TY - JOUR A1 - Mohr, Gunther A1 - Nowakowski, Susanna A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Hilgenberg, Kai T1 - Experimental Determination of the Emissivity of Powder Layers and Bulk Material in Laser Powder Bed Fusion Using Infrared Thermography and Thermocouples N2 - Recording the temperature distribution of the layer under construction during laser powder bed fusion (L-PBF) is of utmost interest for a deep process understanding as well as for quality assurance and in situ monitoring means. While having a notable number of thermal monitoring approaches in additive manufacturing (AM), attempts at temperature calibration and emissivity determination are relatively rare. This study aims for the experimental temperature adjustment of an off-axis infrared (IR) thermography setup used for in situ thermal data acquisition in L-PBF processes. The temperature adjustment was conducted by means of the so-called contact method using thermocouples at two different surface conditions and two different materials: AISI 316L L-PBF bulk surface, AISI 316L powder surface, and IN718 powder surface. The apparent emissivity values for the particular setup were determined. For the first time, also corrected, closer to real emissivity values of the bulk or powder surface condition are published. In the temperature region from approximately 150 °C to 580 °C, the corrected emissivity was determined in a range from 0.2 to 0.25 for a 316L L-PBF bulk surface, in a range from 0.37 to 0.45 for 316L powder layer, and in a range from 0.37 to 0.4 for IN718 powder layer. KW - Emisssivity KW - Laser Powder Bed Fusion (L-PBF) KW - Selective Laser Melting (SLM) KW - Additive Manufacturing (AM) KW - Process monitoring KW - Infrared thermography PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516148 DO - https://doi.org/10.3390/met10111546 VL - 10 IS - 11 SP - 1546 PB - MDPI CY - Basel, Schweiz AN - OPUS4-51614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Oster, Simon A1 - Maierhofer, Christiane A1 - Bruno, Giovanni ED - Czujko, T. ED - Benedetti, M. T1 - Can Potential Defects in LPBF Be Healed from the Laser Exposure of Subsequent Layers? A Quantitative Study N2 - Additive manufacturing (AM) of metals and in particular laser powder bed fusion (LPBF) enables a degree of freedom in design unparalleled by conventional subtractive methods. To ensure that the designed precision is matched by the produced LPBF parts, a full understanding of the interaction between the laser and the feedstock powder is needed. It has been shown that the laser also melts subjacent layers of material underneath. This effect plays a key role when designing small cavities or overhanging structures, because, in these cases, the material underneath is feed-stock powder. In this study, we quantify the extension of the melt pool during laser illumination of powder layers and the defect spatial distribution in a cylindrical specimen. During the LPBF process, several layers were intentionally not exposed to the laser beam at various locations, while the build process was monitored by thermography and optical tomography. The cylinder was finally scanned by X-ray computed tomography (XCT). To correlate the positions of the unmolten layers in the part, a staircase was manufactured around the cylinder for easier registration. The results show that healing among layers occurs if a scan strategy is applied, where the orientation of the hatches is changed for each subsequent layer. They also show that small pores and surface roughness of solidified material below a thick layer of unmolten material (>200 µm) serve as seeding points for larger voids. The orientation of the first two layers fully exposed after a thick layer of unmolten powder shapes the orientation of these voids, created by a lack of fusion. KW - Computed tomography KW - Laser Powder Bed Fusion KW - In situ monitoring KW - infrared Thermography KW - Optical Tomography KW - Additive manufacturing KW - AISI 316L PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528778 DO - https://doi.org/10.3390/met11071012 VL - 11 IS - 7 SP - 1012 PB - MDPI CY - Basel AN - OPUS4-52877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ulbricht, Alexander A1 - Altenburg, Simon A1 - Sprengel, Maximilian A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Fritsch, Tobias A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Evans, Alexander A1 - Hofmann, M. A1 - Bruno, Giovanni T1 - Separation of the Formation Mechanisms of Residual Stresses in LPBF 316L N2 - Rapid cooling rates and steep temperature gradients are characteristic of additively manufactured parts and important factors for the residual stress formation. This study examined the influence of heat accumulation on the distribution of residual stress in two prisms produced by Laser Powder Bed Fusion (LPBF) of austenitic stainless steel 316L. The layers of the prisms were exposed using two different border fill scan strategies: one scanned from the centre to the perimeter and the other from the perimeter to the centre. The goal was to reveal the effect of different heat inputs on samples featuring the same solidification shrinkage. Residual stress was characterised in one plane perpendicular to the building direction at the mid height using Neutron and Lab X-ray diffraction. Thermography data obtained during the build process were analysed in order to correlate the cooling rates and apparent surface temperatures with the residual stress results. Optical microscopy and micro computed tomography were used to correlate defect populations with the residual stress distribution. The two scanning strategies led to residual stress distributions that were typical for additively manufactured components: compressive stresses in the bulk and tensile stresses at the surface. However, due to the different heat accumulation, the maximum residual stress levels differed. We concluded that solidification shrinkage plays a major role in determining the shape of the residual stress distribution, while the temperature gradient mechanism appears to determine the magnitude of peak residual stresses. KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - LPBF KW - AISI 316L KW - Online Process Monitoring KW - Thermography KW - Residual Stress KW - Neutron Diffraction KW - X-ray Diffraction KW - Computed Tomography PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512903 DO - https://doi.org/10.3390/met10091234 VL - 10 IS - 9 PB - MDPI CY - Basel AN - OPUS4-51290 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sprengel, Maximilian A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Evans, Alexander A1 - Serrano Munoz, Itziar A1 - Kromm, Arne A1 - Pirling, T. A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Triaxial Residual Stress in Laser Powder Bed Fused 316L: Effects of Interlayer Time and Scanning Velocity N2 - The triaxial distribution of the residual stress in laser powder bed fused austenitic steel 316L was determined by X-ray and neutron diffraction. The residual stress analysis results were linked to the thermal history of the specimens, which were manufactured with varying inter-layer-times and scanning velocities. A clear link between the in-process temperature of the specimens and the residual stress was found, based on in-situ monitoring data. KW - Stainless Steel KW - AGIL KW - Residual Stress KW - X-ray and Neutron Diffraction KW - Additive Manufacturing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542620 DO - https://doi.org/10.1002/adem.202101330 SP - 1 EP - 13 PB - Wiley-VCH GmbH AN - OPUS4-54262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Werner, Tiago A1 - Blasón Gonzalez, Sergio A1 - Madia, Mauro A1 - Kruse, Julius A1 - Benedetti, Matteo T1 - Determination of fatigue crack propagation thresholds using small-scale specimens N2 - The damage tolerance approach is widely used in the design and estimation of inspection intervals of safety-relevant metallic components subject to fatigue loading. The approach relies on the knowledge of the fatigue crack propagation characteristics, wherein a relevant role is played by the fatigue crack propagation threshold. Nevertheless, the use of material data determined by testing on conventional specimens is not straightforward in the case of thin-walled components such as turbine blades or additively manufactured parts, in which the local variation of material properties in highly stressed regions must be considered. In these cases, the possibility of investigating the fatigue crack propagation properties on a limited portion of material is crucial. For this purpose, a new test procedure has been developed for small-scale specimens which allows the determination of the intrinsic fatigue crack propagation threshold and the near-threshold regime. The validity and limitations of the method are demonstrated on the high strength steel S960QL, along with a comparison with data determined by testing on conventional geometries. T2 - FATIGUE DESIGN 2021 CY - Online meeting DA - 17.11.2021 KW - Fatigue crack propagation threshold KW - Small-scale specimens KW - High strength steel KW - Crack-tip constraint KW - Damage tolerance PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544967 DO - https://doi.org/10.1016/j.prostr.2022.03.031 SN - 2452-3216 VL - 38 SP - 300 EP - 308 PB - Elsevier B.V. AN - OPUS4-54496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heßmann, Jennifer A1 - Bachmann, Marcel A1 - Hilgenberg, Kai T1 - Numerical and experimental investigation of controlled weld pool displacement by electromagnetic forces for joining dissimilar materials N2 - In order to reduce CO2 emissions, an increasing interest in lightweight construction exists in the automotive industry, especially the multi-material-design approach. The main construction materials here are steels and aluminium alloys. Due to their different physical material properties and limited mutual solubility, these two materials cannot be joined thermally without difficulty. This paper presents a new joining approach for dissimilar materials. It uses electromagnetic displacement of a laser-generated melt pool to produce overlap joints between 1 mm steel (1.0330) and 2 mm aluminium alloy (EN AW 5754). Contactless induced Lorentz forces are generated by an alternating current (AC) magnet system. The controlled displacement of the aluminium alloy melt into the hole of the overlying steel sheet is investigated through numerical and experimental studies. The numerical results are compared with cross sections and thermocouple measurements. For the first time, it is possible to achieve a reproducible controlled melt pool displacement on thin sheets to produce overlap joints between dissimilar materials. KW - Displacement KW - Laser beam welding KW - Dissimilar materials KW - Joining technology KW - Electromagnetic field KW - Lorentz force KW - Numerical investigation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516640 DO - https://doi.org/10.3390/met10111447 VL - 10 IS - 11 SP - 1447 EP - 1462 PB - MDPI CY - Basel, Schweiz AN - OPUS4-51664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schirdewahn, S. A1 - Spranger, Felix A1 - Hilgenberg, Kai A1 - Merklein, M. T1 - Localized dispersing of TiB2 and TiN particles via pulsed laser radiation for improving the tribological performance of hot stamping tools N2 - The aim of this study is to increase the tribological performance of hot stamping tools by using a laser implantation process. This technique allows the fabrication of separated, elevated and dome-shaped microfeatures on the tool surface in consequence of a localized dispersing of ceramic particles via pulsed laser radiation. Hence, the topography and material properties of the tool are modified, which influences the tribological interactions at the blank-die interface. However, an appropriate selection of ceramic particles is an essential prerequisite, in order to obtain tailored and highly wear resistant surface features. In this regard, different titanium-based hard particles (TiB2 and TiN) were laser-implanted on hot working tool specimens and subsequently tested by means of a modified pin-on-disk test regarding to their wear and friction behavior. KW - Surface modification KW - Tribology KW - Laser implantation KW - Hot working tool steel KW - Hot stamping PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514171 DO - https://doi.org/10.1016/j.procir.2020.09.069 VL - 94 SP - 901 EP - 904 PB - Elsevier B.V. AN - OPUS4-51417 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kempf, Andreas A1 - Kruse, Julius A1 - Madia, Mauro A1 - Hilgenberg, Kai T1 - Correlation between quasistatic und fatigue properties of additively manufactured AlSi10Mg using Laser Powder Bed Fusion N2 - In order to find a resource efficient approach for the fatigue lifetime prediction of laser powder bed fusion (L-PBF) processed AlSi10Mg material, results of tensile and fatigue tests were compared. The specimens were manufactured with three different L-PBF machines and studied in different heat treatment conditions (as-built, annealed, T6 heat treated). The investigations showed that the high attainable tensile strength properties after the manufacturing process are not beneficial in the high cycle fatigue (HCF) regime. In contrast, the applied heat treatments, which lead typically to a decrease of ultimate tensile strength, improved dramatically the fatigue behavior. Additionally, a clear correlation between the elongation at fracture and HCF resistance has been found for individual heat treatment conditions. This empiric relationship provides an estimation of the fatigue resistance in the presence of material defects and can be implemented in part and process approvals. T2 - FATIGUE DESIGN 2021 CY - Online meeting DA - 17.11.2021 KW - Additive Manufacturing KW - Laser powder bed fusion KW - AlSi10Mg KW - Tensile properties KW - Fatigue properties PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544921 DO - https://doi.org/10.1016/j.prostr.2022.03.009 SN - 2452-3216 VL - 38 SP - 77 EP - 83 PB - Elsevier B.V. AN - OPUS4-54492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Piechotta, Christian A1 - Lisec, Jan A1 - Sommerfeld, Thomas A1 - Kluge, Stephanie A1 - Herzel, Hannes A1 - Huthwelker, T. A1 - Borca, C. A1 - Simon, Franz-Georg T1 - Levels of per- and polyfluoroalkyl substances (PFAS) in various wastewater-derived fertilizers – analytical investigations from different perspectives N2 - Solid wastewater-based fertilizers were screened for per- and polyfluoroalkyl substances (PFAS) by the extractable organic fluorine (EOF) sum parameter method. The EOF values for ten sewage sludges from Germany and Switzerland range from 154 to 7209 mg kg−1. For thermal treated sewage sludge and struvite the EOF were lower with values up to 121 mg kg−1. Moreover, the application of PFAS targeted and suspect screening analysis of selected sewage sludge samples showed that only a small part of the EOF sum parameter values can be explained by the usually screened legacy PFAS. The hitherto unknown part of EOF sum parameter contains also fluorinated pesticides, pharmaceutical and aromatic compounds. Because these partly fluorinated compounds can degrade to (ultra-)short PFAS in wastewater treatment plants they should be considered as significant sources of organic fluorine in the environment. The combined results of sum parameter analysis and suspect screening reveal the need to update current regulations, such as the German fertilizer ordinance, to focus not solely on a few selected PFAS such as perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) but consider an additional sum parameter approach as a more holistic alternative. Moreover, diffusion gradient in thin-films (DGT) passive samplers were utilized as an alternative simplified extraction method for PFAS in solid wastewater-based fertilizers and subsequently quantified via combustion ion chromatography. However, the DGT method was less sensitive and only comparable to the EOF values of the fertilizers in samples with >150 mg kg−1, because of different diffusion properties for various PFAS, but also kinetic exchange limitations. KW - Combustion Ion Chromatography KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Sewage sludge KW - Fertilizer PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-583429 DO - https://doi.org/10.1039/d3va00178d VL - 2 IS - 10 SP - 1436 EP - 1445 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Syc, M. A1 - Simon, Franz-Georg A1 - Hyks, J. A1 - Braga, R. A1 - Biganzoli, L. A1 - Costa, G. A1 - Funari, V. A1 - Grosso, M. T1 - Metal recovery from incineration bottom ash: state-of-the-art and recent developments N2 - Municipal solid waste incineration (MSWI) is one of the leading technologies for municipal solid waste (MSW) treatment in Europe. Incineration bottom ash (IBA) is the main solid residue from MSWI, and its annual European production is about 20 million tons. The composition of IBA depends on the composition of the incinerated waste; therefore, it may contain significant amounts of ferrous and non-ferrous (NFe) metals as well as glass that can be recovered. Technologies for NFe metals recovery have emerged in IBA treatment since the 1990s and became common practice in many developed countries. Although the principles and used apparatus are nearly the same in all treatment trains, the differences in technological approaches to recovery of valuable components from IBA – with a special focus on NFe metals recovery – are summarized in this paper. KW - Bottom ash KW - Metal recovery KW - Waste-to-energy KW - Non-ferrous metals KW - Iron scrap PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504927 DO - https://doi.org/10.1016/j.jhazmat.2020.122433 SN - 0304-3894 VL - 393 SP - 122433 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-50492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Franz-Georg A1 - Kalbe, Ute T1 - Case Study on Secondary Building Materials for a Greener Economy N2 - Half of global material consumption involves mineral material. The circularity is still low so that the enhanced use of secondary building material is required to close loops. Three different secondary building materials are discussed based on exemplary research results: construction and demolition waste (C&D waste), soil-like material, and incineration bottom ash (IBA). Focus was placed on the environmental compatibility of the materials examined mainly by standardized leaching tests. C&D waste was investigated after a wet treatment using a jigging machine, and soil-like material and IBA were characterized with respect to their material composition. Their environmental compatibilities in particular were studied using standard leaching tests (batch tests and column tests). It was concluded that soil-like material can mostly be utilized even when the precautionary limit values set are exceeded by a factor of less than two. For C&D waste, the fine fraction below 2 mm and the content of brick material is problematic. IBA fulfills quality level “HMVA-2” following German regulations. Improved levels of utilization might be achievable with better treatment technologies. KW - Incineration bottom ash KW - Soil-like material KW - Leaching KW - Circular economy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576343 DO - https://doi.org/10.3390/app13106010 SN - 2076-3417 VL - 13 IS - 10 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-57634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Franz-Georg A1 - Holm, Olaf T1 - Resources from recycling and urban mining: Limits and prospects N2 - Direct and indirect effects (DIERec) of the recovery of secondary resources are in the range of 500 million tons per year in Germany; energy savings are 1.4 million TJ. These savings are between 10 and 20% of the total. The effects of materials recovery exceed those of energy recovery by far except for secondary plastic material, where DIERec from energy recovery is higher by factor of 2.7. Untapped potential for the recovery of secondary resources exists in the fine fraction of bottom ash from municipal solid waste incineration, mainly Cu and precious metals, and in urban mining. KW - Waste treatment KW - Secondary raw materials KW - Direct material input KW - Urban mining PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-453364 UR - https://digital.detritusjournal.com/articles/resources-from-recycling-and-urban-mining-limits-and-prospects/124 DO - https://doi.org/10.31025/2611-4135/2018.13665 SN - 2611-4135 VL - 02 SP - 24 EP - 28 PB - CISA Publisher CY - Padua, Italy AN - OPUS4-45336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rohn, H. A1 - Simon, Franz-Georg A1 - Schmidt, M. A1 - Giegrich, J. A1 - Oberender, C. A1 - Denz, W. A1 - Niebaum, A. ED - Ludwig, C. ED - Matasci, C. T1 - The Guideline Series VDI 4800 Resource Efficiency: An Approach for Increasing Resource Efficiency with Aim of Conservation of Natural Resources in the Industrial Sector N2 - In 2011, the Association of German Engineers (VDI) started working on a set of guidelines towards increased resource efficiency. These guidelines represent a framework that defines resource efficiency and outlines considerations for the producing industry. A special guideline for SMEs is included as well as guidelines on methodologies for evaluating resource use indicators, such as the cumulative raw material demand of products and production systems. Resource efficiency, defined here as the relationship between a specific benefit or use and the natural resources that need to be spent or consumed to attain this benefit or use. It can be evaluated by defining a function which expresses the specific benefit and quantifies the resource requirements through a set of indicators (use of raw materials, energy, water, land and ecosystem services including sinks). The results from this also depend on the system boundary parameters and the allocation rules for by-products and waste treatment options. Optimising resource use is possible at all stages of a product’s or production system’s life cycle chain (raw material extraction, production and manufacturing, use and consumption, and the end-of-life stage). VDI guidelines are widely accepted across Germany’s industrial sector and therefore represent an important means of mainstreaming resource efficiency in this target area. As well as providing a methodological framework, the guidelines describe strategies and measures towards increasing resource efficiency, and they enable industrial producers and service providers to identify potential areas of improvement. The full article presents an overview of the methodology and contents of these guidelines and discusses their impact in achieving absolute reductions in the industrial use of natural resources. KW - Resource efficiency KW - Life cycle thinking KW - Products and production systems KW - Standardization PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-426443 UR - https://www.wrforum.org/wrfpublicationspdf/boosting-resource-productivity/ SN - 978-3-9521409-7-0 SP - 125 EP - 132 PB - Paul Scherrer Institute CY - Villigen PSI, Switzerland ET - 1 AN - OPUS4-42644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromer, Charlotte A1 - Katz, Aaron A1 - Feldmann, Ines A1 - Laux, Peter A1 - Luch, Andreas A1 - Tschiche, Harald R. T1 - A targeted fluorescent nanosensor for ratiometric pH sensing at the cell surface N2 - AbstractThe correlation between altered extracellular pH and various pathological conditions, including cancer, inflammation and metabolic disorders, is well known. Bulk pH measurements cannot report the extracellular pH value at the cell surface. However, there is a limited number of suitable tools for measuring the extracellular pH of cells with high spatial resolution, and none of them are commonly used in laboratories around the world. In this study, a versatile ratiometric nanosensor for the measurement of extracellular pH was developed. The nanosensor consists of biocompatible polystyrene nanoparticles loaded with the pH-inert reference dye Nile red and is surface functionalized with a pH-responsive fluorescein dye. Equipped with a targeting moiety, the nanosensor can adhere to cell membranes, allowing direct measurement of extracellular pH at the cell surface. The nanosensor exhibits a sensitive ratiometric pH response within the range of 5.5–9.0, with a calculated pKa of 7.47. This range optimally covers the extracellular pH (pHe) of most healthy cells and cells in which the pHe is abnormal, such as cancer cells. In combination with the nanosensors ability to target cell membranes, its high robustness, reversibility and its biocompatibility, the pHe nanosensor proves to be well suited for in-situ measurement of extracellular pH, even over extended time periods. This pH nanosensor has the potential to advance biomedical research by improving our understanding of cellular microenvironments, where extracellular pH plays an important role. KW - pH sensor KW - pH KW - Targeting, Nanoparticles KW - pHe KW - Nanosensor KW - Extracellular pH PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604339 DO - https://doi.org/10.1038/s41598-024-62976-2 VL - 14 IS - 1 SP - 1 EP - 12 PB - Springer Science and Business Media LLC AN - OPUS4-60433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mieller, Björn A1 - Vogl, Jochen A1 - Noordmann, J. A1 - Kaltenbach, A. A1 - Rienitz, O. T1 - Preparation and characterization of primary magnesium mixtures for the ab initio calibration of absolute magnesium isotope ratio measurements N2 - We report an appropriate preparation of binary isotope calibration mixtures of the three stable isotopes of magnesium to be used in the ab initio calibration of multicollector mass spectrometers (ICPMS and TIMS). For each of the three possible combinations of binary mixtures ("24Mg" + "25Mg", "24Mg" + "26Mg", and "25Mg" + "26Mg"), three individual setups have been prepared under gravimetric control, each of them with an isotope ratio close to unity, and a total magnesium mass fraction close to 20 mg kg-1. The preparation was designed to occur via an intermediate dilution of a parent solution of a highly purified specimen of the isotopically enriched magnesium materials. For the application as calibration mixtures, a complete uncertainty budget was set up, and is presented and discussed in detail, including the aspects that went into the design of the dilution and mixing approach to minimize uncertainty. The principle parameters for the purpose of the later calibration of the mass spectrometers are the absolute masses of isotopically enriched magnesium materials in the primary calibration mixtures. For the first time relative expanded uncertainties U (k = 2) for these masses of ≤0.005% could be achieved for all mixtures. KW - Atomic weight KW - Magnesium KW - Isotope mixture KW - Purity PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-352564 DO - https://doi.org/10.1039/c5ja00284b SN - 0267-9477 SN - 1364-5544 N1 - Geburtsname von Mieller, Björn: Brandt, B. - Birth name of Mieller, Björn: Brandt, B. N1 - Corrigendum: Journal of analytical atomic spectrometry 34 (2019) 2340 VL - 31 IS - 1 SP - 179 EP - 196 PB - Royal Society of Chemistry CY - London AN - OPUS4-35256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Mieller, Björn A1 - Noordmann, J. A1 - Rienitz, O. A1 - Malinovskiy, D. T1 - Characterization of a series of absolute isotope reference materials for magnesium: ab initio calibration of the mass spectrometers, and determination of isotopic compositions and relative atomic weights N2 - For the first time, an ab initio calibration for absolute Mg isotope ratios was carried out, without making any a priori assumptions. All quantities influencing the calibration such as the purity of the enriched isotopes or liquid and solid densities were carefully analysed and their associated uncertainties were considered. A second unique aspect was the preparation of three sets of calibration solutions, which were applied to calibrate three multicollector ICPMS instruments by quantifying the correction factors for instrumental mass discrimination. Those fully calibrated mass spectrometers were then used to determine the absolute Mg isotope ratios in three candidate European Reference Materials (ERM)-AE143, -AE144 and -AE145, with ERM-AE143 becoming the new primary isotopic reference material for absolute isotope ratio and delta measurements. The isotope amount ratios of ERM-AE143 are n(25Mg)/n(24Mg) = 0.126590(20) mol/mol and n(26Mg)/n(24Mg) = 0.139362(43) mol/mol, with the resulting isotope amount fractions of x(24Mg) = 0.789920(46) mol/mol, x(25Mg) = 0.099996(14) mol/ mol and x(26Mg) = 0.110085(28) mol/mol and an atomic weight of Ar(Mg) = 24.305017(73); all uncertainties were stated for k = 2. This isotopic composition is identical within uncertainties to those stated on the NIST SRM 980 certificate. The candidate materials ERM-AE144 and -AE145 are isotopically lighter than ERM-AE143 by 1.6 ‰ and 1.3 ‰, respectively, concerning their n(26Mg)/n(24Mg) ratio. The relative combined standard uncertainties are ≤0.1 ‰ for the isotope ratio n(25Mg)/n(24Mg) and ≤0.15 ‰ for the isotope ratio n(26Mg)/ n(24Mg). In addition to characterizing the new isotopic reference materials, it was demonstrated that commonly used fractionation laws are invalid for correcting Mg isotope ratios in multicollector ICPMS as they result in a bias which is not covered by its associated uncertainty. Depending on their type, fractionation laws create a bias up to several per mil, with the exponential law showing the smallest bias between 0.1 ‰ and 0.7 ‰. KW - isotope reference material KW - absolute measurements KW - mass spectrometry KW - atomic weight KW - magnesium PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-370931 DO - https://doi.org/10.1039/C6JA00013D SN - 0267-9477 N1 - Geburtsname von Mieller, Björn: Brandt, B. - Birth name of Mieller, Björn: Brandt, B. VL - 31 IS - 7 SP - 1440 EP - 1458 PB - Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-37093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Schönauer-Kamin, D. A1 - Moos, R. A1 - Reimann, T. A1 - Giovannelli, F. A1 - Rabe, Torsten T1 - Influence of pressure and dwell time on pressure‐assisted sintering of calcium cobaltite N2 - Calcium cobaltite Ca3Co4O9, abbreviated Co349, is a promising thermoelectric material for high‐temperature applications in air. Its anisotropic properties can be assigned to polycrystalline parts by texturing. Tape casting and pressure‐assisted sintering (PAS) are a possible future way for a cost‐effective mass‐production of thermoelectric generators. This study examines the influence of pressure and dwell time during PAS at 900°C of tape‐cast Co349 on texture and thermoelectric properties. Tape casting aligns lentoid Co349. PAS results in a textured Co349 microstructure with the thermoelectrically favorable ab‐direction perpendicular to the pressing direction. By pressure variation during sintering, the microstructure of Co349 can be tailored either toward a maximum figure of merit as required for energy harvesting or toward a maximum power factor as required for energy harvesting. Moderate pressure of 2.5 MPa results in 25% porosity and a textured microstructure with a figure of merit of 0.13 at 700°C, two times higher than the dry‐pressed, pressureless‐sintered reference. A pressure of 7.5 MPa leads to 94% density and a high power factor of 326 µW/mK2 at 800°C, which is 11 times higher than the dry‐pressed reference (30 MPa) from the same powder. KW - Hot pressing KW - Texture KW - Thermoelectric properties PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515973 DO - https://doi.org/https://doi.org/10.1111/jace.17541 SN - 0002-7820 VL - 104 IS - 2 SP - 917 EP - 927 PB - Wiley Periodicals LLC AN - OPUS4-51597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Mrkwitschka, Paul A1 - Moos, R. A1 - Rabe, Torsten T1 - Glass-ceramic composites as insulation material for thermoelectric oxide multilayer generators N2 - Thermoelectric generators can be used as energy harvesters for sensor applications. Adapting the ceramic multilayer technology, their production can be highly automated. In such multilayer thermoelectric generators, the electrical insulation material, which separates the thermoelectric legs, is crucial for the performance of the device. The insulationmaterial should be adapted to the thermoelectric regarding its averaged coefficient of thermal expansion α and its sintering temperature while maintaining a high resistivity. In this study, starting from theoretical calculations, a glass-ceramic Composite material adapted for multilayer generators fromcalciummanganate and Calcium cobaltite is developed. The material is optimized towards an α of 11 × 10−6 K−1 (20–500◦C), a sintering temperature of 900◦C, and a high resistivity up to 800◦C. Calculated and measured α are in good agreement. The chosen glass-ceramic composite with 45 vol.% quartz has a resistivity of 1 × 107 Ωcm and an open porosity of <3%. Sintered multilayer samples from tape-cast thermoelectric oxides and screen-printed insulation show only small reaction layers. It can be concluded that glass-ceramic composites are a well-suited material class for insulation layers as their physical properties can be tuned by varying glass composition or dispersion phases. KW - Electrical insulators KW - Glass-ceramics KW - Multilayers KW - Thermal expansion PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538898 DO - https://doi.org/10.1111/jace.18235 SN - 0002-7820 SP - 1 EP - 10 PB - Wiley Online Library AN - OPUS4-53889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Moos, R. A1 - Rabe, Torsten T1 - Lowering the sintering temperature of calcium manganate for thermoelectric applications N2 - This study combines three different approaches to lower the sintering temperature of Sm-doped CaMnO3 to save energy in production and facilitate co-firing with other low-firing oxides or metallization. The surface energy of the powder was increased by fine milling, sintering kinetics were enhanced by additives, and uniaxial pressure during sintering was applied. The shrinkage, density, microstructure, and thermoelectric properties were evaluated. Compared to micro-sized powder, the use of finely ground powder allows us to lower the sintering temperature by 150 K without reduction of the power factor. By screening the effect of various common additives on linear shrinkage of CaMnO3 after sintering at 1100 ○C for 2 h, CuO is identified as the most effective additive. Densification at sintering temperatures below 1000 ○C can be significantly increased by pressure-assisted sintering. The power factor at room temperature of CaMnO3 nano-powder sintered at 1250 ○C was 445 μW/(m K2). Sintering at 1100 ○C reduced the power factor to 130 μW/(m K2) for CaMnO3 nano-powder, while addition of 4 wt.% CuO to the same powder led to ∼290 μW/(m K2). The combination of fine milling, CuO addition, and pressureassisted sintering at 950 ○C resulted in a power factor of ∼130 μW/(m K2). These results show that nano-sized powder and CuO addition are successful and recommendable strategies to produce CaMnO3 with competitive properties at significantly reduced temperatures and dwell times. KW - Sintering additive KW - Liquid phase sintering KW - Pressure assisted sintering PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555467 DO - https://doi.org/10.1063/5.0098015 SN - 2158-3226 VL - 12 IS - 8 SP - 1 EP - 9 PB - American Institute of Physics (AIP) CY - New York, NY AN - OPUS4-55546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Höhne, Patrick A1 - Mieller, Björn A1 - Rabe, Torsten T1 - Advancing spray granulation by ultrasound atomization N2 - The influence of the atomization technique on the suitability of granules for dry pressing is the focus of the presented investigations. Therefore, destabilized alumina, zirconia, and zirconia toughened alumina (ZTA) slurries were spray dried and the obtained granules were used to fabricate green and finally sintered bodies for evaluation. Granules made in a laboratory spray dryer with a two-fluid nozzle served as a reference. An ultrasonic atomizer was integrated into the same spray dryer and the influence on the granule properties was evaluated. Untapped bulk density, granule size distribution, and flowability are among the evaluated granule-related properties as well as the granule yield which is used as an indicator of the process efficiency. Yield and flowability as most important granule properties are clearly improved when atomization is realized with ultrasound. The investigated sinter body properties include porosity, sinter body density, and biaxial strength and are as well positively affected by switching the atomization technique to ultrasound. Therefore, the Approach to improve the compressibility of granules by ultrasonic atomization, which leads to an improved microstructure, density, and strength of sintered bodies, has proven to be successful for single-component ceramics (alumina and zirconia) as well as for the multicomponent ceramic ZTA. KW - Alumina KW - Granules KW - Spray drying KW - Ultrasound KW - Zirconia KW - Zirconia-toughened alumina PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510696 DO - https://doi.org/10.1111/ijac.13534 VL - 17 IS - 5 SP - 2212 EP - 2219 AN - OPUS4-51069 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -