystallization: When the normal growth velocity depends on the supersaturation N2 - The crystallization proceeds by the advance of the crystal faces into the disordered phase at the expense of the material excess, the supersaturation. Using a conservation constraint for the transformation ratio α∈[0,1] as complementing the rescaled supersaturation to 1 and a kinetic law for the normal growth velocity as function of the supersaturation raised to power g, the growth order, we derive an equation for the rate of transformation dα/dt. We integrate it for the six combinations of the three spatial dimensions D = 1, 2, 3 and the two canonical values of g = 1, 2 towards obtaining expressions for αDg. The same equation, with g = 1 and D = n (n is the so called Avrami exponent) is obtained when taking only the linear in α term from the Taylor’s expansion around α = 0 of the model equation of Johnson-Mehl-Avrami-Kolmogorov (JMAK). We verify our model by fitting datasets of α21 and α31 (from α = 0 to αupper = 0.999) with JMAK to obtain from the fit n = 1.725, 2.43, resp. We show further how the values of n depend on the value of αupper to which the fit is performed starting always from 0. Towards building a validation protocol, we start with validating α21 with published results. KW - Crystallization KW - Supersaturation KW - Growth kinetics KW - Growth rate KW - JMAK model PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581706 DO - https://doi.org/10.1016/j.jpcs.2023.111542 SN - 0022-3697 VL - 181 SP - 1 EP - 10 PB - Elsevier Ltd. AN - OPUS4-58170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liehr, A. A1 - Wegener, T. A1 - Degener, Sebastian A1 - Bolender, A. A1 - Möller, N. A1 - Niendorf, T. T1 - Experimental Analysis of the Stability of Retained Austenite in a Low‐Alloy 42CrSi Steel after Different Quenching and Partitioning Heat Treatments N2 - Quenching and partitioning (Q&P) steels are characterized by an excellent combination of strength and ductility, opening up great potentials for advanced lightweight components. The Q&P treatment results in microstructures with a martensitic matrix being responsible for increased strength whereas interstitially enriched metastable retained austenite (RA) contributes to excellent ductility. Herein, a comprehensive experimental characterization of microstructure evolution and austenite stability is carried out on a 42CrSi steel being subjected to different Q&P treatments. The microstructure of both conditions is characterized by scanning electron microscopy as well as X‐ray diffraction (XRD) phase analysis. Besides macroscopic standard tensile tests, RA evolution under tensile loading is investigated by in situ XRD using synchrotron and laboratory methods. As a result of different quenching temperatures, the two conditions considered are characterized by different RA contents and morphologies, resulting in different strain hardening behaviors as well as strength and ductility values under tensile loading. In situ synchrotron measurements show differences in the transformation kinetics being rationalized by the different morphologies of the RA. Eventually, the evolution of the phase specific stresses can be explained by the well‐known Masing model. KW - Condensed Matter Physics KW - General Materials Science PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581618 DO - https://doi.org/10.1002/adem.202300380 SN - 1438-1656 VL - 25 IS - 17 SP - 1 EP - 16 PB - Wiley AN - OPUS4-58161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arikan, Muzaffer A1 - Muth, Thilo T1 - Integrated multi-omics analyses of microbial communities: A review of the current state and future directions N2 - Integrated multi-omics analyses of microbiomes have become increasingly common in recent years as the emerging omics technologies provide an unprecedented opportunity to better understand the structural and functional properties of microbial communities. Consequently, there is a growing need for and interest in the concepts, approaches, considerations, and available tools for investigating diverse environmental and host-associated microbial communities in an integrative manner. In this review, we first provide a general overview of each omics analysis type, including a brief history, typical workflow, primary applications, strengths, and limitations. Then, we inform on both experimental design and bioinformatics analysis considerations in integrated multi-omics analyses, elaborate on the current approaches and commonly used tools, and highlight the current challenges. Finally, we discuss the expected key advances, emerging trends, potential implications on various fields from human health to biotechnology, and future directions. KW - Microbiome KW - Multi-omics KW - Data integration PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580785 DO - https://doi.org/10.1039/d3mo00089c SP - 1 EP - 17 PB - Royal Society of Chemistry AN - OPUS4-58078 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Walke, D. A1 - Micheel, D. A1 - Schallert, K. A1 - Muth, Thilo A1 - Broneske, D. A1 - Saake, G. A1 - Heyer, R. T1 - The importance of graph databases and graph learning for clinical applications N2 - The increasing amount and complexity of clinical data require an appropriate way of storing and analyzing those data. Traditional approaches use a tabular structure (relational databases) for storing data and thereby complicate storing and retrieving interlinked data from the clinical domain. Graph databases provide a great solution for this by storing data in a graph as nodes (vertices) that are connected by edges (links). The underlying graph structure can be used for the subsequent data analysis (graph learning). Graph learning consists of two parts: graph representation learning and graph analytics. Graph representation learning aims to reduce high-dimensional input graphs to low-dimensional representations. Then, graph analytics uses the obtained representations for analytical tasks like visualization, classification, link prediction and clustering which can be used to solve domain-specific problems. In this survey, we review current state-of-the-art graph database management systems, graph learning algorithms and a variety of graph applications in the clinical domain. Furthermore, we provide a comprehensive use case for a clearer understanding of complex graph learning algorithms. KW - Graph databases KW - Graph learning KW - Review KW - RDF PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580858 DO - https://doi.org/10.1093/database/baad045 SN - 1758-0463 SP - 1 EP - 20 AN - OPUS4-58085 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tannenberg, Robert A1 - Paul, Martin A1 - Röder, Bettina A1 - Gande, S. L. A1 - Sreeramulu, S. A1 - Saxena, K. A1 - Richter, C. A1 - Schwalbe, H. A1 - Swart, C. A1 - Weller, Michael G. T1 - Chemiluminescence biosensor for the determination of cardiac troponin I (cTnI) N2 - Cardiac troponin I (cTnI) is a crucial biomarker for diagnosing cardiac vascular diseases, including acute myocardial infarction (AMI). This study presents a proof-of-concept chemiluminescence-based immunosensor for rapid and accurate measurement of cTnI, with the potential for online monitoring. The immunosensor incorporates a flow cell design and a sensitive complementary metal-oxide-semiconductor (CMOS) camera for optical readout. A microfluidic setup was established to enable selective and quasi-online determination of cTnI within ten minutes. The sensor was tested with recombinant cTnI in phosphate buffer, demonstrating measurements in the concentration range of 2–25 µg/L, with a limit of detection (LoD) of 0.6 µg/L (23 pmol/L) achieved using the optimized system. The immunosensor exhibited high selectivity, as no cross-reactivity was observed with other recombinant proteins such as cTnT and cTnC at a concentration of 16 µg/L. Measurements with diluted blood plasma and serum yielded an LoD of 60 µg/L (2.4 nmol/L) and 70 µg/L (2.9 nmol/L), respectively. This biosensor offers a promising approach for the rapid and sensitive detection of cTnI, contributing to the diagnosis and management of acute myocardial infarction and other cardiac vascular diseases. N2 - Das kardiale Troponin I (cTnI) ist ein wichtiger Biomarker für die Diagnose von Herz-Kreislauf-Erkrankungen, einschließlich des akuten Myokardinfarkts (AMI). In dieser Studie wird ein auf Chemilumineszenz basierender Immunsensor für die schnelle und genaue Messung von cTnI vorgestellt, der das Potenzial für eine Online-Überwachung hat. Der Immunsensor besteht aus einer Durchflusszelle und einer empfindlichen CMOS-Kamera (Complementary Metal-Oxide-Semiconductor) zur optischen Detektion. Es wurde ein mikrofluidischer Aufbau entwickelt, der eine selektive und quasi Online-Bestimmung von cTnI innerhalb von zehn Minuten ermöglicht. Der Sensor wurde mit rekombinantem cTnI in Phosphatpuffer getestet und zeigte einen Messbereich von 2-25 µg/L, wobei mit dem optimierten System eine Nachweisgrenze (LoD) von 0,6 µg/L (23 pmol/L) erreicht wurde. Der Immunsensor zeigte eine hohe Selektivität, da keine Kreuzreaktivität mit anderen rekombinanten Proteinen wie cTnT und cTnC bei einer Konzentration von 16 µg/L beobachtet wurde. Messungen mit verdünntem Blutplasma und Serum ergaben einen LoD von 60 µg/L (2,4 nmol/L) bzw. 70 µg/L (2,9 nmol/L). Dieser Biosensor bietet einen vielversprechenden Ansatz für den schnellen und empfindlichen Nachweis von cTnI, der zur Diagnose und Behandlung des akuten Myokardinfarkts und anderer kardialer Gefäßerkrankungen beitragen kann. KW - Acute myocardial infarction KW - Heart attack KW - Emergency KW - Diagnosis KW - Cardiac troponin KW - Biomarker KW - Immunosensor KW - Biosensor KW - Chemiluminescence KW - Luminol KW - Peroxidase KW - Monoclonal antibodies KW - Flow injection immunoassay KW - Immunometric assay KW - Immunometric biosensor KW - Microfluidic system KW - Monolithic column KW - Online biosensor PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575471 DO - https://doi.org/10.3390/bios13040455 SN - 2079-6374 VL - 13 IS - 4 SP - 1 EP - 20 PB - MDPI CY - Basel AN - OPUS4-57547 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - John, Elisabeth A1 - Lothenbach, Barbara ED - Carter, C. B. T1 - Cement hydration mechanisms through time – a review N2 - In this article the progress of the research on cement hydration mechanisms is critically reviewed, starting with the work of Le Chatelier and Michaelis during the late 19th century. Proposed mechanisms are discussed in the light of experimental data to highlight the role of new or improved analytical techniques. The focus of this article lies on the dormant period and the silicate reaction. Today many of the mechanisms proposed throughout time cannot withstand experimental evidence and need to be rejected, including the classical protective hydrate layer theory. However, it seems likely that hydrated surface species are involved in the mechanism. Theories that aim to explain the rate changes solely based on the nucleation and growth of portlandite can also not withstand experimental evidence. Nevertheless, the retardation of portlandite crystal growth through silicate ions is a relevant factor. Especially since it might present a mechanism for the nucleation of calcium silicate hydrate (C-S-H), backing up theories that propose C-S-H and portlandite to grow from the same nuclei. Finally, an overview over facts, that are currently considered to be valid and hence need to be regarded in future mechanisms is given. KW - Cement hydration KW - Calcium silicate hydrate PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-577460 DO - https://doi.org/10.1007/s10853-023-08651-9 SN - 1573-4803 VL - 58 IS - 24 SP - 9805 EP - 9833 PB - Springer Science + Business Media B.V CY - Dordrecht [u.a.] AN - OPUS4-57746 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Holstein, Tanja A1 - Kistner, Franziska A1 - Martens, L. A1 - Muth, Thilo T1 - PepGM: A probabilistic graphical model for taxonomic inference of viral proteome samples with associated confidence scores N2 - Motivation: Inferring taxonomy in mass spectrometry-based shotgun proteomics is a complex task. In multi-species or viral samples of unknown taxonomic origin, the presence of proteins and corresponding taxa must be inferred from a list of identified peptides, which is often complicated by protein homology: many proteins do not only share peptides within a taxon but also between taxa. However, the correct taxonomic inference is crucial when identifying different viral strains with high-sequence homology—considering, e.g., the different epidemiological characteristics of the various strains of severe acute respiratory syndrome-related coronavirus-2. Additionally, many viruses mutate frequently, further complicating the correct identification of viral proteomic samples. Results: We present PepGM, a probabilistic graphical model for the taxonomic assignment of virus proteomic samples with strain-level resolution and associated confidence scores. PepGM combines the results of a standard proteomic database search algorithm with belief propagation to calculate the marginal distributions, and thus confidence scores, for potential taxonomic assignments. We demonstrate the performance of PepGM using several publicly available virus proteomic datasets, showing its strain-level resolution performance. In two out of eight cases, the taxonomic assignments were only correct on the species level, which PepGM clearly indicates by lower confidence scores. Availability and implementation: PepGM is written in Python and embedded into a Snakemake workflow. It is available at https://github.com/BAMeScience/PepGM. KW - Graphical model KW - Proteomics KW - Virus KW - Bayesian model PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-577488 SN - 1367-4803 VL - 39 IS - 5 SP - 1 EP - 11 PB - Oxford University Press CY - Oxford, UK AN - OPUS4-57748 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fahmy, Alaa A1 - Omar, Hassan A1 - Szymoniak, Paulina A1 - Schönhals, Andreas A1 - Friedrich, J. T1 - Structure of plasma deposited acrylic acid‐allyl alcohol copolymers N2 - Copolymer thin films with two types of functional groups have excellent performance as sensors, for example. The formation and deposition of allyl alcohol‐acrylic acid copolymer films by pulsed high frequency plasma is a complex process. As usual, the chemical composition of the top surface of the films was investigated by XPS and FTIR measurements. Furthermore, contact angle measurements with water were used to characterise the hydrophilicity and wettability of the polymer films. After plasma deposition, a significant decrease in functional groups (OH and COOH) was observed compared to the classically copolymerised equivalent. The remaining functional groups, i.e. the majority of these groups, were sufficient for application as sensor layers. Segmental mobility and conductivity, important for sensor applications, were analysed by broadband dielectric spectroscopy. KW - Plasma Polymerization PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578349 DO - https://doi.org/10.1002/ppap.202300071 SN - 1612-8850 SP - 1 EP - 14 PB - Wiley online library AN - OPUS4-57834 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rautenberg, Max A1 - Akhmetova, Irina A1 - Das, Chayanika A1 - Bhattacharya, Biswajit A1 - Emmerling, Franziska T1 - Synthesis and In Situ Monitoring of Mechanochemical Preparation of Highly Proton Conductive Hydrogen-Bonded Metal Phosphonates N2 - Crystalline porous materials are recognized as promising proton conductors for the proton exchange membrane (PEM) in fuel cell technology owing to their tunable framework structure. However, it is still a challenging bulk synthesis for real-world applications of these materials. Herein, we report the mechanochemical gram-scale synthesis of two isostructural metal hydrogen-bonded organic frameworks (MHOFs) of Co(II) and Ni(II) based on 1-hydroxyethylidenediphosphonic acid (HEDPH4) with 2,2′-bipyridine (2,2′-bipy): Co(HEDPH3)2(2,2′-bipy)·H2O (1) and Ni(HEDPH3)2(2,2′-bipy)·H2O (2). In situ monitoring of the mechanochemical synthesis using different synchrotron-based techniques revealed a one-step mechanism – the starting materials are directly converted to the product. With the existence of extensive hydrogen bonds with amphiprotic uncoordinated phosphonate hydroxyl and oxygen atoms, both frameworks exhibited proton conduction in the range of 10–4 S cm–1 at room temperature under humid conditions. This study demonstrates the potential of green mechanosynthesis for bulk material preparation of framework-based solid-state proton conductors. KW - Mechanochemistry KW - Proton conductivity KW - Metal Organic Frameworks PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-577777 DO - https://doi.org/10.1021/acssuschemeng.2c07509 VL - 8 IS - 19 SP - 16687 EP - 16693 PB - ACS Publications AN - OPUS4-57777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Rupprecht, C. A1 - Ziegler, Mathias ED - Maldague, X. T1 - Detection of internal defects applying photothermal super resolution reconstruction utilizing two-dimensional high-power random pixel patterns N2 - In this work, we report on our progress for investigating a new experimental approach for thermographic detection of internal defects by performing 2D photothermal super resolution reconstruction. We use modern high-power laser projector technology to repeatedly excite the sample surface photothermally with varying spatially structured 2D pixel patterns. In the subsequent (blind) numerical reconstruction, multiple measurements are combined by exploiting the joint-sparse nature of the defects within the specimen using nonlinear convex optimization methods. As a result, a 2D-sparse defect/inhomogeneity map can be obtained. Using such spatially structured heating combined with compressed sensing and computational imaging methods allows to significantly reduce the experimental complexity and to study larger test surfaces as compared to the one-dimensional approach reported earlier. T2 - Quantitative Infrared Thermography 2022 CY - Paris, France DA - 04.07.2022 KW - Thermography KW - Super resolution KW - NDT KW - inspection KW - Internal defects KW - DMD KW - DLP PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-577795 DO - https://doi.org/10.21611/qirt.2022.1005 SN - 2371-4085 SP - 1 EP - 7 PB - QIRT Council AN - OPUS4-57779 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -